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1 Abstract

This paper willpresent the results of a comparative study
of a set of vision-based control strategies that have been
applied to the problem of steering an autonomous vehicle
along a highway. The aim of this work has been to fur-
ther our understanding of the characteristics of various con-
trol laws that could be applied to this problem with a view
to making informed design decisions. The control strate-
gies that we explored include a lead lag control law, a full-
state linear controller and input-output linearizing control
law. Each of these control strategies was implemented and
tested on our experimental vehicle, a Honda Accord LX,
both with and without a curvature feedforward component.

2 Introduction

With the increasing speeds of modern microprocesors
it has become ever more common for computer vision al-
gorithms to find application in real-time control tasks. In
particular, the problem of steering an autonomous vehi-
cle along a highway using the output from one or more
video cameras mounted inside the vehicle has been a popu-
lar target for researchers around the world and a number of
groups have demonstrated impressive results on this con-
trol task. Dickmanns et. al. [?] developed systems that
drove autonomously on the German Autobahn as early as
1985. The Navlab project at CMU has produced a number
of successful visually guided autonomous vehicle systems.
Other research groups include Ozguner et. al. at Ohio State
[11], Broggi et al at the Universita’ di Parma, - at the Na-
tional Institute of Standards and Lockheed-Martin.

The goal of our research efforts in this field has been
to understand the fundamental characteristics of this vision
based control problem and to use this knowledge to design
better control strategies. In [7] we presented an analysis of
the problem of vision-based lateral control and investigated

the effects of changing various important system parame-
ters like the vehicle velocity, the lookahead range of the
vision sensor and the processing delay associated with the
perception and control system. We also described a static
feedback strategy that enabled us to perform the lateral con-
trol task at highway speeds. We were able to verify the ac-
curacy and efficacy of our modellingand control techniques
on our experimental vehicle platform, a Honda Accord LX.

In this paper we present the results of a series of experi-
ments that were designed to provide a systematic compari-
son of a number of control strategies. The aim of this work
has been to further our understanding of the characteristics
of various control laws that could be applied to this prob-
lem with a view to making informed design decisions. The
control strategies that we explored include a lead lag con-
trol law, a full-state linear controller and input-output lin-
earizing control law. Each of these control strategies was
implemented and tested both with and without a curvature
feedforward component.

Section 2 of this paper presents the basic equations that
we have used to model the dynamics of our vehicle and our
sensing system. Section 3 describes the design of the ob-
server that we use to estimate the states of our system and
the curvature of the roadway. Section 4 describes the var-
ious control strategies that we implemented on our exper-
imental platform and section 5 presents the results of the
experiments that we carried out with these controllers. Sec-
tion 6 contains the conclusions that we have drawn from
these experiments.

3 Modeling

The dynamics of a passenger vehicle can be described
by a detailed 6-DOF nonlinear model [12]. Since it is pos-
sible to decouple the longitudinal and lateral dynamics, a
linearized model of the lateral vehicle dynamics is used for
controller design. The linearized model of the vehicle re-
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tains only lateral and yaw dynamics, assumes small steer-
ing angles and a linear tire model, and is parameterized by
the current longitudinal velocity. Coupling the two front
wheels and two rear wheels together, the resulting bicycle
model (Figure 1) is described by the following variables
and parameters:

v linear velocity vector (vx, vy), vx denotes speed

�f ; �r side slip angles of the front and rear tires

 vehicle yaw angle within a fixed inertial frame

�f front wheel steering angle

� commanded steering angle

m total mass of the vehicle

I total inertia vehicle around center of gravity (CG)

lf ; lr distance of the front and rear axles from the CG

l distance between the front and the rear axle lf + lr

cf ; cr cornering stiffness of the front and rear tires.
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Figure 1: The motion of the vehicle is characterized by its ve-
locity v = (vx; vy) expressed in the vehicle’s inertial frame of
reference and its yaw rate _ . The forces acting on the front and
rear wheels are Ff and Fr , respectively.

The lateral dynamics equations are obtained by comput-
ing the net lateral force and torque acting on the vehicle fol-
lowing Newton-Euler equations [8] and choosing _ and vy,
as state variables. The state equations have the following
form:
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measurements provided by the vision system (see Figure 2)
are:

yL the offset from the centerline at the lookahead,
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Figure 2: The vision system estimates the offset from the center-
line yL and the angle between the road tangent and heading of the
vehicle "L at some lookahead distance L.

"L the angle between the tangent to the road and the vehicle ori-
entation

L denotes the lookahead distance of the vision system.
The equations capturing the evolution of these measure-
ments due to the motion of the car and changes in the road
geometry are:

_yL = vx "L � vy � _ L (2)

_"L = vx KL �
_ (3)

We can combine the vehicle lateral dynamics and the vision
dynamics into a single dynamical system of the form:

_x = Ax+ B u +Ew

y = C x

with the state vector x = [vy; _ ; yL; "L]
T , the output y =

[ _ ; yL; "L]
T and control input u = �f . The road curva-

tureKL enters the model as an exogenous disturbance sig-
nal w = KL.

3.1 Analysis

The block diagram of the overall system following the
state equations is shown in Figure 3. The transfer function
V1(s) between the steering angle �f and offset at the looka-
head yL has the following form:

V1(s) =
1

s2

as2 + bs+ c

ds2 + es+ f
(4)

where the numerator is a function of both speed and looka-
head distance and the denominator is parameterized by the
speed of the car. V1(s) can be rewritten according to Fig-
ure 3 by singling out the vehicle dynamics in terms of �yCG
and � followed by the integrating action 1=s2:

V1(s) =
1

s2
(G(s) + LG2(s)) (5)



yL

δ δf

+ ε
L

vy
.

ψ
..

-

K L

C(s) A(s)

2G (s) 1/s

1/s

1/s

1/s D(s)

D(s)

L

v

v

+−

ψ.

vy

+

+

ε
L

.

G(s)

Figure 3: The block diagram of the overall system with the two
outputs provided by the vision system.

where G(s) and G2(s) are transfer functions between
steering angle and lateral acceleration and yaw acceleration
respectively. The actuator A(s) is modeled as a low pass
filter of the commanded steering angle � and a pure time de-
lay element D(s) = e�Tds represents the latency Td of the
vision subsystem. In our system Td = 0:057 s. The transfer
functionC(s) corresponds to the controller to be designed.
More detailed analysis of how the behavior of this dynamic
system changes as a function of important system parame-
ters like, lookahead distance, processing delay and vehicle
velocity can be found in [7].

4 Vision System

The vision-based lane tracking system used in our exper-
iments is an improved version of the one presented in [14].
This system takes its input from a single forward-looking
CCD video camera. It extracts potential lane markers from
the input using a template-based scheme. It then finds the
best linear fits to the left and right lane markers over a cer-
tain lookahead range through a variant of the Hough trans-
form. From these measurements we can compute an esti-
mate for the lateral position and orientation of the vehicle
with respect to the roadway at a particular lookahead dis-
tance, L.

The vision system is implemented on an array of
TMS320C40 digital signal processors which are hosted on
the bus of an Intel-based industrial computer. The system
processes images from the video camera at a rate of 30
frames per second.

5 Observer Design

In order to estimate the curvature of the roadway we
have chosen to implement an observer based on a slightly
simplified version of the systems state equations as shown
in Equation ( 6). More specifically, in these equations we
have chosen to neglect the vehicles lateral velocity, vy.

_x0 = A0(vx)x
0 +B0 _ 

y
0 = C0

x
0 (6)

where x0 = [yL; "L;KL]
T , y0 = [yL; "L]

T . Note that the
state vector x0 includes the road curvature KL. This dif-
ferential equation can be converted to discrete time in the
usual manner by assuming that the yaw rate, _ , is constant
over the sampling interval T .

x(k + 1) = �(vx)x(k) + � _ (7)

Equation (7) allows us to predict how the state of the system
will evolve between sampling intervals.

Measurements are obtained from two sources: the vi-
sion system provides us with measurements of yL and "L,
while the on-board fiber optic gyro provides us with mea-
surements of the yaw rate of the vehicle, _ . Our use of the
yaw rate sensor measurements is analogous to the way in
which information from the proprioceptive system is used
in animate vision. The measurement vector y0 is used to
update an estimate for the state of the system x̂

0 as shown
in the following equation:

x̂
0+(k) = x̂

0�(k) + L(y0(k) � Cx̂0�(k)) (8)

where x̂0�(k) and x̂0+(k) denote the state estimate before
and after the sensor update respectively.

The gain matrix L can be chosen in a number of ways
[4], depending on the assumptions one makes about the
availability of noise statistics and the criterion one chooses
to optimize. In our case the resulting gain matrix was com-
puted as the steady state optimal gain matrix which mini-
mizes estimation error, using the funtiondlqe available in
Matlab. The covariances of the both the process and mea-
surement noise were computed from the collected output
data while closing the loop using output feedback lead-lag
controler.

6 Controllers

The goal of all of the control schemes presented in the
sequel is to regulate the offset at the lookahead, yL, to zero.
Passenger comfort is another important design criterion and
this is typically expressed in terms of jerk, corresponding
to the rate of change of acceleration. For a comfortable
ride no frequency above 0.1-0.5 Hz should be amplified in
the path to lateral acceleration [5]. Additional road follow-
ing criteria can be specified in terms of maximal allowable
offset yLmax as a response to the step change in curvature
as well as bandwidth requirements on the transfer function
F (s) = yL(s)

KL(s)
.



6.1 Lead-lag Control

Previous analysis revealed that up to 15 m/s the looka-
head one can guarantee satisfactory damping of the closed
loop poles of V1(s) and compensate for the delay using
simple unity feedback control with proportional gain in the
forward loop. As the velocity increases the transient re-
sponse is affected more by the poor damping of the poles
of V1(s) introducing additional phase lag around the 0.1-
2 Hz. Since further increasing the lookahead does not im-
prove the damping, gain compensation only cannot achieve
satisfactory performance. The natural choice for obtaining
an additional phase lead in the frequency range 0.1-2 Hz
would be to introduce some derivative action. In order to
keep the bandwidth low an additional lag term is necessary.
One satisfactory lead-lag controller has the followingform:

C(s) =
0:09s+ 0:18

0:025s2 + 1:5s+ 20
(9)

where C(s) is a lead network in series with a single pole.
The above controller was designed for a velocity of 30 m/s
(108 km/h, 65 mph), a lookahead of 15 m and 60 ms delay.
The resulting closed loop system has a bandwidth of 0.45
Hz with a phase lead of 45� at the crossover frequency. A
discretized version of the above controller taking into ac-
count the 30 ms sampling time of the vision system have
been used in our experiments.

Since increasing the speed has a destabilizing effect on
V1(s), designing the controller for the highest intended
speed guarantees stability at lower speeds and achieves sat-
isfactory ride quality. In order to tighten the tracking per-
formance at lower speeds individual controllers can be de-
signed for various speed ranges and gain scheduling tech-
niques used to interpolate between them.

6.2 Full State Feedback

With the availability of the state information through
the observation process we explored the possibility of us-
ing the full state feedback control, using pole placement
method. For good step response and bandwith require-
ments the poles from origin were moved to a conjugate
pair with damping ratio � = 0.707 and natural frequency
about !n = 0.989 rad/s. The location of the vehicle dy-
namics poles was compensated by increased lookahead at
higher velocities and remained unchnaged by pole place-
ments methods.

6.3 Input-Output Linearization

Input-ouput linearization technique is typically used for
linearization of nonlinear systems by state feedback and its

theoretical background can be found in [6]. The application
of this technique to the bicycle model isn’t strictly speaking
linearization by state feedback, since the bicycle model is
already linear. Nonetheless, the feedback rule is applied to
render the model longitudinal-velocity independent. In this
case the feedback law has a zero cancelling effect instead of
linearizing one. Given the bicycle model in the form

_x = f(x) + g(x)u (10)

The control law

u =
1

LgL
1
f
h(x)

(�L2
f
h(x) + u0) (11)

where Li
g

denotes the i-th Lie derivative along g. For our
particular example the control law becomes:

u = a (u0 �
(La3
I 
�

a1

m
)vy � (�La4

I 
�

a2

m
) _ 

V
)

with constants a = 1=(�Lb2�b1) and a1; a2; a3; a4; b1; b2
as defined after Equation ??. Employing this control law
yields a second order equation �y = u0. Now with two
poles at the origin and the other two poles unobservable but
well behaved we used the original lead-lag controller which
gave us a complete control over the placement of the sys-
tems poles.

6.4 Feedforward Control

The steady state behavior of the system during perfect
tracking of a curve with radius Rref , is characterized by
particular values of _ ref ; vyref and �ref . By setting the
[ _vy; � ; _yL; _"L]

T to 0, the steering angle �ref can be ob-
tained from state equations and becomes:

�ref = Kref (l �
(lf cf � lrcr)v

2
x
m

crcf l
) : (12)

This feedforward control component can be added to any
of the control schemes that have been described. The feed-
forward control law essentially provides information about
the disturbance ahead of the car and improves the transient
behavior of the system when encountering changes in cur-
vature. The effectiveness of the feedforward term depends
on the quality of the curvature estimates. We discussed the
curvature estimation process as part of the observer design
in section 5.

7 Experimental Results

8 Conclusions

The strategy behind the design of the lead-lag and full
state feedback controlers was based on the observation that
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Figure 4: The plots of the left side of this figure depict the
performace of a lead-lag controler, while trackin an oval
consisting of two straight segments and two curved seg-
ments with the radius of curvature about 1200 m. The
spikes both in the offset and lateral acceleration profiles
during the curved sections (the sections where the offset is
larger) correspond to the lane change maneuvers performed
by the vehicle. The transitions between the straight and
curved segments are smooth without noticable overshoot.
The plots on the right hand side depict full state feedback
controller. While in the straight line sections the perfor-
mance of the two is comparable, in the curved sections at
high velocities the tracking error increases. In this case the
control was perfomed using purely feedback term.
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Figure 5: The plots on the left hand side and right hand side
demonstrate the effect of the feedforward control term on
the overall tracking performance, while using input-ouput
linearized controller. The offset during the curved sections
was essentially eliminated (see plots on the right). The
row of pots depicts the feedforward term, which was com-
puted from the curvature estimates (left) provided by the
observer. The offset exihibits slight overshoot until the cur-
vature estimate converges.



the dominant effect on systems behavior is caused by the
two poles at the origin, while the vehicle dynamics poles
are well behaved as long as the lookahead is large enough or
en extra derivative control action is provided. This allowed
us to design controllers for the highest intended operating
velocity, which would operate satisfactorily in the whole
range of lower velocities. However taking this approach
one has to sacrifice some performance criteria at lower ve-
locities.
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