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Abstract— A functional approach to programming robot
swarms brings with it well-defined properties that allow for
automated concurrency and distributed execution. Further,
the particular expressiveness of a pure functional language
with first-class closures captures so cleanly certain biologically-
inspired behaviors that program specification often becomes
compact enough to allow a programmer to visually inspect
the program code for the entire swarm. This benefit comes
in contrast to more piece-meal construction methods used to
build-up robot software from discrete components. While such
programming models capture the engineered structure of a
robotic system, the dynamic, decentralized qualities sought after
in robot swarms are well-matched by the idioms of functional
concurrent programming.

I. INTRODUCTION

Programming a swarm of robots suggests a number of
features found rarely in traditional software applications.
Concurrency – the simultaneous execution of multiple pro-
gram elements – is a fundamental feature of swarms, and
can not be viewed merely as a performance boost. Although
concurrency is, today, receiving a great deal of attention
thanks to the shift to multi-core processors, swarms of robots
provide a computational platform that requires software de-
signed to operate over tens or hundreds of logical processors,
rather than the two or four cores found in typical consumer
products. Such levels of concurrent execution suggest that
manual annotation of critical sections – sequences of pro-
gram instructions that only one processor may be executing
at a time – may be a crippling limitation. Instead, swarms
show their strength when executing programs capable of
scaling to accommodate, and take advantage of, an arbitrary
number of nodes.

Swarms terminology, together with the associated
biomimetic metaphors, further evokes notions of fault tol-
erance commonly seen in nature, yet seldom found in man-
made systems. In fact, applying a simplistic view of pro-
gramming, where a program is contained in a plain text file,
to any system implies the immediate imposition of a single
point of failure: the interpreter, or runtime, executing the
program. Yet the single-file view of a program is nonetheless
appealing because it suggests a self-contained specification
for system behavior. Ideally, swarms programming should
be as comprehensible to the programmer as a traditional
program entirely contained in a single file, while as fault
tolerant as a system composed of loosely coupled, often
redundant, components. In essence, the programmer should

be specifying something akin to DNA that may be executed,
spliced, and spread throughout the swarm in a completely
dynamic manner.

A. Functional Swarms

Functional programming, a branch of computer science
loosely identified with the representation of program seman-
tics solely in terms of idempotent function calls, is enjoying
a resurgence due to the nature of progress in computing
hardware. Rather than faster CPUs, today’s systems gain
performance by adding logical processors. While this trend
has only recently achieved significant penetration of the
consumer electronics market segment in the form of multi-
core processors, it is firmly entrenched in the data center,
where companies such as Google are harnessing thousands of
discrete processors to solve computations involving tremen-
dous amounts of data. In order to take advantage of all these
processors, and the memory physically attached to them,
Google has employed MapReduce [1] as a way of specifying
an operation to be carried out over a large dataset. The
functional specification of the operation eases the distribution
of the program over the many available processors without
specifically addressing concurrency or distribution.

Robotics programming has also seen applications of func-
tional programming in the areas of specifying reactive be-
haviors in the form of pure functions of sensor inputs tightly
coupled to evince desired behaviors [2] [3]. But swarms of
robots represent a computational platform that has as much
in common with one of Google’s data centers as it does the
collection of sensors and actuators that make up a single
robot. Indeed, many swarm behaviors are well-captured by
a recursive behavior definition that may be simultaneously
applied over any number of robots. Additionally, proper
encapsulation of recursion semantics allows a behavior to
recursively apply itself to other agents. Such a capability
enables the spread of live behaviors throughout a swarm, and
for the sharing of composable behavioral components learned
during execution. Finally, this specification style leads to
compact encodings of behaviors – short programs! – that,
despite their single point of definition, are fully capable of
expressing highly decentralized behaviors that are robust to
individual failures among the swarm population.



B. Related Work

The dominant manner of creating software for robotic
systems is to reverse the traditional software engineer-
ing methodology of top-down specification, implementa-
tion, refinement iterations, and take a bottom-up approach
by creating small components in a dataflow programming
style as in Player [4], ROCI [5], and many other robotics
programming frameworks. In this design paradigm, one
builds up a high-level application by creating a graph with,
preferably, directed edges between functional components.
Such a technique alleviates much of the pain of concurrent
software design, while making distributed execution essen-
tially transparent to the component developer. These benefits
may be viewed as a result of designing a large system as
a composition of many smaller, functionally independent
parts whose successful concurrent execution is achieved by
building upon message passing to define control flow [6]
(rather than the synchronous procedure calls that define
control flow in most mainstream, imperative languages such
as Java, C, C#, etc.), or they may be viewed as a result of a
specialized runtime subsuming the top-levels of a traditional
program. In any case, the key insight of such a design is
to elevate the data a program operates on to a position of
greater prominence than it typically has in an imperative
design, in which control flow receives the most attention. To
wit, an imperative program is a carefully chosen sequence
of procedure calls, while a dataflow graph is a declaration
of what data goes where.

Breaking a problem down into sub-problems is sound
engineering, and is a natural way to build a robot. Strict
adherence to this methodology leads to an intuitive mapping
between software and hardware components, so it is no
great stretch to compose the software that drives a robot
from components that either interface with hardware, or
provide a specific abstraction or computation. Connecting
the resultant components leads to the ascendancy of data
in the dataflow programming paradigm common to robotic
software development today. Yet the correlation between
hardware and software components can also be a limiting
metaphor if it ignores the potential fluid qualities of soft-
ware. The act of laying out a circuit board, or connecting
software components, may yield a fine machine, but typically
lacks the expressiveness to capture a dynamic exchange of
functionality between units. Indeed, there is little evidence
of such behavior in most mechanical systems. However,
this very capability can be used to effectively specify inter-
agent coordination, and enable the exchange of functionality
among members of the swarm.

II. A SCHEME FOR SWARMS

The prominent role of data in component-based program-
ming paradigms provides for the flexible topology specifi-
cation of dataflow models, but it generally stops short of
representing all system specifications (i.e. traditional inert
data, function parameters, and executable code) as exchange-
able data. Such a duality of data and program code is a
very familiar concept to Lisp [7] programmers: Lisp (LISt

Processor) programs are represented as lists in the Lisp
programming language. This co-definition of code and data
allows for great flexibility in self-modifying programs, but
it also speaks to an ideal that is further reinforced by the
continuation data structure, as found in the Scheme [8]
programming language (Scheme is a descendant of Lisp),
which is itself a bidirectional transformation between the
state of execution of a program and a data structure. That
is, any given point in a program’s execution may be stored
as a data structure to be passed to other functions, and
invoked any number of times. This unification of the data
a program operates over, the program code itself, and any
particular state of execution as data structures captured in
the programming language shatters the limitation of a simple
program implying a simple, centralized execution model.
Furthermore, an adherence to the lambda calculus [9], with
no allowance for mutable state, and faithfulness to Scheme’s
lexical scoping rules, provides for a clean, concise definition
of how the various expressions that make up a program
may be executed. There are no questions of shared state,
and there is no question of side-effects (e.g. a sub-procedure
that changes a variable that the calling procedure refers to).
The semantics of function calls are distilled to their bare
minimum, so that an interpreter can safely, with respect to
internal integrity, execute many function calls concurrently,
and easily move, or replicate, control flow around the swarm.

Traditionally, and in Scheme, a lambda [10] [11] expres-
sion captures the environment in which it is evaluated, and
defines a closure. The resulting structure may be thought of
as a function of some number of parameters in the standard
mathematical sense, or it may be thought of as a suspension
since the body of the lambda expression is not evaluated.
Instead, the environment in which the lambda expression
was encountered is stored, along with a “slot” for any formal
parameter of the function. The resulting data structure is a
closure, which may be evaluated at a later time by binding
values to the function parameters (filling the empty slots),
and executing any sub-expressions specified in the body of
the lambda expression. When the binding and execution (i.e.
invocation) occurs, the previously suspended evaluation of
the lambda expression is resumed: the closure’s environment
is extended by the binding of any formal parameters to values
passed to the invocation, and the function’s body is then
evaluated. Scheme treats functions defined in this way as
first-class entities. This means that they are stored as data
structures that may be passed to, or returned from, other
functions.

III. PROGRAMMING THE SWARM

The priorities when designing software for a swarm of
robots are concurrent execution, distributed control, fault
tolerance of high-level behaviors, and comprehensibility for
the programmer. Any effort to automate decisions regarding
potential concurrent evaluation of elements of a single pro-
gram is greatly aided by the lack of shared state implied by
the immutability of state in a pure functional language. A
system for the distribution of control flow is bolstered by



first-class continuations. Fault tolerance is achieved on the
macro-scale by the distribution of control flow: centralized
behaviors on a small scale may fail without affecting the
continued execution of self-contained program fragments
that have been distributed across the swarm. Finally, the
programmer should ideally be able to digest the sum-total
of programming for a swarm by inspecting a single source
file of manageable length.

A. System Implementation

System development began with a working foundation
for single-robot software development. The ROCI platform
supports the creation of dataflow-style applications, and can
interface with many platforms via full support for HTTP
access to all internal data [12]. That foundation includes
a declarative scripting system that involves creating XML
files for specifying component connection topologies for
various behaviors. In this manner, high-level behaviors, such
as waypoint navigation, may be aliased to a script (e.g.
“go to”), which specifies how a GPS interface should talk
to a navigation controller, which should talk to an obstacle
avoidance controller, which pulls data from a range sensor,
etc. In effect, there is a “go to” machine that is captured by
the script file. This machine is parameterized by the destina-
tion waypoint, which is fed to a particular input as specified
in the script. For pedagogical purposes, that scripting system
was interfaced to the Ruby programming language in order to
present students with a robot programming system that had
minimal syntax, yet could cleanly interact with the wealth
of components written in lower-level languages to interface
with hardware devices and implement conceptually complex
computations.

With this background, an interpreter for a subset of the
Scheme programming language was written in Ruby. The
dialect of Scheme supported by the intepreter has built-in
support for automated concurrent evaluation of parallelizable
statements (e.g. functions applied to a list with the higher-
order map function, or expressions in the body of a provided
scatter function that evaluates all expressions in its body
concurrently). The interpreter will also pass a continuation
to another node if that node is a formal parameter of the
continuation, and the current host is not. This distribution
scheme is not always optimal, but it captures the intended
behavior in many cases, without the programmer having
to consider where best to evaluate a given expression, or
whether multiple expressions can be evaluated concurrently.
The strict scoping rules of Scheme, along with immutable
data, mean that the system’s efforts to distribute, or otherwise
concurrently execute, program statements are always safe in
terms of program specification.

The primary focus of the Scheme interpreter is to provide
lexical closures and first-class continuations in order to make
concurrency safer, and automatic distribution possible. The
interpreter provides tail-call optimizations to allow for a
highly-recursive programming model, and is capable of seri-
alizing any closure to a JavaScript Object Notation (JSON)
object that may be transmitted to a network peer. The JSON

Fragment 1 Allocation With Constraints
1: (alloc 1 (lambda (r) (== (r.color) “green”)))
2: (lambda (leader)
3: (alloc 3 (lambda (r) (< 5 (dist r leader))))

model is attractive since its syntax matches the contents of
a typical closure. That is, JSON is specifically designed for
representing associative lists (such as the binding table in a
closure) as well as anonymous lists (used throughout Scheme
programming).

B. Functional Composition

Behavior composition is readily achieved with the use
of higher-order functions. A simple usage of the lambda
syntax is seen in the alloc function that finds free robots.
The alloc syntax is actually a point of multiple dispatch
for two allocators: one that simply takes the number of free
robots to find, and another that takes the number of free
robots to find along with a function that must evaluate to
true when given a candidate robot. This can be seen in Line
1 of Fragment 1, where only green robots are desired. The
constraint function may be a composition of any number of
other functions joined in any way. The only restriction is
that the composition must take a single parameter (the robot
to test) and return true or false. While this simple example
demonstrates in-line function creation, it is also important to
remember that lambda expressions capture their execution
context. Thus, the function passed to alloc may refer to
any variables in the scope in which it is defined, as shown
in Lines 2-3 of Fragment 1. This constraint function will
execute on each free robot the system can find, and that
execution will correctly refer to the robot bound to the leader
identifier.

C. Clearing a Minefield

Higher-order functions and continuation passing enable
the concise specification of many highly parallel activities.
Consider the example of clearing a minefield. There are a
number of features that are needed to have an easily ex-
pressed, scalable solution: viral spread of behavior, constraint
composition, and concurrent, distributed execution. The mine
clearing example excerpted in Fragment 2 showcases these
features.

The mine-clearing program, shown in its entirety in Frag-
ment 2, begins with the concurrent application of the search
function to a number of robots capable of detecting mines
on Line 24 (red robots can detect mines in this simulation).
This expression utilizes the map higher-order function that,
in this interpreter, concurrently applies the function supplied
in the first parameter to each element of the list supplied as
the second parameter. The search function continuously (via
self-recursion) navigates the mine-seeking robot around the
field until a mine is detected. At this point, a new function
is called. This function utilizes a constrained allocation in
Line 8 to find a free robot capable of digging (green robots
are capable of digging up mines). A function that guides



Fragment 2 Mine Clearing
1: (define neutralize
2: (lambda (seeker mine)
3: (seeker.go to (seeker.pos x) (seeker.pos y))
4: ((lambda (digger)
5: (digger.go to (car mine) (cdr mine))
6: (digger.wait)
7: (digger.dig))
8: (alloc 1 (lambda (r) (== (r.color) ”green”))))))
9:

10: (define search
11: (lambda (r)
12: (r.go to (- (* (rand) 12) 6) (- (* (rand) 12) 6) 4)
13: (letrec ((check
14: (lambda ()
15: (letrec ((mine (r.detect mine)))
16: (if (not (null? mine))
17: (neutralize r mine)
18: (if (r.busy)
19: (check)
20: #t))))))
21: (check))
22: (search r)))
23:
24: (map search (alloc 5 (lambda (r) (== (r.color) ”red”))))

the digger robot to the mine, and digs up the mine, is then
sent to the digging robot simply by invoking that function
with the digger robot as an argument. This behavior is
shown in Fig. 1, in which the passing of a closure from
a seeker robot to a digger robot is visualized by a line
connecting two robots. This example demonstrates a specific
centralized behavior requiring inter-agent synchronization –
the act of cooperatively digging up the mine – within the
parallel execution of the larger task of clearing the mine
field. The available flexibility in behavior specification allows
the programmer to mix-in centralized behaviors on a small-
scale without sacrificing the robustness of large-scale swarm
capabilities. In this case, the spread of behavior is finite: once
the mine is cleared, the digger robot becomes free again so
that it may assist another seeker robot. However, a spreading
behavior need not terminate so quickly; any behavior can
replicate itself indefinitely.

D. Viral Behavior

A more dramatic viral spread of behavior is illustrated
by the evolution of a viral behavior released into a swarm,
as shown in Fig. 2. A simple function is initially applied
to a single robot, but the behavior “infects” any free robots
that come into contact (i.e. become reachable on a network,
here determined by distance) with a robot executing the
viral function. Such an ability is highly valuable in real-
world deployment scenarios, where many robots may not
always be reachable on the network. In this example, a single
robot is given a behavior with decaying “infectiousness” that
causes the infected robot to wander around until it has come
into network range of, and infected, some number of robots
before turning into a star. The members of the swarm start
out at random locations unknown to any other robot, and
are not displayed in the simulation until they have been

Fig. 1. Digging robots, r6 and r5, are recruited by mine-seeking robots
to help clear a minefield (mines are represented by small squares). Here,
r6 is helping r0 clear a mine, while r4 is transmitting a closure to r5 for
evaluation. The execution of this closure will drive r5 to the mine r4 has
detected, and initiate the digging sequence.

(a) (b)

(c)

Fig. 2. Three stages of a viral behavior. The behavior begins with a single
agent (a), which spreads an infectious behavior among connected peers that
terminates with the agent visualized by a star shape (b). Eventually, a large
number of agents have been recruited without any centralized organization
(c).

discovered by an infected robot. In this manner, a behavior
is spread throughout an initially disconnected swarm without
any centralized allocation capability. This example controls
total infection by decrementing a counter passed with each
recursive invocation of the behavior, and demonstrates the



(a) (b)

(c)

Fig. 3. Distributed assembly, pattern generation, and formation control can
be implemented in discrete phases. One example of the utility of such an
approach is that closed perimeters may be established in sequence to avoid
the problem of agents getting trapped inside structures as they form.

ability to specify an approximate desired recruitment pool
size to be drawn from an unknown population.

E. Multi-phase Assembly

The pattern generation work of Hsieh and Kumar [13] pro-
vides a clean example of provably convergent, decentralized
control achieving global geometric goals (i.e. distributing
robots along a perimeter) while maintaining local constraints
such as communication signal strength. Utilizing this style
of controller as a low-level capability of members of the
swarm, assembly tasks may be structured to provide the
necessary sequentiality to ensure successful construction of
more complex geometries. Fig. 3 illustrates three stages
in the construction of a series of concentric circles. By
sequencing the construction of closed geometries, one can
guarantee that inner areas are accessible when necessary, and
that components of the outer structures not be imprisoned
by the closing of an inner structure. The structuring of this
program is completely captured by sequential applications of
the map function, each of which concurrently assembles one
section of the structure.

F. Organic Structures

This structuring capability provides a framework upon
which to build more decentralized assembly tasks, such
as organic growth [14]. In nature, many similarly-capable
elements, from cells to termites, come together to build
astonishingly complex structures. Establishing simple rules
that, when executed across a multitude of agents, cause seem-
ingly high-level organization to emerge is a goal of much
swarms research. Such rules may most easily be leveraged if

(a) (b)

(c) (d)

Fig. 4. (a) Barnsley’s Fern as shown by running a probabilistic iterated
function system 30,000 times. (b-d) Stages in the construction of the same
fern by 1,000 kinematically simulated robots independently evaluating the
same function system.

their application can be deliberately structured in some man-
ner, or applied chaotically within a deliberatively structured
framework. Furthermore, the ability to freely exchange these
rules and behaviors among agents can enable the emergence
of isolated hierarchies at various scales, thereby allowing for
a full range of expression in assembly tasks.

Consider the iterated function system [15] that yields
Barnsley’s Fern, as shown in Fig. 4(a). This system can be
implemented recursively in Scheme to provide a controller
that may be simultaneously evaluated by 1000 robots as in
Fig. 4(b-d). While such a controller allows for a maximal
amount of concurrency, and results in a pleasingly self-
similar structure highly reminiscent of the Black Spleen-
wort fern, it is impractical to have the structure’s growth
dynamically respond to external stimuli due to the complete
lack of run-time coordination among members of the swarm.
In other words, the ultimate organization demonstrated by
this controller is solely a result of the initial coordination
of sharing a particular set of functions. However, it can be
highly useful for the swarm to adjust its behavior in order to
respond to the environment or unpredicted operating condi-
tions. For example, a natural application of a plant-like struc-
ture is as a scalable method of deploying solar collectors.
Yet, while natural plants are perfectly capable of adjusting
their growth to aim towards areas of greater sunlight, the
iterated function system must be strictly coordinated among
all agents to obtain an organized result. That coordination
largely precludes reactive behaviors triggered by individual
agents. Instead, one may implement a controller capable of
adjusting growth parameters in response to external stimuli



(a) (b)

(c) (d)

Fig. 5. A recursively-constructed fern-like structure grown among 165
robots. The simple program that generates this structure is given to a
single robot which recursively invokes the same structuring behavior on
other robots (distribution of control flow is indicated by an animated line
connecting two robots).

by building the structure in a manner closer to that used by
nature: hierarchically. Such a controller, implemented in a
few tens of lines of code, injected into a single “root” robot
gives rise to the recursively constructed form shown in Fig. 5.
The growth of this structure is a dynamic process capable of
responding to stimuli sensed by individual robots.

G. Future Work

While a pure functional language with no mutable state
enables aggressive concurrency in many circumstances, it
does not eliminate the fact that the swarm, as it exists in
the real world, does have state. For example, the swarm
has a finite number of members, which means that there
may be resource contention issues when trying to find free
robots. While mechanisms based on orderings and timeouts
may be applied to alleviate some types of contention, the
fact remains that this issue is difficult to consider for the
swarm programmer. One could argue that resource con-
tention should not be the concern of the programmer, that
the system should handle it, but the dynamic nature of
available resources in a sometimes-connected swarm setting
means that a failure to obtain required resources should be
taken as a likely circumstance that, if encountered, does not
represent a permanent setback. To combat this, behaviors can
be designed in an incrementally expanding fashion, rather
than an all-or-nothing proposition. A robot can try to spread
a behavior virally, rather than requiring an instantaneous
allocation. Furthermore, a behavior can be suspended until
some necessary conditions are met. This powerful approach
may be captured by the threading of a continuation through

another, secondary behavior. A suspended behavior may,
at any time, be resumed right where it left off by an
invocation of the continuation. This enables individuals to
continue executing one behavior while periodically checking
if current conditions allow some other behavior to continue.
The exploration of this style of behavior specification is left
to future works.

IV. CONCLUSION

The system presented here extends the utility of exist-
ing software components. Such components provide a rich
vocabulary from which to specify the software machinery
necessary to perform a wide variety of behaviors, yet lack the
expressiveness of dynamism that software is capable of. This
dynamism, realized in the fluid exchange of functionality,
represents a crucial capability when attempting to orchestrate
the activities of a swarm of robots.
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