
APPLYING CONVEX OPTIMIZATION TECHNIQUES
TO ENERGY MINIMIZATION PROBLEMS IN

COMPUTER VISION

Arvind Bhusnurmath

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania in Partial

Fulfillment of the Requirements for the Degree of Doctor of Philosophy

2008

C.J.Taylor
Supervisor of Dissertation

Rajeev Alur
Graduate Group Chairperson



Acknowledgements

Acknowledgements will appear in the final dissertation document.

ii



ABSTRACT

APPLYING CONVEX OPTIMIZATION TECHNIQUES TO ENERGY

MINIMIZATION PROBLEMS IN COMPUTER VISION

Arvind Bhusnurmath

C.J.Taylor

Energy minimization is an important technique in computer vision that has been

applied to practically all early vision problems. Several methods have been pro-

posed to solve the problem and to date, the most popular ones have been discrete

optimization approaches such as graph cuts and belief propagation. While convex

programming approaches have been proposed, the resulting problems were practi-

cally unsolvable due to their size. This thesis describes a novel approach to applying

convex optimization, in particular interior point barrier methods, to solve some en-

ergy minimization problems in an efficient manner. The methods exploit the fact

that computer vision problems usually have specific structure to them.

Two problems are handled in this thesis. In the first, a popular energy minimiza-

tion technique, graph cuts, is reduced to an unconstrained !1 norm minimization

problem. This problem is then solved using linear programming. The resultant al-

gorithm is parallelizable and the thesis provides one possible implementation using a

graphical processing unit. Results of using this approach on interactive foreground-

background segmentation problems are provided.

In the second problem, the energy function associated with stereo matching is

directly converted into a convex function via an approximation of the data penal-

ties. The resultant linear program is again solved using interior point methods and

exhibits very similar structure to the first approach. Results on the standard Mid-

dlebury stereo matching dataset will be discussed.
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Chapter 1

Introduction

A wide variety of problems in computer vision can be conceptualized as labeling

problems where quantities such as disparities in the case of stereo matching, segment

numbers in the case of segmentation and velocities in the case of motion have to be

assigned to every pixel in an image. An extremely popular approach to solving such

problems is to recast them as energy minimization problems. The goal here is to

formulate an energy function such that the energy minimum is attained at the pixel

labeling that represents the best solution to the problem. This thesis provides a

framework for solving a class of energy minimization problems that are relevant to

computer vision using ideas from the richly developed field of convex programming.

The basic solution mechanism is as follows. Given an energy minimization prob-

lem, the first step is to formulate it as a linear program such that the solution to

the linear program corresponds to a minimum energy configuration. These linear

programs can be solved using the barrier method in which the linear inequalities are

approximated using logarithmic barrier potentials. The barrier method is an iterative

technique that improves the optimization solution through successive applications of

Newton’s method. The major computational effort in applying Newton’s method is

the solution of a system of linear equations involving the gradient and Hessian of the

resulting objective function.
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An interesting aspect of the computer vision problems considered in this thesis

is that the linear equations they give rise to are sparse and highly structured and

hence amenable to efficient numerical methods. This is a crucial aspect of this work

since the linear programs being dealt with are considerably large.

This thesis develops a general solution framework which minimizes certain energy

functions via convex optimization. The first step is to convert the energy minimiza-

tion into a linear program. The linear program is then solved using the interior point

barrier method. Within the barrier method, several Newton steps need to be taken

and these steps are solved for via a system of linear equations. The thesis shows how

the structure of the problem gets reflected in these linear equation systems.

This solution framework is applied to two different computer vision problems.

Firstly, the popular graph cuts technique of energy minimization is converted into an

unconstrained !1 norm problem. This problem is solved via linear programming. The

method is used in this thesis to solve interactive foreground-background segmentation

problems such as the one shown in Figure 1.1. The solution proposed in this thesis is

highly parallelizable and an implementation of the algorithm on a GPU is described

in Chapter 6.

The other problem being solved in the thesis is that of stereo matching. An

example is shown in Figure 1.2. Unlike segmentation wherein pixels have to be

labeled with discrete values like foreground or background, pixels in stereo can take

on any scalar value. This aspect comes out in a more natural manner when the

linear programming formulation is used. It enables subpixel values to be directly

incorporated during the optimization stage as opposed to a post processing step.

The rest of this chapter is divided into the following sections. Section 1.1 dis-

cusses some prior work regarding the various computer vision domains where energy

minimization has been used. Common methods used to find the minima of energy

functions are surveyed in 1.2. Section 1.3 lists the major contributions of this re-

search. Section 1.4 lays out the outline for the remainder of the thesis.
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Figure 1.1: An example of the foreground-background problem. The user marks out
regions of foreground and background as shown in the left image. The extracted
foreground object is shown on the right.

Figure 1.2: An example of the stereo matching problem. The first two images from
the left constitute the pair of images whose pixels need to be matched, and the image
on the right is the ground truth disparity map.

3



1.1 Energy minimization problems in computer

vision

The energy minimization framework essentially tries to incorporate knowledge from

the given data and prior knowledge about the nature of the solution in order to find

the best possible labeling for a problem. The usual prior that is assumed is that

of smoothness - neighbouring pixels typically have similar labels. To incorporate

this assumption into the energy framework, a neighbourhood system on the pixels

is defined. A clique is defined as a subset of pixels such that any two distinct

pixels are mutual neighbours. A set of clique potentials that specify energy values

depending upon the labels being assigned to pixels that form the clique is specified.

The energy function is then formulated in terms of a Gibbs energy [13] which is

composed by summing these clique potentials. It is important to note that Gibbs

energy formulations and Markov random field(MRF) formulations are equivalent

due to the Hammersely-Clifford theorem [40]. Therefore an equivalent method of

looking at the process of finding the minimum energy is that of finding the maximum

a posteriori(MAP) estimate of the MRF. Geman and Geman [32] have a detailed

explanation of this formulation in their landmark paper. Li [67] provides more details

on how MRF models have been used in the field of computer vision.

The general form of an energy function (notation taken from work by Boykov,

Veksler and Zabih [12]) is as follows

E(L) =
∑

p∈P

Dp(Lp) +
∑

p,q∈N

Vp,q(Lp, Lq), (1.1)

where L = {Lp|p ∈ P} is the current labelling of the pixels, Dp is called the data

penalty function and indicates the compatibility of the labelling with the given data,

Vp,q is called the interaction potential or the smoothness function and N is the set

of all pairs of neighbouring pixels. The smoothness term incorporates the notion of

a piecewise smooth world and penalizes assignments that label neighboring nodes

4



Figure 1.3: Example of image restoration taken from [12]. The figure on the left
is the noise-corrupted image and the one on the right is the original image that we
desire to recover.

differently.

Let us look at an example computer vision problem that has been solved using

energy minimization. Consider the problem of image restoration and the solution

proposed in [12]. An image is corrupted with noise and the aim is to recover the

original image as shown in Figure 1.3.

In this case the labels to be assigned are the ‘true’ intensity values of the pixels.

Boykov et al [12] use a data term

Dp(Lp) = min(|Lp − Ip|2, M), (1.2)

where Lp is the restored intensity label and Ip is the observed intensity. M is a

constant that ensures robustness to outliers. This says that the restored intensity

label should be close to the currently observed intensity. The smoothness term being

used is

V (Lp, Lq) = k ∗ min(k1, |Lp − Lq|), (1.3)
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which ensures two properties. Firstly a pair of neighbouring pixels that have

differing intensity labels will be penalized. This ensures smoothness. However we

want to break the smoothness assumption at places where we think there is an edge.

An edge would be characterized by a fairly large difference between the neighbouring

intensity values. Therefore the penalty is thresholded by k1 so that we do not get a

denoising result where there is bleeding across edges. A multiplicative constant k is

also introduced to balance the contribution of the smoothness terms versus the data

terms.

In a manner very similar to this, a number of vision problems have been treated

using energy minimization. Ishikawa and Geiger [47] and Roy and Cox [79] both use

a graph cut formulation to minimize energy for the stereo correspondence problem

although the construction is different from the one we will discuss in section 2.1. Both

these formulations aim to label each pixel with its corresponding disparity value.

Kolmogorov and Zabih [57] were able to achieve very good results on stereo problems

as is evidenced by their excellent performance on the Middlebury dataset [80, 81] for

stereo. In their formulation labels are assigned to pairs of pixels. The label either

indicates that the pixels are matched or that they are unmatched. Just like stereo,

energy minimization can be used for motion [12], except now the data-term will

involve computation in two dimensions as pixels are displaced in both directions. In

both stereo and motion a standard technique to ensure the data term is insensitive

to image sampling is to interpolate between discrete pixel values as described in [6].

In the field of segmentation the problems that have been tackled include interac-

tive foreground background [10, 78] and depth based image segmentation [70].

Energy functions defined on segments or layers as opposed to just pixels have

worked successfully too. Examples include Hong and Chen [45]’s work on stereo,

Wang and Adelson’s work on motion [93] and Criminisi et al .[22]’s work on video

segmentation.

The approach can be applied for 3D problems as well. Sinha and Pollefeys [83]
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reconstruct the surface of an object using multiple calibrated images and silhouette.

The energy function incorporates both photo consistency constraints and silhouette

constraints. The voxel occupancy problem is dealt with in Snow et al [85]. As

opposed to labeling pixels, in 3D the problem turns into one of labeling voxels.

As we can see from all these examples, while the general form of the energy func-

tion remains the same, success in solving the problem depends on careful selection

of the data term and smoothness terms. The solution methodology is widespread

enough to now merit a conference of its own - EMMCVPR (Energy Minimization

Methods in Computer Vision and Pattern Recognition).

1.2 Methods of finding the minimum energy

Energy minimization problems in vision have been solved by a variety of techniques.

A comparative study of these methods can be found in Szeliski et al [88]. All the

approaches have an underlying notion of a graph that is defined typically with pixels

as the nodes, and edges that represent how one pixel’s label affects its neighbours.

While in most cases finding the exact energy minimum is NP-hard, there are

some specific situations in which this can be achieved and those are discussed first.

Ishikawa [46] shows that an exact minimum can be found if the smoothness

function is convex in terms of a linearly ordered label set. The method maps the

problem into that of finding a minimum cut in a directed graph. The graph is

made up of columns corresponding to each pixel. Within each column there exist

vertices corresponding to the assignment of different labels to the pixel. The graph

is constructed such that there is exactly one edge in the cut from each column. The

tail of this edge then identifies the label that needs to be assigned to the pixel. The

convexity criterion causes issues since it is not robust around discontinuities and

hence has difficulties preserving edges. The other problem is that the size of the

graph gets large as the number of labels increases since each potential (pixel,label)
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assignment has to be represented by a node in the graph. Finally, this method only

deals with pairwise clique potentials.

The other situation where an exact minimum can be found is when the labeling is

binary. Under binary labeling and with clique potentials up to size 3, as long as the

so called regularity condition is satisfied [58], the exact minimum can be computed

using graph cuts. A more detailed discussion of graph cuts is presented in Chapter

2.

The two cases detailed above do not cover a lot of situations that arise in energy

minimizations. For example the simple Potts model for a multiple label setting is

not covered. The Potts energy function is described as

V (Lp, Lq) =







0 ifLp = Lq

γ otherwise.
(1.4)

which basically implies all discontinuities get penalized uniformly.

In such situations the problem becomes NP-hard and then the best that one

can hope for is a good approximation algorithm. The most popular methods for

solving these problems are graph cuts (using swap moves or expansion moves) or

belief propagation.

Graph cuts are covered in Chapter 2 but for the sake of comparison purposes in

this section a few points need to be made. Graph cuts are able to efficiently minimize

a certain subset of energy minimization problems where the regularity condition is

satisfied. Convergence is not an issue in this method of solution. In cases where the

smoothness function is a metric function, the solution has an energy that is at most

twice the minimal value.

Max-product belief propagation can be conceptualized as a message passing

framework. Let mt
pq be the message being sent from p to its neighbour q at time t.

Initializing all the initial messages to 0, one computes the new messages using the

following equation [26].

8



mt
pq(fq) = min

fp



V (fp, fq) + Dp(fp) +
∑

s∈N(p)−q

mt−1
sp (fp)



 (1.5)

where fp and fq are the labels that are being assigned to pixels p and q respectively

and N(p) denotes the neighborhood of p.

At the end of T iterations the label that gets chosen for pixel q is the one that

minimizes the belief that is given by

bq(fq) = Dq(fq) +
∑

p∈N(q)

mT
pq(fq). (1.6)

Felzenszwalb and Huttenlocher [26] discuss methods of speeding up belief prop-

agation for typical vision problems. Their implementation has been used to solve

most energies that are minimized via belief propagation.

The interesting aspect of belief propagation is that it makes virtually no as-

sumptions about the nature of the energy function. However because of its message

passing nature, it is easy to see the potential problems that can be caused by loops

in the graph. While convergence is not guaranteed it is interesting to note that this

scheme has been used quite successfully to solve several energy minimization prob-

lems. Empirical work by Tappen and Freeman [89] indicates that in cases where

belief propagation and graph cuts can both be applied, belief propagation converges

to a higher energy value. However, in terms of overall quality, belief propagation

does not seem to suffer in comparison to graph cuts.

Weiss and Freeman [94] showed that in an arbitrary graph the max product

assignment is a local optimum over any subset of nodes that form a node induced

subgraph with at most one cycle per connected component. Wainwright [92] extends

this to show that the max-product assignment is optimal over any subgraph that

contains at most one cycle per connected component.

While the main concern while using a belief propagation method is convergence,

as an approximation algorithm it is also worthwhile to consider what energy value it
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converges to or alternatively how much the labeling it converges to differs from the

MAP labeling. As per [92] the max product labeling either agrees with the MAP

labeling or differs from this labeling by a Hamming distance larger that the following

function

l(g) = 2g − $g/2% − 1 (1.7)

where g is the girth of the graph, which is the number of edges in the shortest

cycle. This error bound is quite different from the constant factor approximation

that graph cuts provides, however the energy functions being tackled are far more

general. In particular, for 4 connected grid graphs that are very common in computer

vision application this result shows that the max product labeling differs from the

MAP labeling on at least 5 pixels.

A variant of the belief propagation technique which is rapidly gaining ground

is tree-reweighted message passing or TRW [91] which tries to maximize the lower

bound of the energy function by a convex combination of marginal values that are

obtained on trees embedded within the graph by performing belief propagation only

on these trees. This work is improved upon in Kolmogorov’s work in [56] wherein

the message passing is done in a specific sequential manner (hence giving it the name

TRW-S) to guarantee convergence. In [56] the updates are performed in a sequential

manner that ensures that the value of the lower bound (that is being maximized)

never decreases. This still does not guarantee that the algorithm converges to the

global maximum. Rather it converges to a maximum with respect to the TRW

algorithms. This method also uses half as much memory as traditional message

passing approaches.

Linear programming techniques for labeling problems were initially proposed by

Kleinberg and Tardos [53] and then by Chekuri et al [17] but due to the size of the

resulting problems, were not actively used by computer vision researchers.

Consider a labeling problem with vertex set V , edge set E, label set L and

10



a smoothness function given by Vpq(Lp, Lq) = wpqdLp,Lq where dLp,Lq defines the

penalty for assigning labels Lp to p and Lq to q and this gets weighted by wpq.

Then as per [17] the energy minimization problem can be formulated as an integer

optimization problem as follows

min
∑

p∈V,a∈L

Dp(a)xp,a +
∑

(p,q)∈E

wpq

∑

a,b∈L

dabxpq,ab (1.8)

st
∑

a

xp,a = 1 ∀p ∈ V (1.9)

∑

a

xpq,ab = xq,b ∀b ∈ L, (p, q) ∈ E (1.10)

∑

b

xpq,ab = xp,a ∀a ∈ L, (p, q) ∈ E (1.11)

where xp,a is a 0-1 variable that is indicative of the pixel p being labeled a. The

0-1 variable xpq,ab indicates the pixel p is labeled a and pixel q is labeled b. This

optimization problem is an integer optimization problem which is in the class of

NP-hard problems. To solve it approximately, one of the methods is to relax the 0-1

constraints to xp,a ≥ 0 and xpq,ab ≥ 0.

Current work by Komodakis and Tziritas [59] which gets further refined in [60]

utilizes duality theory on this relaxed formulation. They propose a fast algorithm

called Fast-PD, using the primal-dual method of convex optimization. The goal

of this method is to continually update both primal and dual solutions such that

eventually one obtains a pair of primal and dual solutions that are both feasible and

the ratio of the primal objective to the dual objective is small. If this ratio is given

by fapp then Fast-PD provides an fapp solution to the integral optimization problem.

They also provide a connection to the α expansion graph cut algorithms. In fact

in a manner similar to graph cuts, each inner iteration of the algorithm involves

computing the maximum flow in an appropriately defined flow network. The place

where this algorithm gains its mileage is that as the algorithm proceeds, the number

of nodes that are connected to the source gets reduced. As a result, there are fewer
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augmenting paths and hence faster computation of maximum flow. For example,

while solving the Tsukuba stereo problem [60] is able to obtain a speed up by a

factor of 5.

There are some assumptions that need to be made in order for Fast-PD to work. It

requires that d(a, b) ≥ 0 and d(a, b) = 0 ⇐⇒ a = b. Under these assumptions, when

one uses Fast-PD the factor of approximation is 2 dmax

dmin
where dmax and dmin denotes

the maximum and minimum penalty for assigning different labels to connected pixels.

Overall, Linear Programming(LP) has not found much success yet in the domain

of energy minimization even though the TRW methods are essentially tackling the

dual of the relaxed LP proposed in Chekuri et al . Yanover et al [97] perform

an empirical evaluation of linear programming techniques versus belief propagation

and show how TRWs ability to exploit the structure of the problem allows it to

solve problems that cannot be solved even by the best of the commercial linear

programming softwares [1, 2]. The main problem with LP is the size of the problem.

Apart from the linear programming relaxation, it is also possible to convexify

the integer programming problem by using different kinds of convex relaxations -

Quadratic Programming(QP) [76], Semi-Definite Programming [90] and Second Or-

der Cone Programming(SOCP) [64]. It is also handled using a spectral relaxation in

Cour and Shi [21]. In Kumar et al [63] these different relaxations are compared and

it is proven that the linear programming relaxation provides a better approximation

than the others. However, none of these methods handle large scale problems effec-

tively. They handle a more general class of energy functions than graph cuts and

as a result of being convex programs, convergence is guaranteed. In the sequel, by

treating energy minimization from a continuous optimization perspective, we will

see how certain large but structured problems can be solved efficiently using linear

programming.

A method of energy minimization that has a great deal of similarity with the

graph cuts approach in this thesis is the Random Walker image segmentation by
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Grady and Funka-Lea [36] which starts off with a few labeled pixels and then deter-

mines the probability that a random walker starting at the unlabeled pixels will first

reach one of the labeled pixels. The biases of the random walker to visit the vertices

are related to the smoothness function. Connections are shown between this method

and the discrete Dirichlet problem from PDEs and the method of solution involves

solving a system of equations involving the Laplacian matrix [72]. Grady et al [37]

use this method to perform seeded segmentation on a GPU. Their approach has

mainly been applied to 3D data that is obtained from the field of medical imaging.

The approach taken in this thesis to solve the graph cuts problem also eventually

ends up solving a sparse system of equations involving a graph Laplacian and has

connections with the field of PDEs. Viewing the random walker algorithm from the

point of view of energy minimization, in Sinop and Grady [84], it is shown that

both graph cuts and random walker minimize the same energy except with different

norms. The graph cuts algorithm uses !1 while the random walker uses !2. Hence,

the random walker algorithm can potentially be treated as an alternative energy

minimizer in situations where the graph cuts algorithm has been applied.

In this thesis, the connections between graph cuts and !1 norm minimization

have been independently proven. Also efficient ways of performing the !1 norm

minimization in a manner such that it exploits the structure of the underlying graph

are explored.

So far we have only looked at minimizing energy functions that involve clique

potentials of sizes at most 2. Adding in clique potentials for cliques of greater sizes

should be advantegous in modeling the problem. However, the usage of such energy

functions has been limited by the lack of efficient algorithms for minimization. Recent

work by Kohli et al [55] and Lan et al [65] is able to make some headway in the

solution of such problems. Kohli et al manage to provide some characterization of

energy functions involving higher order terms that can be minimized by polynomial

time algorithms (this is a result of submodularity. More details can be found in [24]).
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Also in the cases where the higher order terms are generalized potts model energies

ψc(xc) =







γk if xi = lk, ∀i ∈ c,

γmax otherwise.
(1.12)

,

the energy can be minimized by finding a graph cut and hence for such energies

the minimization is much faster. In their work, Kohli et al apply this method to

the problem of texture based segmentation. Lan et al use 2x2 clique potentials and

minimize the resulting energy using belief propagation for the purposes of image

denoising. Methods are provided in their work for reducing the computational cost

of performing belief propagation on higher order cliques by reducing the set of labels

being explored in each clique. The results obtained for image denoising are consider-

ably better than those obtained using pairwise clique potentials. However the time

taken to minimize the energy is much greater.

1.3 Contributions of the thesis

The main contribution of this thesis is that it provides a continuous optimization

method to solve certain global energy minimization problems. Almost all successful

methods that minimize energy come from the field of discrete optimization. However

certain problems in computer vision such as stereo and motion involve inherently

continuous variables and therefore the methods proposed in this thesis should be

more applicable in those circumstances.

Even though the optimization is viewed from a different perspective, the problems

are still very large in size. Therefore, in terms of implementation, the thesis makes

contributions in terms of methods of exploiting the structure in the problems being

addressed. It is important to note that the linear programs in this thesis were

formulated and input into commercial solvers such as TOMLAB [2] and MOSEK [1]

but neither software was able to solve them since these generic solvers were unable
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to identify the problem structure.

The linear programs ultimately get reduced to solving systems of sparse and

highly structured linear equations. These systems have been well studied in other

areas, such as the solution of partial differential equations using finite difference

methods, and this opens up the prospect of porting ideas from that domain.

There are also specific contributions being made to the two problems that are

addressed within this thesis.

The main contributions of the method for solving graph cuts are as follows

• An unconstrained !1 norm formulation of the graph cuts problem is developed

whose solution, in our opinion, provides a more intuitive understanding of

pixel labeling than the flow based approaches. Further we are able to draw

connections to existing work on !1 norm minimization in the the optimization

community.

• The system of equations that arise out of the Newton step in this problem

are similar to the Poisson PDEs. The matrix is block tri-diagonal and good

preconditioning strategies exist for such matrices.

• A parallelizable algorithm for solving the system of equations is provided that

is implementable on a host of architectures. A particular implementation on

the NVIDIA 8800 GPU is described in this thesis.

The contributions of the new stereo matching method are as follows:

• A new formulation of the stereo matching problem in terms of linear program-

ming is provided. Minimization of the energy function is done via a convex

objective function which approximates the original energy function. The well

developed theory of convex programming can then be applied.

• All possible disparity values are considered during any step of the process. This

is in contrast to an α expansion framework wherein at each stage the only
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possible change is that some pixels change their labels from their currently

assigned label to the label α.

• Subpixel disparities can be directly incorporated into the optimization frame-

work right at the beginning since we are solving the problem using continuous

optimization. Usually subpixel computations are done as a post processing

step and we feel that integrating this into the optimization process will give

better results.

• The ability to incorporate a penalty term in the objective function that involves

the Laplacian of disparity. While the Laplacian involves interaction between 3

pixels, most conventional methods restrict their energy terms to only pairwise

clique potentials. This extra term should account for foreshortening effects in

a better manner.

1.4 Document Layout

This thesis is divided into two parts. Chapters 2 through 7 describe a linear program-

ming formulation of graph cuts to solve energy minimization problems. In particular

interactive foreground-background segmentation is solved using this methodology.

Chapters 8 through 10 describe an alternative approach in which a convexifica-

tion technique is used to directly convert energy minimization problems into linear

programs without using graph cuts. The specific problem being solved using this

method is the stereo matching problem. A major portion of the theory associated

with solving the linear programs is common to both parts of the thesis.

A brief description of the contents of each chapter are as follows

• Chapter 2 describes the importance of graph cuts in the field of computer vision

and shows how energy can minimized by repeatedly solving mincut problems.
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• Chapter 3 discusses our formulation of the graph cuts problem as an uncon-

strained !1 norm minimization problem.

• Chapter 4 shows how to convert this !1 norm minimization into a linear pro-

gramming problem and applies the barrier method to reduce the problem to

that of solving a system of linear equations.

• Chapter 5 discusses methods of solving sparse systems of linear equations with

focus on the conjugate gradient method which is our method of choice for this

work.

• Chapter 6 introduces the ideas behind parallelizing the algorithm and then a

specific implementation on the NVIDIA 8800 is shown.

• Chapter 7 presents results using the new graph cuts formulation on the problem

of interactive foreground-background segmentation.

• Chapter 8 introduces the stereo matching problem, discusses relevant work in

the area and formulates the stereo problem as a big linear program.

• Chapter 9 describes the solution to the stereo LP using interior point barrier

method.

• Chapter 10 presents results using the new LP method for stereo on the standard

Middlebury dataset.

• Chapter 11 concludes this thesis.
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Chapter 2

Graph Cuts in Computer Vision

This chapter discusses the importance of graph cuts in computer vision. The chapter

is organized as follows - Section 2.1 shows how energy minimization problems can be

converted into mincut problems under certain constraints, Section 2.2 goes through

some of the more traditional methods of finding a minimum cut in a graph and

finally section 2.3 shows how these methods can be tuned in order to attain greater

speeds on the kinds of graphs found in traditional vision problems.

2.1 Using Graph Cuts to solve Energy Minimiza-

tion

This section describes how certain Energy Minimization problems can be reduced to

the problem of finding a minimum cut on an associated graph. This was introduced

in work by Boykov, Veksler and Zabih [12] and a more detailed discussion is provided

in Kolmogorov and Zabih [58]. Let us first define the problem of finding a minimum

cut on a graph.

We start with a directed graph G = (V, E) in which each edge (u, v) ∈ E has

a positive weight w(u, v) associated with it. If (u, v) *∈ E then w(u, v) = 0. Two

vertices are distinguished in this graph. One is the source, denoted as s and the
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other is the sink, denoted as τ 1. Such graphs are called flow networks. A cut on the

graph is defined as a partition of the vertex set into two subsets S and T such that

V = S ∪ T

S ∩ T = φ

s ∈ S

τ ∈ T (2.1)

Any edge (u, v) such that u ∈ S and v ∈ T is called a cut edge. The capacity of

a cut, C = {S, T} is defined as the sum of the weights of all the cut edges. This is

denoted as |C|. Therefore the term minimum cut refers to a cut that has the least

capacity amongst all possible cuts in the graph.

Graph cuts can readily be applied to binary labeling problems. That is, all

pixels have the choice of only two labels, 0 or 1. An example of such a problem is

foreground-background segmentation.

If each pixel can be labeled as only 0 or 1 the energy function in equation 1.1 can

be rewritten as

E(x1, . . . , xn) =
∑

i

Ei(xi) +
∑

i<j

Eij(xi, xj) (2.2)

where the xi ∈ {0, 1} are the pixel labels.

From this energy function we would like to create a graph with a vertex set

consisting of a node corresponding to every pixel, a source and a sink. This graph

needs to satisfy the property that the value of the energy function for any assignment

of labels to x1 . . . xn is equal to a constant plus the capacity of the minimum cut in

the graph under the constraint that all nodes labeled 0 are placed into the S subset

and all nodes labeled 1 are placed into the T subset. If one is able to create such a

graph, the energy function is said to be graph-representable. If an energy function

1
τ is being used to denote the sink since t will be used later for the barrier method.
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is graph-representable it is clear that the minimum energy configuration is obtained

by solving the min-cut problem on the associated graph and then labeling all the

pixels in the S set as 0 and those in the T set as 1.

It turns out that whether or not an energy function of the form shown in equa-

tion 2.2 can be represented by a graph is dependent only on the pairwise smooth-

ness functions Eij . In their seminal work, Kolmogorov and Zabih [58] show that

a certain property called regularity (which can be thought of as a generalization

of triangle inequality) needs to be satisfied in order for an energy function to be

graph-representable. The property is as follows

Eij(0, 0) + Eij(1, 1) ≤ Eij(0, 1) + Eij(1, 0) (2.3)

for every pair of neighboring vertices i and j. This criteria biases neighboring

pixels towards taking on the same label.

The interesting aspect about the energy minimization formulations for most vi-

sion problems is that a large number of them do satisfy the regularity property. If

regularity is satisfied the graph is constructed from the energy function by creating

a graph for each term in the energy function and then merging them. This process

is described in Algorithm 1. To see how it works, we create graphs as per the algo-

rithm and see how they represent the values of the energy corresponding to different

labelings.

Consider the figure 2.1, we see that in the graph on the left, if v = 0, this would

mean the min-cut consists of S = {s, v} and T = {t}. This would give it a cut

capacity of 0. The value of the energy is E(0). On the other hand if v = 1 the value

of the energy is E(1) and the value of the cut is E(1) − E(0). Therefore in both

cases the value of the energy function and the value of the cut capacity differ by the

same constant E(0) which implies that the data term is represented by the graph.

For the smoothness again referring to figure 2.1 there are 4 possible configurations

for vi, vj . These are listed below with the corresponding cut capacities
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Algorithm 1 Create graph corresponding to energy function defined in 2.2

1: Create a source s and a sink τ
2: for each term Ei(xi) do
3: Add a vertex vi corresponding to pixel i
4: if Ei(1) > Ei(0) then
5: Create an edge from s to vi of cost Ei(1) − Ei(0)
6: else
7: Create an edge from vi to τ of cost Ei(0) − Ei(1)
8: end if
9: end for

10: for each term Eij(xi, xj) do
11: if Eij(1, 0) − Eij(0, 0) > 0 then
12: Create an edge from s to vi of cost E(1, 0) − E(0, 0)
13: else
14: Create an edge from vi to τ of cost E(0, 0) − E(1, 0)
15: end if
16: if Eij(1, 1) − Eij(1, 0) > 0 then
17: Create an edge from s to vj of cost E(1, 1) − E(1, 0)
18: else
19: Create an edge from vj to τ of cost E(1, 0) − E(1, 1)
20: end if
21: Connect vi to vj by an edge of cost E(0, 1) + E(1, 0) − E(0, 0) − E(1, 1)
22: end for
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E(1)-E(0)

E(1,0)+E(0,1)-
E(0,0)-E(1,1)

E(1,0)-E(1,1)

E(1,0)-E(0,0)

Figure 2.1: Conversion of energy functions to graphs such that solving the mincut
problem provides a minimum energy configuration

If vi = 0, vj = 0 E(1, 0) − E(1, 1)

If vi = 0, vj = 1 E(1, 0) + E(0, 1) − E(0, 0) − E(1, 1)

If vi = 1, vj = 0 E(1, 0) − E(1, 1) + E(1, 0) − E(0, 0)

If vi, vj = 1 E(1, 0) − E(0, 0) (2.4)

It can be seen that in all these four cases, adding the constant E(0, 0)−E(1, 0)+

E(1, 1) to the cut capacity will give us the value of the smoothness term. Thus

following Algorithm 1 for energy functions that satisfy regularity will give us a graph

such that the labeling corresponding to the minimum cut will minimize the energy.

From the algorithm, the graph created will have a source, a sink and a vertex for

each pixel (or primitive). There are edges between neighboring vertices which for

the remainder of this thesis will be referred to as internal edges. Also every vertex

is connected to both the source and the sink. These edges will be referred to as the
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Figure 2.2: Typical grid graph in computer vision problems. The cut indicates which
pixels should take on the value 1 and which should take on the value 0.

s-t edges. This therefore results in graphs that typically look like the one shown in

figure 2.2.

2.1.1 Extension to multi-label problems

A multi label problem is reduced to a series of binary labeling problems by using

the expansion move algorithm proposed in Boykov, Veksler and Zabih [12]. In gen-

eral cases the problem is NP-hard. If the smoothness term is convex, then using

Ishikawa [46]’s method an exact solution can be obtained via graph cuts.

When the smoothness term is metric, it is possible to compute a solution within a

constant factor of the exact minimum. The method of computing this approximation

is via the expansion move algorithm. Let us denote the energy associated with a

label f by E(f). Given any labeling f , a labeling f ′ is said to be an α expansion

away from f if for all pixels, p such that fp *= α, f ′
p = fp. Then expansion move
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algorithm can then be described as in Algorithm 2.

Algorithm 2 Expansion move algorithm

1: Assume some current labeling f .
2: Emin = E(f)
3: while ∃α st Enew = min{E(f ′) : f ′ is an α expansion away from f} satisfies

Enew < Emin do
4: Emin = Enew
5: f = arg min{E(f ′) : f ′ is an α expansion away from f}
6: end while

The issue then becomes that of an efficient computational mechanism for finding

the minimum energy labeling that is an α expansion away from the current labeling.

We note that in an α expansion either the label of every pixel stays the same as before

or it is changed to α. Hence the original energy function can now be viewed as a

binary function taking an input of a binary vector corresponding to the primitives

that are being labeled : a 0 means that the label stays the same and 1 means that

the label was changed to α. So now if we look at equation 2.2 this basically means

the following

Ei(xi) = Di(fi) if xi = 0

Ei(xi) = Di(α) if xi = 1

Eij(xi, xj) = Vij(fi, fj) if xi = 0, xj = 0

Eij(xi, xj) = Vij(fi,α) if xi = 0, xj = 1

Eij(xi, xj) = Vij(α, fj) if xi = 1, xj = 0

Eij(xi, xj) = Vij(α,α) if xi = 1, xj = 1 (2.5)

We can then use the method we discussed above for binary labeling and find the

minimum energy labeling that is an α expansion away from the current. As noted

in Algorithm 2, these expansion moves have to be done until no expansion move

would lower energy. Therefore this involves solution of several graph cut problems.

24



Define a cycle to be a series of graph cut problems created by letting α vary over

all the possible labels. Under the assumption that the data term and smoothness

term are independent of image size, theoretically termination of the algorithm occurs

in O(P ) cycles where P is the size of the image. However it has been empirically

observed that convergence is attained in fewer cycles and that most of the changes

occur during the first cycle.

2.2 Traditional methods for solving the mincut

problem

In this section we briefly review two of the popular traditional algorithms for solving

the min-cut problem. For a more detailed discussion on the subject the interested

reader is referred to any algorithms text, for example [20].

Most approaches to the graph cut problem involve reducing it to what is known

as the maximum flow problem. A flow in a weighted directed graph G = (V, E) is a

function f : V × V → R that satisfies

f(u, v) ≤ w(u, v)

f(u, v) = −f(v, u)
∑

v∈V

f(u, v) = 0 (2.6)

The value of a flow is defined as |f | =
∑

v∈V

f(s, v) which indicates the total flow

out of the source. The problem of finding the maximum possible flow in a graph is

called the maxflow problem.

The Maxflow mincut theorem relates the mincut problem to the maxflow prob-

lem. Say we have computed a maximum flow f then the minimum cut can be

composed as follows. We define the residual capacity of an edge with respect to flow

f as
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wf(u, v) = w(u, v)− f(u, v) (2.7)

Then the residual graph Gf with respect to this flow is given by

Gf = (V, Ef)

Ef = {(u, v) ∈ V × V : wf(u, v) > 0} (2.8)

Now in the graph Gf we find the vertices that can be reached from s, by per-

forming a breadth first or depth first search. All these vertices constitute the set S

of the cut. By definition, T = V − S.

The two standard algorithms for maxflow computation (and hence mincut com-

putation) are the Ford-Fulkerson and Push-Relabel which are reviewed in the sub-

sequent subsections.

2.2.1 Ford Fulkerson algorithm

The Ford Fulkerson class of algorithms [66] work in an iterative fashion with the goal

in every stage being that of finding an augmenting path. An augmenting path is

any path from the source to the sink along which it would be possible to push more

flow. The algorithm is listed as Algorithm 3.

Algorithm 3 Maxflow using Ford-Fulkerson

1: choose an initial flow f of 0 on all edges
2: while there exists an augmenting path p from s to τ in residual graph Gf do
3: cf (p) = min{wf(u, v) : (u, v) is in p}
4: for all edges along the path p do
5: f(u, v) = f(u, v) + cf (p)
6: f(v, u) = −f(u, v)
7: end for
8: end while

where the graph Gf is created as per equations 2.7 and 2.8 . It can be shown
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that the complexity of this algorithm is O(|V ||E|2) [20] where |V | is the number of

vertices and |E| is the number of edges in the graph.

In figure 2.3 an example of the Ford Fulkerson method being applied to compute

maximum flow in a graph is provided

2.2.2 Push relabel algorithm

In the previous section we saw the Ford Fulkerson method which essentially looks

at the whole graph during every iteration. Push relabel algorithms work on only

one vertex at a time. Unlike Ford Fulkerson the constraint for internal vertices

(not source or sink) that the incoming flow should be equal to outgoing flow is not

always maintained. However the net flow at any vertex other than the source is

non-negative.

There are two properties associated with each vertex. Firstly there is a positive

excess flow at each vertex. Intuitively we think of this as an arbitrarily large reservoir

attached to the vertex. Secondly there is a height associated with each vertex and

this height increases as the algorithm progresses. We are only allowed to push flow

from a higher vertex to a lower vertex. There are two basic operations that are

performed which give the algorithm its name. The push operation takes excess flow

from a vertex and pushes it to one of its neighbors. The relabel operation changes

the height of a vertex.

Let e(u) denote the excess flow at vertex u and h(u) denote its height. Given an

existing flow f , the push operation can be described as in Algorithm 4.

Algorithm 4 Push operation

1: if u is overflowing and has a neighbor v, wf(u, v) > 0, h(u) = h(v) + 1 then
2: Push df(u, v) = min(e(u), wf(u, v)) from u to v.
3: Update f(u, v), e(u) and e(v) and set f(v, u) = −f(u, v).
4: end if
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Figure 2.3: An example of the Ford Fulkerson method from [20]. The last figure
shows the final residual graph and we see that there is no path from s to τ , and
hence the algorithm terminates. s and y will be in the S subset and x, z and τ are
in the T subset of the cut.
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where the quantities wf(u, v) are computed according to equation 2.7. The re-

label operation basically comes into play when we cannot find a neighbor,v, of an

overflowing vertex,u, such that h(u) = h(v) + 1 and edge (u, v) can accommodate

more flow. Then we need to increase the height of u by performing a relabeling as

follows

h(u) = 1 + min{h(v) : (u, v) ∈ Ef} (2.9)

A generic push-relabel algorithm works by first performing an initialization as

follows

Algorithm 5 Initialize push relabel

1: for all vertices u ∈ V do
2: h(u) = 0
3: e(u) = 0
4: end for
5: for all edges (u, v) ∈ E do
6: f(u, v) = 0
7: f(v, u) = 0
8: end for
9: h(s) = |V |

10: for all edges emerging from s do
11: saturate flow along the edge
12: update the excess flow at both the source and the other vertex on this edge
13: end for

The generic algorithm then works by doing a sequence of push and relabel op-

erations as long as these operations are possible - as long as there is an overflowing

vertex.

The generic push-relabel algorithm runs in O(|V |2|E|) time (again where —V—

and —E— represent the cardinality of the vertex set and edge set respectively). It

is possible to get O(|V |3) by doing a version of the push-relabel algorithm called the

relabel-to-front algorithm which basically performs the push and relabel operations

in a careful way. This algorithm maintains a list of overflowing vertices. The list is
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scanned as the algorithm proceeds and the excess flow in each vertex in ‘discharged’.

The discharge operation chooses suitable push and relabel operations to ensure the

entire excess flow is taken care of. If during the course of discharge, a vertex is

relabeled, it is moved to the start of the list. The algorithm then treats the next

vertex in the list and continues the procedure until every overflowing vertex has been

discharged.

We illustrate this algorithm in figure 2.4 and 2.5 by applying it on the same graph

shown for the Ford Fulkerson method(figure 2.3).

2.3 Adapting standard graph cut methods to suit

vision problems

While the methods described in the previous section can be used in any kind of flow

network, the class of problems that computer vision researchers are interested in

almost always have structured graphs. In many cases, there is a good initial guess

for the solution that could be suitably incorporated into the algorithm. This section

looks at some of the ways in which traditional graph cut algorithms have been fine

tuned in order to speed up the mincut computation in the realm of computer vision.

One of the most interesting aspects of graphs that show up in computer vision is

that they all basically have the same structure - that of a grid. This fact has been

exploited to provide substantial improvement over the two traditional algorithms we

discussed in 2.2. Boykov and Kolmogorov [11] tune the Ford-Fulkerson algorithm

to obtain better performance. The basic idea is to employ two search trees, one

emanating from the source and one from the sink, which are updated over the course

of the algorithm. The traditional Ford Fulkerson uses only one search tree from the

source that is continuously rebuilt. Given TREEs from the source which consists

of non-saturated edges from parent nodes to children and TREEt which has non-

saturated edges from child to parent and includes the sink, the augmenting path is
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Figure 2.4: The example shown for Ford Fulkerson method being solved by the
relabel-to-front algorithm. The numbers in each node indicate the current excess
flow value. Each step discharges one of the vertices from a list. If at any point a
relabel is needed during the course of discharge, the node is moved to the front of
the list.
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Figure 2.5: Final steps of the relabel-to-front algorithm shown in figure 2.4. At the
final step the excess flow in each vertex becomes 0. At that point the excess flow
value of the sink is the value of the maximum flow.
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found as soon as the leaf node of one tree detects that it is connected to a leaf node

of the other tree via an unsaturated edge. There are three stages in the algorithm

which are repeated until maxflow is computed. In the ‘growth’ stage, the two trees

are grown until they touch. In the ‘augmentation’ stage a bottleneck (minimum

capacity) edge along the s-t path is found and that amount of flow is pushed through.

The saturation of some of the edges along this path will create some nodes that

belong to neither tree due to severance of the saturated edge. The final ‘adoption’

stage tries to restore the single-tree structure. Using this algorithm a mincut for the

image restoration problem for a 512x512 image, for example, can be computed in 65

ms. This is about 10 times faster than Ford Fulkerson style algorithms and about 5

times faster than Push relabel style algorithms.

Kohli and Torr [55] use the idea of solution reusability while solving the object-

background segmentation problem on video sequences. In video, the graph being

created in order to perform the segmentation does not change too dramatically from

frame to frame. So by taking the residual graph obtained in the terminating step

of the previous step’s mincut computation they change the weights to incorporate

the new frame. This does lead to an illegal/infeasible flow sometimes and the paper

describes how one can transform the graph to once again make the flow consistent.

By performing updates as opposed to repeated creation of the graph, a speed up of

5-10 times was obtained over Boykov and Kolmogorov.

Juan and Boykov [49] also show how an initial solution can be used. However as

opposed to updating flow, they update cuts. An initial non-feasible flow is created

from the initial cut and this solution is then driven towards feasibility. The procedure

is quite similar to Push-relabel. In push relabel one is only allowed to maintain

excesses. Here both excesses and deficits are allowed at nodes. Given an initial cut

C by saturating all the edges on the boundary between the source side and the sink

side of the cut, they create excesses at the boundary nodes on the sink side of the

cut and deficits at the boundary nodes on the source side of the cut. By using a two
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tree approach similar to the one detailed in the preceeding paragraph the excesses

get pushed towards the sink and the deficits are pulled by the source. This method,

known as Active Cuts is suitable to be employed in a coarse to fine scheme where

the cut at a coarse level is used as an initial solution for a finer level. By applying

this to the problem of segmentation, they report a speed up of about 2 times. The

scheme has also been applied to video segmentation where speed ups of 2-6 times

were obtained.

Lombaert et al . [69] also solve image segmentation in a hierarchical manner by

first finding the minimum cut on a coarser graph and then using this cut to build

narrow banded graphs at higher resolution that consist of nodes around the boundary

of the currently segmented objects. In other words, the coarser level provides an

estimate of the segmentation and later stages are used to refine the location of the

boundary. This approach is memory efficient as well as being faster. By using 2

levels in the hierarchy, the memory usage is 1/4th that used by non-hierarchical

methods and the speed is 8 times faster.
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Chapter 3

From Graph Cuts to !1 norm

minimization

This chapter describes the process of reducing graph cuts to an unconstrained !1

norm minimization problem. This is done by manipulating the dual problem that

arises from a linear programming model of the maxflow problem. The node-edge

incidence matrix is introduced in Section 3.1 and then used to formulate the maxflow

problem in a linear programming sense in Section 3.2. Section 3.3 shows how this new

formulation still demands the same regularity conditions of the pairwise functions in

order to be graph representable. The dual of the problem is introduced 3.4 and via

some algebraic manipulations in 3.5 it is converted into an unconstrained !1 norm

minimization.

3.1 The node edge incidence matrix

We begin by introducing our definition of the node-edge incidence matrix for a flow

network G = (V, E) with source s and sink t.

A small example of a graph with 4 nodes is shown in figure 3.1
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Figure 3.1: An example of a grid graph with 4 vertices whose incidence matrix A is
given in Equation 3.1

.
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The graph formulation we use is undirected. However, there is an arrow associ-

ated with each edge which is used to distinguish between positive and negative flows.

Flow in the direction of the arrow is positive and flow in the opposite direction is

negative.

The node edge incidence matrix which we denote by A, has size n × m, where

n is the number of internal vertices (vertices apart from the source and the sink)

and m is the number of edges. Each column of this matrix corresponds to an edge

in the graph and will contain at most two non-zero entries, a +1 entry in the row

corresponding to the node at the head of the arrow associated with that edge and a

-1 for the node at the other end of the edge. Note that those columns corresponding

to edges starting at s or terminating at τ will only contain a single non-zero entry

since there are no rows corresponding to the source and the sink. Hence for the

above graph,

A =

















−1 −1 0 0 1 0 0 0 −1 0 0 0

1 0 −1 0 0 1 0 0 0 −1 0 0

0 1 0 −1 0 0 1 0 0 0 −1 0

0 0 1 1 0 0 0 1 0 0 0 −1

















(3.1)

This matrix A has interesting properties that are crucial in the development of

the algorithm. Let us count the number of rows and columns of A. The number

of rows will be equal to the number of pixels or primitives that we want to label.

The important thing to remember is that there is no row for the source node or the

sink node. Also if we refer to the grid graph in Figure 2.2 every pixel has at most 6

edges incident on it. Hence matrix A is a very sparse matrix with at most 6 non-zero

entries per row. The sparseness will be of particular importance when we discuss

the implementation of the algorithm. The number of columns will be at most n

for the s-edges, n for the τ -edges and around 2n for the internal edges. Therefore

the number of columns is approximately 4n. For the image sizes that we deal with,

512 × 512, the matrix A has a quarter of a million rows and a million columns.
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Without the sparseness of A, the algorithm would be completely infeasible. Also,

because each interior node in the graph is connected to its four neighbours (and s

and τ) it becomes very easy to compute the product of A or AT with vectors; an

operation that is required quite frequently in the algorithm.

With this definition of the node-edge adjacency matrix A in mind we turn our

attention to formulating the max-flow problem as a linear programming problem.

3.2 Graph Cuts via linear programming

This section describes how the problem of graph cuts will be viewed in this thesis.

Although there are some differences between this formulation when compared to

traditional formulations, it results in the same regularity requirements which were

shown in Chapter 2.

In the directed formulation of graph cuts, the maxflow mincut theorem [20] shows

that an optimal solution to the maximum flow problem provides a solution to the

minimum cut problem. The analysis performed in Cormen et al . [20]. extends to

the undirected formulation being used. Therefore let us begin by formulating the

maxflow problem as a linear program.

Like many combinatorial optimization problems, the maxflow problem can be

reformated as a linear program. See for example Papadimitriou and Steiglitz [74].

One such formulation is shown in Equation 3.2.

max
x

cTx

st Ax = 0

−w ≤ x ≤ w. (3.2)

Here x ∈ Rm denotes a vector that indicates the flow in each of the edges of the

graph. A positive entry in this flow vector corresponds to a flow along the direction
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of the arrow associated with that edge, while a negative value corresponds to a flow

in the opposite direction. Again, the edges in our graph are undirected and the

associated arrows merely represent the convention used to interpret the flow values.

The goal of the optimization problem is to maximize the inner product cTx where

c ∈ Rm is a binary vector with +1 entries for all of the edges emanating from s and

0 entries elsewhere;this inner product effectively computes the net flow out of node

s.

In order to express the constraint that the net flow associated with each of the

interior nodes in the graph should be zero we use the node edge incidence matrix

A ∈ Rn×m. The product Ax ∈ Rn denotes the sum of the flows impinging upon

each of the interior nodes due to the flow assignment x. Therefore, the constraint

Ax = 0 reflects the fact that the net flow at each of the interior nodes should be

zero. The vector w ∈ Rm represents the non-negative weights associated with each

of the edges in the graph. The inequalities −w ≤ x and x ≤ w reflect the capacity

constraints associated with each of the edges.

The main difference between this formulation and the Kolmogorov and Zabih

formulation is that there is no direction associated with the edges in our formulation.

In particular when the cut capacity is calculated all the edges that have nodes

on opposite sides of the partition will contribute to the capacity. In the directed

formulation, only those edges that go from the S side to the T side contribute in the

cut capacity.

Despite this difference, the next section shows that one ends up with the same

regularity requirement for the energy function to be graph representable.
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3.3 Conditions for graph representability in our

graph cut formulation

As pointed out before, the formulation in 3.2 differs slightly from the one presented

by Kolmogorov and Zabih [58] which makes use of a directed graph. However, it

can be shown that our formulation allows one to represent precisely the same set of

energy functions involving up to pairwise clique potentials as the ones described in

that work.

Recall from [58] that a function E of n binary variables, x1, . . . , xn is called graph

representable if there exists a graph G = (V, E) with terminals s and t and a subset

of vertices V0 = {ν1, . . . , νn} ⊂ V − {s, t} such that for any configuration x1, . . . , xn,

the value of the energy E(x1, . . . , xn) is equal to a constant plus the cost of the

minimum s− t cut among all cuts C = S, T in which νi ∈ S, if xi = 1, and νi ∈ T if

xi = 0.

We are dealing with energy functions of the following form

E(x1, x2 . . . xn) =
n

∑

i=1

E(xi) +
n

∑

i=1

∑

j∈nbd(i)

E(xi, xj) (3.3)

Constructing the graph for the data terms is simple. For each of the pairwise

terms, we would require a graph similar to the one in Figure 3.2. Let w1, . . . , w5

represent non negative weights associated with the edges.

Let us consider what the mincut cost would be for various labelings of the interior

nodes. Here the s node has a label of 1 and the τ node has a label of 0. Let the

constant by which the cut cost and the energy value differ be given by K. Now

consider what happens when both nodes are labeled 0. The value of the energy

function is E(0, 0). Since they are both labeled 0, they have to be on the T side of

the cut. Under this constraint the capacity of the mincut becomes w4 + w5 which

means for graph representability we need E(0, 0) = w1 + w2 + K.

In a similar manner for the other 3 configurations, we want the following to be
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Figure 3.2: A two node graph used to determine the conditions for graph repre-
sentability.
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E(0, 0)

E(1, 1)

E(0, 1)

E(1, 0)

















=

















w1 + w2 + K

w4 + w5 + K

w1 + w3 + w5 + K

w2 + w3 + w4 + K

















=

















1 1 0 0 0 1

0 0 0 1 1 1

1 0 1 0 1 1

0 1 1 1 0 1













































w1

w2

w3

w4

w5

K





























(3.4)

By looking at these equations, since we are trying to express 4 numbers with seem-

ingly 6 degrees of freedom we initially expect no restrictions on E. However, we note
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that the following columns of the matrix - (1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 0, 1), (0, 1, 1, 0)

and (1, 1, 1, 1) all lie in the perpendicular space of (1, 1,−1,−1). Hence any lin-

ear combination of these vectors will give rise to a vector that is perpendicular to

(1, 1,−1,−1). Denote this vector as v. Then we have

















E(0, 0)

E(1, 1)

E(0, 1)

E(1, 0)

















= λv + w3

















0

0

1

1

















(3.5)

Take the dot product of equation 3.5 with (1, 1,−1,−1)T

E(0, 0) + E(1, 1) − E(0, 1) − E(1, 0) = 0 − 2w3 (3.6)

now use the fact that w3 is a positive edge weight to get

E(0, 0) + E(1, 1) − E(0, 1) − E(1, 0) ≤ 0 (3.7)

which is precisely the regularity condition. Therefore regularity is a necessary

condition.

To see that it also is a sufficient condition, assume we have regularity. Then the

following result is immediate

w3 =
E(0, 0) + E(1, 0) − E(0, 0) − E(1, 1)

2
(3.8)

Now we can assign the following values to the remaining weights, chosen to ensure

equations 3.4 are satisfied and to ensure the positivity of all values apart from K.
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w2 =
E(1, 0) + E(0, 1) − E(1, 1) + E(0, 0)

2

w5 = E(0, 1)

w4 = E(1, 1) + E(1, 0)

w1 =
E(0, 0) + E(1, 0) + E(1, 1) + E(0, 1)

2
(3.9)

K = −E(1, 0) − E(0, 1) (3.10)

Thus this gives a constructive proof that the undirected formulation handles the

same energy functions as the Kolmogorov-Zabih formulations.

3.4 The dual problem

Instead of tackling the linear program described in Equation 3.2 directly, we pro-

ceed by formulating the associated dual problem. Slater’s theorem [9] states that if

the primal problem is convex and we can find a non-boundary point that is strictly

feasible (the inequality constraints are satisfied as strict inequalities) then the dual

problem’s optimal value matches the primal problem’s optimal value. Linear pro-

grams are always convex. Also it is easy to see that the solution x = 0, the all

zero vector, is a strictly feasible solution to 3.2. Therefore the conditions of Slater’s

theorem are satisfied and solving the dual problem will be equivalent to solving the

primal problem.

Given a constrained optimization problem of the form

min fo(x)

st fi(x) ≤ 0 i = 1, . . . , m

hi(x) = 0 i = 1, . . . , p (3.11)

the Lagrangian of the problem is obtained by associating a Lagrange multiplier

with each constraint.
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L(x,λ, ν) = f0(x) +
m

∑

i

λifi(x) +
p

∑

i

νihi(x) (3.12)

More specifically, the Lagrangian of the linear program described in Equation 3.2

has the following form

L(x,λ, ν) = −cT x + νTAx + λT
+(x − w)

+ λT
−(−x − w)

= −wT (λ+ + λ−)

+ xT (ATν − c + λ+ − λ−) (3.13)

In this expression the original primal objective function is augmented with mul-

tiples of the constraint functions (x - w) ≤ 0, (-x - w) ≤ 0 and Ax = 0. There are

three sets of Lagrange multipliers λ+ ∈ Rm, λ− ∈ Rm and ν ∈ Rn corresponding

respectively to these three constraints.

The Lagrangian dual function g(λ, ν) is obtained by minimizing the Lagrangian

with respect to x as shown below:

g(λ, ν) = inf
x

L(x,λ, ν) (3.14)

Using this definition the Lagrangian dual of our problem is

g(λ, ν) = −wT (λ+ + λ−) + inf
x

xT (AT ν − c + λ+ − λ−) (3.15)

since the first term does not involve x, it is easy to see that

g(λ, ν) =







−wT (λ+ + λ−) iff ATν − c = (λ− − λ+)

−∞ otherwise.
(3.16)

The dual problem is defined in terms of the Lagrangian dual function as
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max
λ,ν

g(λ, ν)

st λ ≥ 0 (3.17)

With this definition our original problem gives rise to the following dual problem

min
λ,ν

wT (λ+ + λ−)

st ATν − c = (λ− − λ+)

λ+ ≥ 0, λ− ≥ 0, (3.18)

where the maximization got turned into the minimization due to the negative

sign.

3.5 From the dual problem to !1 norm

We now exploit the structure of the problem in Equation 3.18 to turn it into an !1

norm minimization. First note that the inner product is a sum of non-negative terms.

wT (λ+ + λ−) =
m

∑

i=1

wi(λ+ + λ−)i. The weights wi are fixed and are always non-

negative. Hence minimization will involve minimizing each of the sums (λ+ + λ−)i.

For a given value of ν, for each pair of (λ+)i and (λ−)i this minimization just

involves solving the following basic problem

min
a,b

(a + b)

st a − b = c

a ≥ 0, b ≥ 0 (3.19)

The solution of this problem is trivial but interesting. In the case when c > 0,

the minimum value of a + b will be c, corresponding to the solution a = c and b = 0.
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On the other hand when c ≤ 0, b = −c and a = 0 gives the minimum value of −c.

Hence in both cases the minimum value is |c|.

Therefore it is clear that the minimum value that (λ−+λ+)i attains is |(ATν−c)i|.

This property allows us to reformulate the optimization problem in Equation 3.18

as follows:

min
ν

m
∑

i=1

wi|(ATν − c)i| (3.20)

which can be rewritten as:

min
ν

‖diag(w)(ATν − c)‖1 (3.21)

Notice that the resulting optimization problem is an unconstrained !1 norm mini-

mization where the decision variables correspond to the Lagrange multipliers ν ∈ Rn.

The form of the objective function is not surprising since the dual of the maxflow

problem is the mincut problem which can be expressed as the following constrained

!1 norm minimization:

min
ξ∈{0,1}n

||diag(w)(AT ξ − c)||1 (3.22)

with the understanding that those nodes i such that ξi = 0 belong to the T set

while those having ξi = 1 belong to the S set. This formulation is justified below.

Recall that for an edge to be a cut-edge, the two nodes that it is incident on have

to be in different subsets, or in other words they have different labels.

Consider the structure of AT . Since A is the node-edge adjacency matrix the

transpose will have a row corresponding to every edge. There are 3 different kinds

of edges and we consider them in turn

1. First we consider the rows that correspond to the internal edges. The corre-

sponding component in the c vector will be zero. Each of these rows has one

+1 entry and one −1 entry. Consider row i and let the +1 entry be in column
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j and the −1 entry be in column k. Then while multiplying with ξ we have

the following conditions. Either we have ξj = ξk which basically implies the

edge is not a cut edge in which case the resultant vector will have a 0 in the

ith component. Consequently the cost of this edge is not included in the value

of the objective function. On the other hand if ξj *= ξk then we do have a

cut edge and as we can see from the product the weight of this edge will be

counted in the objective function and this is consistent with the edge weight

contributing to the cut capacity.

2. Now if we consider those edges that emerge from the source, we know the

corresponding component in c will be 1. The rows that correspond to these

edges in AT will have a single +1 in the row. Hence these edges will contribute

to the objective function only if the node is labelled as 0 which would mean

that the edge emanating from the source is a cut edge.

3. An argument analogous to the one used for the source edges shows that for

the edges entering the sink, the only edges that contribute to the objective

function value are those from a vertex j such that ξj = 1. By our convention,

these vertices are therefore in the source set and the edges that emanate from

them and enter the sink have to be counted towards cut capacity.

The significant difference between the objective function in Equation 3.22 and

the one in Equation 3.21 is the absence of constraints on ν .

However, it is possible to show that the νi variables will converge to binary values

without any external prodding.

Proposition 3.5.1. The unconstrained Lagrangian variables ν in the formulation

given in 3.21 converge to either 0 or 1.

Proof. We first note that the unconstrained !1 norm minimization arose out of the

dual problem derived from the linear programming formulation of the maxflow prob-

lem. In the optimal flow assignment for the grid graphs being dealt with, every vertex
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is either connected to s or to t via a path consisting only of unsaturated edges. Let

us call such a path an unsaturated path.

The Langrangians ν correspond to the labeling of the pixels. Let us label the

source as 1 while the label corresponding to the sink is 0.

Now consider what happens when an edge i, connecting nodes j and k is un-

saturated in the final optimal flow assignment. We apply the KKT conditions and

in particular complementary slackness [9] to the formulation in the primal-dual pair

of 3.2 and 3.18. The complementary slackness conditions basically say that when

optimality is reached the product of the constraint and the Lagrange multiplier cor-

responding to that constraint will be zero. Therefore we get the following for edge

i.

(x − w)i *= 0 ⇒ (λ+)i = 0

(−x − w)i *= 0 ⇒ (λ−)i = 0

⇒ (ATν − c)i = 0 (3.23)

This implies that if edge i is unsaturated, then the Lagrange multipliers associated

with it will be 0. Now depending upon the type of edge that i is, we have three cases

1. ci = 1 for an s edge. The corresponding row in AT has a single +1 entry and

therefore ν will have to be 1 for the pixel that is being connected to the source

by this edge.

2. ci = 0 for an internal edge. Here it can be seen that both pixels being connected

by this edge will have to have the same label.

3. ci = 0 for a t edge. The row in AT has a single −1 entry and therefore the

pixel that is being connected to the sink by this edge will have to be labelled

0.
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Therefore all nodes connected to s by an unsaturated edge will be labeled 1 and

this label propagates along every unsaturated edge. This leads to the conclusion

that all nodes connected to s by an unsaturated path will be labelled 1 and all

nodes connected to t by an unsaturated path will be labelled 0. When optimality is

reached, every internal node has to belong to one of these two sets and hence every

internal node is either going to be labelled 0 or 1.

This property allows us to conclude that the nodes will bifurcate into two equiv-

alence classes, one involving s and one involving t, and that the ν values associated

with these two classes will be 1 and 0 respectively. The unconstrained formulation in

Equation 3.21 is advantageous in many ways. It underlines the connection between

graph cuts and convex optimization and allows one to employ continuous optimiza-

tion techniques that can exploit the structure of the problem. One can also use more

liberal convergence criteria than are normally employed because all we require is for

the νi to be clearly above or below 0.5. Hence this results in fewer iterations for the

interior point methods that are used to solve the problem.

Since νi have to be either 0 or 1, double precision calculations are not that

important in the optimization. One can therefore take advantage of the abundance

of single precision floating point operations available on architecture such as the

graphics processing unit (GPU).
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Chapter 4

Solving the !1 norm minimization

This chapter describes the implementation of a solution to the !1 norm minimization

that is used in this thesis. The !1 norm minimization can again be reduced to a

linear programming problem. This process is described in section 4.1. The solution

to this formulation using interior point methods is discussed in 4.2.

4.1 Solving !1 norm minimization using linear pro-

gramming

The unconstrained !1 norm minimization problem described in equation 3.21 can be

formulated as a linear program by introducing an auxiliary variable y ∈ Rm such

that yi serves as a placeholder for |ATν − c|i. This can be done via the following

optimization problem

miny

y ≥ (ATν − c)

y ≥ −(AT ν − c) (4.1)

as described in [9]. It is easy to see why this works by considering two cases
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of AT ν − c being positive, in which case the minimum value for y under the above

constraints is ATν−c, while when ATν−c is negative, then the minimum value will

be −(ATν − c).

Again recalling that the weights wi are all non-negative, we can incorporate y

into the objective function of 3.21 by replacing ‖diag(w)(ATν − c)‖1 by wTy and

adding the constraints shown in 4.1. Koh, Kim and Boyd [54] use a very similar

analysis to solve !1 regularized logistic regression problems.

The final linear program is shown below.

minwTy

st





AT −Im

−AT −Im









ν

y



 ≤





c

−c



 . (4.2)

where Im is the m × m identity matrix.

While the LP approach to !1 norm minimization overcomes the non-differentiability

of the !1 it does introduce extra variables. An alternative method used by the op-

timization community is via the Huber M-estimator [68, 71, 75]. The Huber cost

function is given by

ρ(t) =







1
2 t

2, if|t| ≤ γ

γ|t|− 1
2γ

2 otherwise.
(4.3)

As γ is made smaller and smaller this approximates the !1 norm better and better.

This cost function is a convex differentiable piecewise quadratic polynomial.

This approach was tried on the !1 norm problems that arose out of the graph

cuts problem but the convergence rate was found to be extremely slow compared to

the linear programming formulation.
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4.2 Applying the barrier method to solve the LP

The problem formulated in equation 4.2 can be solved using the interior point method

with logarithmic barrier potentials. In this approach a linear program which has

inequality and equality constraints is approximated by a linear program with only

equality constraints. The idea is to include the inequality constraints as logarithmic

barrier potentials in the original objective function.

The logarithmic functions are being used as approximators for the indicator func-

tion

I(u) =







0 u ≤ 0

∞ u > 0
(4.4)

Using indicator functions the inequality constraints in the general optimization

problem 3.11 can be pulled into the objective function as

min fo(x) +
m

∑

i=1

I(fi(x))

st hi(x) = 0 i = 1 . . . p (4.5)

The problem with the indicator function is that it is not differentiable and hence

one chooses to use the logarithm function −(1/t) log(−u) as an approximation for the

indicator function I(u). Figure 4.1 indicates this approximation for various values

of t. The problem gets transformed into

min fo(x) +
m

∑

i=1

−(1/t) log(−fi(x))

st hi(x) = 0 i = 1, . . . , p (4.6)

Applying this to the problem, rewritten here
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Figure 4.1: Approximations to the indicator function using different values of t

minwTy

st





AT −I

−AT −I









ν

y



 ≤





c

−c



 , (4.7)

results in the following function that has to be minimized

φ(ν,y) = t(wTy) −
m

∑

i=1

log(yi − zi) −
m

∑

i=1

log(yi + zi) (4.8)

where z = (ATν − c) and we take t as a multiplicative factor for the objective

function instead of dividing the barrier by t.

Therefore we now have a completely unconstrained convex optimization problem

(since the negative of a log function is convex). By changing the value of t we get

a family of such problems. The barrier method takes a sequence of increasing t

values and solves the unconstrained minimization problems corresponding to them,

using the last optimal point found as the starting point for the next unconstrained

minimization problem.
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An unconstrained minimization problem in which the objective function is convex

and twice differentiable can be solved using Newton’s method. The fundamental

concept behind this iterative method is to take a step in each iteration in a direction

that minimizes the second-order approximation of the function at the current point.

If a twice differentiable convex function f(x) is to be minimized by this method,

then in each iteration beginning with an estimate x , the step to be taken is in the

direction

∆xnt = −∇2f(x)−1∇f(x) (4.9)

By computing the Hessian and the gradient of our objective function we see that

in each Newton iteration the system that we have to solve boils down to computing

[∆ν ,∆y]T , in the following linear system:





AD+AT AD−

D−AT D+









∆ν

∆y



 = −





A(d1 − d2)

tw − (d1 + d2)



 (4.10)

Where d1i = 1/(yi − zi), d2i = 1/(yi + zi); D+ and D− are diagonal matrices whose

diagonal entries are computed as follows D+ii = (d2
1i

+ d2
2i

) and D−ii = (d2
2i
− d2

1i
).

By applying the Schur complement [100] to factor out ∆y the system can be further

reduced to:

(Adiag(d)AT )∆ν = −Ag (4.11)

Where:

di = 2/(y2
i + z2

i ) (4.12)

and

gi =
2zi

y2
i − z2

i

+
2yizi

y2
i + z2

i

(twi −
2yi

y2
i − z2

i

) (4.13)

Once ∆ν has been obtained from Equation 4.11, the ∆y component of the step can
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be computed using the following expression.

∆y = D−1
+ ((d1 + d2) − tw − D−AT∆ν) (4.14)

The entire interior point optimization procedure is outlined in pseudo-code as

Algorithm 6.

Algorithm 6 Calculate min-cut: min
ν

‖diag(w)(ATν − c)‖1

1: choose t,µ
2: νi = si/(si + τi)
3: choose y such that y ≥ |ATν − c|
4: while change in !1 norm since last (outer) iteration above threshold1 do
5: while change in !1 norm since last (inner) iteration above threshold2 do
6: Compute d from Equation 4.12
7: Compute g from Equation 4.13
8: Solve (Adiag(d)AT )∆ν = −Ag to get ∆ν
9: Compute ∆y from Equation 4.14

10: If necessary, scale step by β so that ν + β∆ν, y + β∆y are feasible.
11: end while
12: t = µ ∗ t
13: end while

The input to this procedure is the vector of edge weights, w. Given the way our

graph is structured the node-edge adjacency matrix A and the indicator vector c

stay the same for each problem.

The parameters to be chosen in this algorithm are t, µ and the two thresholds

for convergence. In current empirical analysis, setting the thresholds to be relative

changes of 1 percent works for most of the examples. As detailed in Boyd and

Vandenberghe, the choice of µ is not that critical and we have experimented with

values ranging from 2 to 15 and have obtained similar results for the different values

of µ. The choice of t is more interesting. We first compute a feasible solution for the

flow formulation by taking the minimum of the s links and τ links incident on each

node. Then given an initial dual feasible solution (any labelling will be feasible),

we compute the duality gap η which is the difference between the dual objective
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function value and the primal objective function value. Then the initial t can be

chosen as m/η as suggested by Boyd and Vandenberghe. While this initial choice

of t does work, one can obtain better convergence by hand-selecting t values. A

method of automatically generating a t value, given an initial solution, is still under

investigation.

As an initial solution to our interior point method we use νi = si/(si+τi), where si

and τi are the weights of the s-edge and τ -edge incident on node i respectively. This

is indicative of a purely data driven labelling of the pixels and provides a starting

point in which all labels are between 0 and 1. While this is a good starting point, a

completely uninformative initial labeling which assigns 0.5 to every pixel, takes only

around 20 extra conjugate gradients (the iterative method of choice for solving the

normal equations in this thesis).

Note that the principal step in this procedure is the solution of the sparse linear

system given in Equation 4.11 and step 8 of the algorithm. These linear equations are

exactly the same as the ones that arise out of the solution to the following weighted

least squares problem

min ‖diag(d)1/2(AT∆ν + diag(d)−1g)‖2 (4.15)

The system of equations used to solve least squares problems are referred to as

normal equations and we are going to borrow that terminology to refer to 4.11.

This means that the original !1 norm minimization problem has been reduced to the

problem of solving a sequence of sparse linear systems. The next chapter deals with

methods of solving these normal equations.
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Chapter 5

Solution of the normal equations

This chapter details the method used to solve the normal equations - the system of

linear equations in 4.11.

We begin by discussing important properties of the matrix Adiag(d)AT in section

5.1. This matrix will be denoted as L from this point on. Section 5.2 then presents

the various methods that can be used to solve the normal equations, with particular

emphasis on the conjugate gradients method which is our method of choice for this

thesis. All the methods are discussed in greater depth in Golub and Van Loan’s

classic text [33].

5.1 Properties of Adiag(d) AT

Throughout the thesis we will use a lot of properties of L = AAT . This matrix

is an n × n matrix that represents node-node adjacency in the following manner.

The diagonal entries give the degree of the corresponding vertex. The off diagonal

entries are either 0 or −1. L(i, j) = −1 indicates that nodes i and j are connected.

This matrix, like the matrix A is extremely sparse. Since each vertex has at most 4

neighbours (6 in a 3d case) we have at most 5 non-zero entries per row.

For the example in 3.1
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L =

















4 −1 −1 0

−1 4 0 −1

−1 0 4 −1

0 −1 −1 4

















(5.1)

At this point we note that the matrix L = (AAT ) corresponds to the graph

Laplacian where the rows and columns associated with the s and t nodes removed.

L is nothing but a weighted version of this matrix. Matrix L is symmetric by

construction and, since the entries in d are all positive, it is also positive definite.

The entries in d can be viewed as weights of the edges of the graph that are

dependent on the current node labeling. With each change in the labels assigned to

the nodes, these weights change.

The entries along the diagonal of the matrix Lii correspond to the sum of the

current weights of the edges impinging on the node i in the graph - including the

links to the s and t nodes. For the off diagonal elements, Lij , it can be shown that

−Lij will correspond to the current weight of the edge connecting nodes i and j.

Definition 5.1.1. We say that A ∈ Rn×n is strictly diagonally dominant if

|aii| >
n

∑

j=1,j %=i

|aij | i = 1 . . . n

Now, due to the inclusion of the current weights of the s links and t links (both of

which have non negative weights) in the diagonal entries, it is clear that the matrix

L will be strictly diagonally dominant. So far we have shown that L is sparse,

symmetric, positive definite and strictly diagonally dominant. It also happens to be

highly structured.
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L =























D1 F1 · · · 0

F1 D2
. . .

...
. . . . . . . . .

...
. . . . . . Fn1−1

0 · · · Fn1−1 Dn1























(5.2)

that is, it is block tridiagonal, where each of the Di blocks is tridiagonal and each

of the Fi blocks is diagonal. Recalling that the graph we work on is a grid, let there

be n1 rows and n2 columns, n = n1n2. Then L is n × n. Each block D and F is

n2 × n2 and there are n1 blocks of D and n1 − 1 blocks of F .

Such matrices come up very frequently while solving partial differential equation

problems on a rectangular grid. See for example Farlow’s text on partial differential

equations [25].

A classic example is the Poisson differential equation that is encountered exten-

sively in areas like mechanics and electrostatics

∇2φ = f (5.3)

If we are solving this equation on a rectangular domain, we get

∂2φ

∂x2
+
∂2φ

∂y2
= f (5.4)

If we discretize the domain by creating m nodes along the height of the rectangle

and n along the width and then proceed to approximate the partial derivatives at

each node by using the vertical and horizontal neighbours of that node, 1 we get the

system of equations

Aφ = f (5.5)

1The approximation of the partial derivative could be done by using 8 neighbours instead of 4,
resulting in a structurally different matrix
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where

A =























D F · · · 0

F D
. . .

...
. . . . . . . . .

...
. . . . . . F

0 · · · F D























(5.6)

the D matrices are tridiagonal of size n by n and F = −In, the negative of the

identity matrix. Each D matrix looks like the one shown in 5.7 and there are m of

them and 2(m − 1) off diagonal blocks.

D =























4 −1 · · · 0

−1 4
. . .

...
. . . . . . . . .

...
. . . . . . −1

0 · · · −1 4























(5.7)

The matrix A has a sparseness structure that is exactly the same as our matrix L.

Therefore there is an interesting connection between our problem and the solution

of such PDEs. The main difference between L and A is that all the diagonal blocks

are equal and all the off-diagonal blocks are equal in the Poisson system. This is not

going to be the case in our system.

To summarise, the matrix that we are dealing with, L, is sparse, banded tridiag-

onal, symmetric and positive definite. All these properties result in it being an ideal

candidate for a number of linear equation solvers and we explore them in the next

section.
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5.2 Solving a large sparse system of linear equa-

tions

The set of methods used to solve a sparse system can be broadly classified into two

categories.

1. Direct methods - These are methods in which the matrix is factorized into

a form that makes it simpler to solve the equations. Cholesky decomposition

and cyclic reduction are examples.

2. Iterative methods - In these methods, an initial guess is made for the so-

lution and through a process of iterative refinement steps, the guess is made

to converge to the actual solution. Gauss-Seidel, Jacobi, SOR(successive over

relaxation) and Conjugate gradients are examples of this.

5.2.1 Cholesky decomposition

One of the popular methods of solving a system of linear equations that is sym-

metric and positive definite is to use the Cholesky decomposition. If A ∈ Rn×n

then it is always possible to find a unique lower triangular matrix G ∈ Rn×n such

that A = GGT . Solving a system of equations involving an upper triangular or a

lower triangular matrix just involves back or forward substitution respectively and

therefore the factorization step leads to a much simpler set of equations.

The factors of a block tridiagonal matrix will be block bi-diagonal, however there

is no guarantee of sparseness within the blocks. Our original matrix has n1 tridi-

agonal blocks of size n2 × n2 on the diagonal. The Cholesky decomposition could

therefore result in a storage requirement of n1n2
2 entries which is extremely memory

intensive.

Also the factorization is not amenable to parallelization since it involves forward

and back substitution in which the current step depends on the result from the
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preceeding step.

5.2.2 Cyclic Reduction

Cyclic reduction is a typically used for tridiagonal or block tridiagonal systems. This

method is discussed in Gander and Golub [30]. The main idea is to eliminate either

the even or the odd unknowns(blocks) by expressing them in terms of the other half.

The resultant equations are regrouped and again half the variables are eliminated.

Finally we end up with only one block or one variable that needs to be solved for.

Once this is done the intermediate equations get solved in a bottom up manner.

This is best illustrated with an example. We reproduce the one given in Golub

and Van Loan but show only the first step. The subsequent reduction steps are done

in exactly the same manner.



































4 −1 0 0 0 0 0

−1 4 −1 0 0 0 0

0 −1 4 −1 0 0 0

0 0 −1 4 −1 0 0

0 0 0 −1 4 −1 0

0 0 0 0 −1 4 −1

0 0 0 0 0 −1 4
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(5.8)

By taking sets of 3 equations and eliminating the odd variables we get

−14x2 + x4 = −24

x2 − 14x4 + x6 = −48

x4 − 14x6 = −72 (5.9)

In the next step we can eliminate x2 and x6 and get a single equation in terms

of x4 and then work backwards to get the other variables.
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As can be seen above, this algorithm works well for tridiagonal systems. This

algorithm has been implemented in parallel by Kass and Lefohn and Owens [50] on

the GPU for interactive depth of field effects in computer graphics. Our system is

block-tridiagonal and applying the method directly is a little cumbersome. However,

as we will see in Section 5.2.4 this method can be used to solve the tridiagonal

systems that arise during the course of preconditioning the matrix.

5.2.3 Jacobi and Gauss-Seidel Iterative methods

The Jacobi method and the Gauss-Seidel method are both specific members of a

general class of iterative algorithms for solving a linear system. The idea is to break

the matrix A up into A = M − N and iteratively solve the system of equations

Mx(k+1) = Nx(k) + b (5.10)

where the matrix M is chosen such that it is easy to solve a linear system with

M as the matrix.

In the Jacobi method M is a diagonal matrix whose diagonal entries match those

of A.

In the Gauss-Seidel method M is obtained by extracting the lower triangular

portion of A.

Theorem 5.2.1. If A ∈ Rn×n is symmetric and positive definite then the Gauss-

Seidel iteration converges for any initial solution.

Proof. A proof for this theorem can be found in Golub and Van Loan [33].

The above theorem ensures the applicability of this method to our system of equa-

tions, These methods are easily parallelizable but the rate of convergence depends

on the spectral radius of M−1N and in experiments they required many iterations

to converge.
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5.2.4 Conjugate gradients

The numerical properties of the matrix L make the resulting linear system amenable

to solution by the method of conjugate gradients [33]. An excellent introduction on

the subject of conjugate gradients can be found in Shewchuk’s article [82].

Assume the system of equations we are trying to solve is Ax = b, where A is

symmetric positive definite of size n × n. The solution to this can be found by

minimizing the function φ(x) = xT Ax − xT b. One method of doing this would be

to perform steepest descent by successively choosing the negative of the gradient

as the search direction. However the rate of convergence of this method becomes

very slow if the ratio λ1/λn, of the largest and smallest eigenvalues becomes very

large. As an alternative, in the conjugate gradient method the search directions

chosen are what are known as A-conjugate directions. The set of search directions

{p1, p2, . . . pk} satisfies pT
i Apj = 0 for all i *= j. Given a set of previous search

directions {p1, p2, . . . , pk−1}, the direction pk is chosen such that it is A-conjugate to

all these directions and is as close as possible to the negative of the gradient at the

current point. By following this procedure, convergence is guaranteed in n steps.

Pseudocode for the conjugate gradients method is presented in Algorithm 2.

Algorithm 7 Solve Ax = b using Conjugate Gradients
1: x = x0

2: r = b− Ax0

3: p = r
4: ρ = rTr
5: while

√
ρ/||b|| > ε do

6: a = Ap
7: α = ρ/(aTp)
8: x = x + αp
9: r = r − αa

10: ρnew = rTr
11: p = r + (ρnew/ρ)p
12: ρ = ρnew
13: end while
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A distinct advantage of the conjugate gradient technique is that the steps in

this algorithm can be readily parallelized. Each conjugate gradient step involves

one matrix vector multiplication, 2 inner products and 3 scalar multiplication and

addition (also called SAXPY) operations. All of these operations are amenable to

implementation on the parallel architectures found on modern GPUs and multi-core

processors [8, 61]. We discuss the GPU and our implementation of the algorithm on

an NVIDIA 8800 in the next chapter.

While the conjugate gradient method converges for any symmetric, positive-

definite matrix, the rate of convergence is dependent on the condition number of

the matrix, κ. To reduce the norm of the error by a factor of ε we need

i ≤ 6
1

2

√
κ ln(

2

ε
)7 (5.11)

iterations.

An important theorem concerning the convergence rate of the conjugate gradient

method is as follows

Theorem 5.2.2. If A = I + B is an n-by-n symmetric positive definite matrix and

rank(B)=r then the conjugate gradient method converges in at most r + 1 iterations.

The conjugate gradient algorithm can therefore be accelerated by choosing an

appropriate symmetric preconditioning matrix, C, and then applying conjugate gra-

dients to solve the system (CAC)(C−1x) = Cb as described in Golub and Van

Loan [33]. The goal here is to choose a matrix C in such a way that the precondi-

tioned matrix CAC ≈ I + B where B is a low rank matrix.

Concus, Golub and Meurant [19] describe preconditioning strategies that are

specifically designed for the types of matrices that we seek to invert. The idea is to

perform an incomplete block Cholesky factorization as opposed to an exact Cholesky

factorization on the block tridiagonal matrix. The Cholesky factors of such matrices

are block bidiagonal but the individual blocks are no longer sparse and hence an

exact Cholesky becomes an intractable task.
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As an example we see what happens when we try and compute the exact Cholesky

decomposition of the following block tridiagonal matrix where the Ai are tridiagonal

and Ei are diagonal that is structurally similar to ADAT

A =











A1 ET
1 0

E1 A2 ET
2

0 E2 A3











(5.12)

Let the exact factorization be given by

G =











G1 0 0

F1 G2 0

0 F2 G3











(5.13)

If we were to solve for the blocks of G we would get the following system of

equations

G1G
T
1 = B1 ≡ A1

F1 = E1G
−T
1

G2G
T
2 = B2 ≡ A2 − F1F

T
1 = A2 − E1B

−1
1 ET

1

F2 = E2G
−T
2

G3G
T
3 = B3 ≡ A3 − F2F

T
2 = A3 − E2B

−1
2 ET

2 (5.14)

The problem now is that although B1 is tridiagonal and hence easy to factorize,

B−1
1 is not tridiagonal and hence B2 will not be tridiagonal and therefore much harder

to factorize. So the incomplete preconditioning strategy is to approximate each of

the B−1
i by a tridiagonal matrix. Concus,Golub and Meurant discuss three methods

to do this. The simplest of these is to just approximate B−1
i by a diagonal matrix

whose elements are 1
(Bi)jj

and we use this approximation in our implementation of

their preconditioning strategy.
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Chapter 7 presents results that illustrate how effective these strategies can be in

improving the convergence rate of the solver. The reader will see how in the case of

foreground background segmentation usage of the Concus and Golub preconditioner

can reduce the number of iterations by a significant factor when compared to the

unconditioned system. The preconditioner involves the solution of a series of matrix

equations involving tridiagonal matrices. To speed up the process of solving these

equations, the cyclic reduction method seen in Section ?? can be used.

Experiments were also carried out using a simpler preconditioning strategy where

the matrix C is chosen as follows C = diag(a), ai = 1/
√

Aii. This is known as the

Jacobi preconditioner. When this preconditioner is applied to a diagonally dominant

matrix, such as L, it produces a normalized variant where the diagonal elements are

all 1 and the off diagonal elements all have magnitudes less than 1. Multiplying with

this preconditioner does not affect the fill pattern of the matrix.
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Chapter 6

Implementation strategies

In the previous chapters we have described the process of solving the graph cut

problem by converting it into an unconstrained !1 norm minimization problem which

in turn gets converted into a linear programming problem. The main advantage of

this conversion is that the solution of the linear program consists of operations that

are readily parallelizable. This chapter shows how each of the basic functions used

in the algorithm can be parallelized.

We also discuss one particular parallel implementation of the algorithm, on a

GPU - the NVIDIA GeForce 8800.

6.1 Parallelizing the !1 minimization

If we look at Algorithms 6 and 7, the basic operations that we need are Scalar

multiplication and addition (SAXPY), pointwise multiplication, computing the !1

norm of a vector, inner products, computing the minimum of a vector and finally

the matrix vector products Adiag(d)AT∆νi (corresponding to the ith iteration of

conjugate gradients) , Ag and ATν. The bottleneck step, as mentioned before, is the

conjugate gradient solution to the sparse system of equations. Conjugate gradients

have been the subject of a lot of research in the parallel computing community [3,
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18, 42].

The pointwise operations such as SAXPY and pointwise multiplications are triv-

ially parallelizable. Computing the !1 norm, the sum of all elements of a vector

and the minimum element of a vector are all called reduction operations as the final

outcome is a vector being reduced to a single scalar. To parallelize these operations,

the idea is to get processors/threads to perform the operation on mutually exclusive

sections of the vector and keep combining the partial results. Algorithm 8 below

shows how to perform the summation of all elements of a vector in a multi-threaded

approach.

Algorithm 8 Adding n elements using n threads

1: Zero initialize an array partialsums of size n.
2: sliceindex=n/2
3: while sliceindex ≥ 1 do
4: if threadindex ≤ sliceindex then
5: partialsums[threadindex]=partialsums[threadindex+sliceindex]
6: end if
7: sliceindex=sliceindex/2
8: synchronize threads
9: end while

So in the end partialsums[0] will have the resultant sum.

The matrix vector products all involve highly structured sparse matrices and

hence can be computed by just a few multiplication and addition operations per

element, as opposed to dense matrix multiplication.

For example L = Adiag(d)AT as discussed before has at most 5 non-zero entries

per row. 1 corresponding to the diagonal entry and 4 off-diagonal entries corre-

sponding to the 4 neighbours of the node. Referring to figure 6.1 the matrix vector

multiplication boils down to the following computation being done on each node

(A diag(d)ATν)i = (ws+wt+wN +wS+wE+wW )νi−(wNνN +wSνS+wEνE+wWνW )

(6.1)
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Figure 6.1: Computation of ADATν for the grid graphs using only 6 operations per
element
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where the ws are the current weights of the edges (as described earlier in Section

5.1 the entries in d can be viewed as weights of the edges of the graph that are

dependent on the current node labelling. ). As can be seen from the equation, it

basically involves communication between the current node and its four neighbours

and hence can be parallelized easily.

In the next section we discuss our implementation on one of the possible parallel

architectures - the NVIDIA 8800. As noted before, the algorithm is parallelizable

and is implementable on a host of other architectures as well and it will be interesting

to see how the evolution of hardware affects the performance of this algorithm.

6.2 Implementation on the NVIDIA 8800

In the previous section we gave a generic description of how our algorithm can be

parallelized. This subsection presents one such parallel implementation, on a GeForce

8800 GPU from NVIDIA.

With the increasing programmability of graphics processing units (GPUs), re-

searchers were able to use them for more than the computations in graphics for which

they were designed. In the past, this was done using shader languages like Cg [27]

which is NVIDIA’s shader language, GLSL [77] which works alongside OpenGL, and

HLSL [38] which works with DirectX on Windows systems. With the GeForce 8800

though, NVIDIA introduces a new programming framework called CUDA (Compute

Unified Device Architecture), which makes general purpose programming a lot easier

by treating the GPU as a coprocessor and off-loading computations to the GPU in

a manner similar to multi-threaded function calls.

To understand how the GPU works, it is insightful to look at the modern day

hardware organization of the GPU as shown in 6.2. There are a number of multi-

processors, each of which contains some amount of processors. Each processor has its

own set of registers, in a manner very similar to a CPU. However the shared memory
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which acts a lot like the CPU data cache is shared across all processors within one

multiprocessor and data can be accessed in parallel. Accessing data from the shared

memory is a lot faster than the device memory. Device memory is basically the

DRAM corresponding to the GPU and is accessible to all the multiprocessors.

When the GPU is being used for general purpose computations, it is essentially

viewed as a co-processor to the CPU. Those instructions that fit into the SIMD

(Single Instruction Multiple Data) model get off-loaded onto the GPU. Basically, a

portion of the application that is run many times but independently on different data

is compiled to the instruction set of the GPU and sent to it for execution. The task to

be performed on the GPU is divided up among the multiprocessors and at any given

clock cycle, each processor of the multiprocessor is performing the same instruction,

but on different data. Effective programming requires maximum utilization of the

shared memory as opposed to the device memory.

We now discuss some of the applications that have been ported successfully onto

the GPU.

6.2.1 A survey of General Purpose Computing on the GPU

A whole community of research has evolved around the field of general purpose

computing on the GPU and an excellent survey paper on the topic can be found

in Owens et al [73]. The website http://www.gpgpu.org is a great resource for the

latest happenings in the area.

As noted earlier, applications that follow the SIMD paradigm can be performed

very fast on the GPU. As a trivial example, adding two matrices simply involves

performing the same add operation on multiple data pairs consisting of an element

of the first matrix and the corresponding element from the second matrix. Not all

operations are that easily translated into the SIMD paradigm though and the skill in

GPGPU lies mainly in converting traditional/CPU based algorithms into a possibly

new algorithm that is more favourably executed on the GPU. An example of this is
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Figure 6.2: General hardware organization in the modern day GPU. Figure courtesy
of the CUDA programming guide.
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sorting. While on the CPU one is likely to use quicksort or mergesort, on the GPU

the favourable algorithm is bitonic sort [4].

One of the most popular sub-areas in GPGPU revolves around the idea that most

linear algebra operations can be performed much faster on the GPU than the CPU.

CUDA even has a separate library called CUDA-BLAS which is meant to handle

these operations. In the shader languages this has been handled by considering

a matrix as a two dimensional texture. Kruger and Westermann [61] and Bolz

et al [8] describe schemes of creating a library of linear algebra operations with

particular emphasis on solving large scale sparse systems of equations using methods

like Conjugate gradients. Our implementation is along very similar lines except that

we use the new CUDA language as opposed to a shader language. Also, since we

are interested in the specific kinds of matrices obtained during the course of solving

graph cuts on grid graphs, we are able to write far more specialized procedures for

certain operations. Goodnight et al [35] use the multigrid method on the GPU to

solve boundary value problems similar to the Poisson equation we discussed. This

is a hierarchical approach to solving BVPs.

In the field of Computer Vision the GPU has been used quite successfully for a

variety of traditional problems. One of the interesting projects is OpenVIDIA [28]

which aims to be the equivalent of OpenCV on the GPU. Stereo has been done

using dynamic programming in the work of Gong and Yang [34] and by using belief

propagation in Brunton et al [15] which implements the algorithm of Felzenzswalb

and Huttenlocher [26]. Background subtraction has been tackled on the GPU using

an extended collinearity criterion in the work by Griesser et al [39]. This algorithm

manages to do background subtraction at a fast rate of 4ms per frame in an image

sequence.
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Figure 6.3: Illustration of the multi-threaded organization inside a CUDA kernel.
Figure courtesy of the CUDA Programming Guide.

6.2.2 The 8800 and CUDA

CUDA enables the GPU to be programmed as a co-processor using a multi-threaded

approach. Both the CPU and the GPU maintain their own DRAM and one can copy

data from one to the other through optimized memcopy calls. Those instructions that

fit into the SIMD model get off-loaded onto the GPU. A portion of the application

that gets compiled into the instruction set of the GPU is called a kernel .

The threads that execute a kernel are organized into a grid of thread blocks as

shown in figure 6.3.

The memory model for this multi-threaded execution is shown in figure 6.4.
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Figure 6.4: Illustration of the underlying memory model in CUDA. Figure courtesy
of the CUDA Programming Guide.
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Threads within a block can cooperate by accessing the shared memory. To syn-

chronize threads within a block, synchronization points are specified by the sync-

threads() command. Threads in a block are suspended until all of them reach the

synchronization point. In the GeForce 8800 the maximum number of threads per

block is 512. However, the blocks are combined to form a grid as shown in the figure

and the maximum size of each dimension of the grid is much larger, 65535. This

comes at the cost of decreased thread cooperation since threads in different blocks

cannot communicate with each other. Hence, performance is affected by the choice

of grid and block sizes and the call to the kernel from the host has to specify both

these parameters.

In terms of the actual hardware the 8800 has 16 multiprocessors, each consisting

of 8 processors. A block is processed by only one multiprocessor and the shared

memory space is on chip and can be accessed very fast. While executing a kernel,

each block is split into SIMD groups of threads called warps each of which contains

the same number of threads. This warp size for the 8800 is 32. This warp is then

executed in a SIMD fashion by the multiprocessor.

The amount of shared memory available per multiprocessor is 16KB and the

total DRAM available is 768MB. The accesses to device memory are the expensive

operations and take about 200 to 300 clock cycles to execute.

6.2.3 CUDA implementation

Our implementation in CUDA basically involves breaking the algorithm down into

a few kernels. For ease of reference we again list the main algorithm along with the

conjugate gradient subroutine.

As stated before, the basic operations that we need are SAXPY, pointwise mul-

tiplication, computing the !1 norm of a vector, computing the minimum of a vector

and finally the matrix vector products ADAT x, Ag and AT x. The bottleneck step,
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Algorithm 9 Calculate min-cut: min
ν

‖diag(w)(ATν − c)‖1

1: choose t,µ
2: νi = si/(si + ti)
3: choose y such that y ≥ |ATν − c|
4: while change in !1 norm since last (outer) iteration above threshold1 do
5: while change in !1 norm since last (inner) iteration above threshold2 do
6: z = (ATν − c).
7: Compute d from di = 2/(yi + zi)2.
8: Compute g from gi = 2zi

y2
i −z2

i
+ 2yizi

y2
i +z2

i
(twi − 2yi

y2
i −z2

i
)

9: Solve (Adiag(d)AT )∆ν = −Ag to get ∆ν using Algorithm 10.

10: Compute ∆y from ∆yi = y2
i −z2

i

2(y2
i +z2

i )

(

−twi + 2yi

y2
i −z2

i
+ 4yizi(AT ∆ν)i

(y2
i −z2

i )2

)

11: If necessary, scale step by β so that ν + β∆ν, y + β∆y are feasible.
12: end while
13: t = µ ∗ t
14: end while

Algorithm 10 Solve Ax = b using Conjugate Gradients
1: x = x0

2: r = b− Ax0

3: p = r
4: ρ = rTr
5: while

√
ρ/||b|| > ε do

6: a = Ap
7: α = ρ/(aTp)
8: x = x + αp
9: r = r − αa

10: ρnew = rTr
11: p = r + (ρnew/ρ)p
12: ρ = ρnew
13: end while
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as mentioned before, is the conjugate gradient solution to the sparse system of equa-

tions. Our current implementation does a single conjugate gradient iteration on an

equation system involving 512× 512 = 262144 variables in 0.65 ms. In the following

we enumerate each of these kernels and point out which line numbers in the algo-

rithms require their usage. We also specify the grid and block sizes that we use for

our computation on images of size 512 × 512.

1. The matrix addition, pointwise multiplication and pointwise division opera-

tions that we see in lines 7,8 and 10 of Algorithm 9 are trivial kernels which

we perform by having each thread compute one element of the result. There is

one block for every row of the matrix and within each block there is one thread

for every column i.e. 512 blocks each containing 512 threads. The 3 SAXPY

operations in lines 8,9 and 11 of Algorithm 10 are done in exactly the same

manner. The kernel currently computes a single such operation for 512x512

matrices in about 88 µs.

2. The inner product operations that take place in lines 7 and 10 of Algorithm 10

involve a pointwise multiplication followed by a summation of all the elements.

In the CUDA implementation, if we want to sum up all the elements of a matrix

A we divide A up into a certain number of blocks. The kernel is divided into

blocks such that each block is responsible for taking one of these matrix blocks

and producing a single number which is the sum of all the elements of the

matrix block. Within each kernel block, we have the number of threads made

equal to the block width. Each of the threads firstly sums up all of the elements

down its column and then the threads cooperate among each other to find the

sum of these partial sums. For a 512x512 matrix we found dividing it into

blocks of 16x256 gave us the best speed. Summing up all the results produced

by the threads is done through a process of reduction as shown in Algorithm

8 in the previous section. partialsums will be used as a shared array and the
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threads within a block will be made to synchronize at step 8 of the algorithm

using syncthreads().

The process of computing the !1 norm of a vector, is similar, with the absolute

values of the elements being added. This operation is needed in lines 4 and 5

of Algorithm 9. While computing β, the step size, in line 11 of Algorithm 9, it

becomes necessary to compute the minimum element of a vector. For finding

the maximum or the minimum element of a matrix, the summation operation

in the procedure described above is just replaced by a comparison operation.

The kernel for the inner product operation currently computes the dot product

of two 512x512 length vectors in about 107 µs.

3. One of the crucial operations is the matrix-vector multiplication that is per-

formed within the conjugate gradient iteration (line 6 of Algorithm 10). Since

this operation is done on an average a 100 times, it becomes important to

speed it up. Currently our kernel computes the product for a 512x512 graph

in about 185 µs. Essentially all that needs to be done is shown in equation

6.1. To do this we employ a kernel that has each block computing a certain

number of rows of the result. The number of threads within each block is the

same as the number of columns in the matrix. Since the computation of each

element basically involves access to its 4 neighbours, there is information that

is read in during one element’s computation that can be used for it’s horizontal

neighbour’s computation. In the kernel therefore we load an entire row of p

into shared memory. In this manner, the caching effect of shared memory can

be used to speed things up.

In our implementation we have 512 threads per block and we make each block

compute 16 rows, which means that we have a total of 512/16=32 blocks.

4. We need to have a kernel to compute the matrix vector product Ag, which is

needed to compute the right hand side vector of the normal equations in line 9
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of Algorithm 9. A is the node-edge adjacency matrix and g is a vector of length

m. This can be computed by simply accessing the correct elements. g can be

divided into 4 parts corresponding to the s-links(gs), t-links(gt), horizontal(gh)

and vertical links(gv). Then each element of the result is computed by the

following basic computation.

result[i] = gs[i] − gt[i] + gh[i − 1] − gh[i] + gv[i − W ] − gv[i] (6.2)

where W is the width of the image.

Here we make each thread compute one element of the result by having a block

for each row and 512 threads for each block.

5. The matrix vector products AT ∗ ν and AT∆ν being computed in lines 3,6

and 10 of Algorithm 9 are computed by having one thread for each element

of x. Now AT can be divided into 4 parts corresponding to the s-links, the

τ -links, the horizontal links and the vertical links respectively. Each thread

computes 4 entries, one corresponding to each of these four parts. The entries

corresponding to the s and t parts are nothing but multiplication by the identity

matrix and the negative identity matrix and hence are computed trivially.

For the entries corresponding to the horizontal part we simply compute the

difference of the current entry and its horizontal neighbour. Similarly for the

ones corresponding to the vertical part, it is just the difference of the current

entry and its vertical neighbour.

Again this kernel uses a block for each row and 512 threads for each block.
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Chapter 7

Experimental Results using the

new Graph Cuts algorithm

This chapter shows results obtained using the new formulation of graph cuts on

experiments carried out on graphs derived from actual image processing problems in

order to determine how well the proposed scheme would work in practice. Since the

scheme essentially reduces the min-cut problem to the problem of solving a sequence

of sparse linear systems, one can gauge the computational effort required to solve

a given graph cut problem by recording the total number of conjugate gradient

iterations that are performed in the course of driving the system to convergence.

Three variants of the conjugate gradient method were used in these experiments, the

first variant employed the method without any preconditioning, the second made use

of the diagonal preconditioner (also known as the Jacobi preconditioner) described in

section 5.2.4 while the third used the preconditioning strategy described by Concus,

Golub and Meurant [19].

Also, the actual time taken by the CUDA implementation on the NVIDIA 8800

GPU is presented. Comparisons with Kolmogorov and Zabih’s implementation of

flow-based min cuts are also provided. While the two algorithms use two different

hardware components, we ran both on the same machine to offer some basis of
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comparison. The CUDA implementation execution times also compare favourably

with Dixit et al [23] who implemented the push-relabel algorithm on the GPU.

The proposed method was used for the purposes of image restoration and for

interactive foreground-background segmentation.

7.1 Image Restoration

The algorithm was applied to the image restoration problem described by Boykov

et al in [12]. The graph is formed using the energy function defined in Section

1.1. To reiterate, the data term is given by Dp(Lp) = min(|Lp − Ip|2, const) and

the smoothness term is given by V (Lp, Lq) = k ∗ min(k1, |Lp − Lq|), where Ip is the

intensity value at pixel p in the input image and Lp is the intensity value in the

proposed restoration result.

In the synthetic example shown in Figure 7.1 a black and white image is cor-

rupted by Gaussian noise. The proposed scheme required 237 CG iterations with no

preconditioner, 156 with the Jacobi preconditioner and 32 with the Concus,Golub

and Meurant preconditioner. The method took about 45ms using CUDA on the

GPU for an implementation that uses the Jacobi preconditioner.

7.2 Interactive foreground-background segmenta-

tion

In the interactive segmentation problem, the user provides some level of input for

the separation of foreground and background. While using energy minimization, the

data term is based upon the user input and the smoothness term tries to ensure

that two neighbouring pixels will only be put into different segments when there is a

significant intensity difference between them. This model has been used by Boykov

and Jolly [10] and Rother et al . [78]. Boykov and Jolly use a data term that is based

83



Figure 7.1: Example of image restoration using the proposed scheme.

on the histogram of gray level intensities sampled with the regions marked by the

user. Rother et al , in a method they call Grabcuts, use Gaussian Mixture Modeling

on the colours sampled with the user demarcated region. The smoothness term is

just an exponentially decaying function of intensity difference. Methods for learning

the parameters involved in this algorithm from image data have been investigated

by Blake et al [7]

Grady and Funka-Lea [36] use a random walker approach for the same problem.

In this approach a random walker starts off from a pixel that is not labeled by the

user and takes on the label of the first labeled pixel that it reaches. An interesting

aspect about this approach is that it ends up with equations involving the Laplacian

of the underlying graph, very similar to the system of equations that arise in the

unconstrained !1 norm approach proposed in this thesis.

In the system implemented in the thesis, given an image, the user initially marks

out some areas as foreground and background. Using the marked pixels, just like

Grabcuts, the parameters of two Gaussian Mixture Models are learnt, one each for

the foreground and background. A mixture of 5 Gaussians is used in both cases.
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Figure 7.2: Ayers rock(Foreground-Background segmentation)

Using these GMMs, the probability and hence the data term (negative log of the

probability) for each pixel being assigned to foreground or background can be deter-

mined. The internal edge weights for each pair of neighbouring pixels are provided by

an exponentially decaying function of pixel intensity difference. Only one iteration

of the GrabCuts procedure is performed.

The method discussed in the thesis was applied to the interactive foreground/background

segmentation problems shown in figures 7.2 through 7.9. All of the images in question

are 512 × 512.

In the remaining part of this section various aspects of the algorithm are analyzed

in greater detail.

Firstly experiments were conducted to determine the effects of preconditioning.

Table 7.1 shows the number of conjugate gradient iterations taken by each of the

three variants of preconditioning.

These results demonstrate that the preconditioning schemes are, in fact, quite

successful at accelerating the convergence of the conjugate gradient procedure in this

situation. The diagonal preconditioner reduces the number of iterations required by
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Figure 7.3: Humayun’s tomb(Foreground-Background segmentation)

Figure 7.4: Liberty Bell(Foreground-Background segmentation)

86



Figure 7.5: Footballer(Foreground-Background segmentation)

Figure 7.6: Family(Foreground-Background segmentation)
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Figure 7.7: Superman(Foreground-Background segmentation)

Figure 7.8: Actress(Foreground-Background segmentation)
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Figure 7.9: Giraffe(Foreground-Background segmentation)

Table 7.1: Number of iterations taken by the unbounded algorithm for separating
the foreground in each image used in this thesis, using different preconditioning
strategies

Image CG with Jacobi with preconditioner
name iters preconditioner in [19]

Ayers rock 411 74 19
Tomb 226 120 31

Liberty Bell 272 105 12
Footballer 379 90 25

Family 279 132 25
Superman 435 95 23
Actress 674 74 26
Giraffe 351 143 23
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Table 7.2: Number of Newton steps taken for the algorithm to converge on various
images

Image name Newton steps
Ayers rock 9

Tomb 10
Liberty Bell 8
Footballer 11

Family 6
Superman 8
Actress 14
Giraffe 6

a factor of 0.27 on average while the Concus and Golub preconditioner reduces that

number even further. The Concus and Golub precondtioner results in fewer itera-

tions but each iteration takes more time. MATLAB implementations of both Jacobi

preconditioners and the Concus and Golub variant indicate the Jacobi preconditioner

to be about 100 times faster.

In every case the implementation converged to an acceptable solution in fewer

than 15 newton steps as is shown in table 7.2. This is consistent with the kind of

performance that interior point methods exhibit on a wide variety of linear programs.

Figure 7.10 gives a comparison of the energy obtained by the combinatorial graph

cuts method and the energies obtained during the process of using the method at

the end of each Newton step.

To analyze the computational effort involved in this algorithm, Table 7.3 shows

the total number of floating point operations required to solve each of the segmen-

tation problems using the diagonal preconditioner.

Experiments were also carried out to gauge how the computational effort required

to compute the segmentation varied with the size of the input image. Table 7.4 shows

how the number of conjugate gradient iterations changed as the scheme was applied

to scaled versions of a given image. The diagonal preconditioner was used in this
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Energy at the end of each newton step
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Figure 7.10: Energy value at the end of each Newton step. It can be seen that the
energy converges towards the value obtained by combinatorial graph cuts.

Table 7.3: Total number of floating point operations needed for foreground extrac-
tion.

Image name Floating point operations (x 109)
Ayers rock 0.74

Tomb 1.04
Liberty Bell 0.93
Footballer 0.87

Family 0.90
Superman 0.87
Actress 0.87
Giraffe 0.94
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Table 7.4: Variation of the number of Conjugate Gradient iterations with image size.
Image size CG iters

128x128 86
256x256 90
512x512 90

1024x1024 151

Table 7.5: Parameters used in the foreground-background experiments
Image name t0 µ threshold1 threshold2

Ayers rock 1 2 1 1
Tomb 1 2 1 1

Liberty bell 1000 10 2 5
Footballer 1 2 1 1

Family 10 2 1 1
Superman 10 2 1 1
Actress 1 2 1 1
Giraffe 10 2 1 1

set of experiments. While the total number of conjugate gradient iterations seem

to be about the same (apart from the 1024x1024 image), the computational effort

required to perform a single conjugate gradient iteration will increase linearly with

the number of pixels in the image as we will see in Section 7.2.1.

In table 7.5 we list the parameters used in our algorithm for these various im-

ages. These parameters were hand picked to get the least possible conjugate gradient

iterations. The parameters to be chosen are the initial t value(t0), µ and the two

convergence thresholds for the inner and outer iterations in algorithm 9. The pa-

rameters are around the same for most of the images apart from the liberty bell

image.

Figure 7.11 shows how the !1 norm reduces with the number of Newton steps

for the superman image. It is almost always the case that the initial Newton steps

move the solution close to the optimal solution and the last steps are responsible
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Figure 7.11: The decrease of the !1 norm with each Newton step(for the superman
image). The initial steps result in a more dramatic decrease that the later steps.

for correcting fewer pixel labels (such as those around the foreground-background

edges) and hence are not changing the !1 norm by much. Therefore in terms of

the reduction of !1 norm one observes diminishing returns as the number of Newton

steps increase.

These later Newton steps also usually take up more conjugate gradient iterations.

Table 7.6 indicates this for the superman image.

In terms of the quality of the results, the initial Newton steps drive the solution

close to the optimal and greater effort is spent around places such as the edges.

To illustrate this, Figure 7.12 shows the results at different Newton steps for the

superman image.

From Figure 7.12 and Table 7.6 one can see that the final 42 conjugate gradient

iterations are not contributing much in terms of the quality of the end result. There-

fore, one can imagine an early termination of the algorithm without significant loss

in quality of the result.
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(a) start solution (b) after 6 newton steps

(c) after 7 newton steps (d) final result

Figure 7.12: The various stages of the graph cuts algorithm on the superman image
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Table 7.6: Number of conjugate gradient iterations for each Newton step in the
superman image.

t Newton step number CG iters Cumulative CG its
1 1 5 5
1 2 5 10
1 3 5 15
1 4 5 20
1 5 8 28
1 6 19 47
10 7 6 53
10 8 15 68
100 9 8 76
1000 10 19 95

7.2.1 Results from the CUDA implementation

The proposed unconstrained scheme from Algorithm 6 was implemented on an

NVIDIA GeForce 8800 GTX GPU using NVIDIA’s newly released Compute Unified

Device Architecture (CUDA). The implementation was applied to the segmenta-

tion problems shown in Figures 7.2 through 7.9 and the timings achieved on these

512x512 problems are summarized in Table 7.7. For this implementation, the un-

bounded version of the algorithm was used with the Jacobi preconditioner to solve

for the equation systems.

For purposes of comparison, we also applied the flow based graph cut method

proposed by Boykov and Kolmogorov [11] to the same problems and recorded the

timings achieved with a 2.66 GHz Intel Core 2 Duo processor with a 4MB cache.

Although the two implementations use different hardware, these experiments pro-

vide some basis for comparison as they were performed on the same machine. It

can be seen that both methods perform the segmentation in a small fraction of a

second and in most cases take around the same time. The results obtained with the

proposed interior point scheme also compare favourably to those obtained with the
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Table 7.7: Time taken (in milliseconds) to extract the foreground of images on the
GPU and using a flow based method on the CPU.

Image name Boykov (in ms) CUDA (in ms)
Ayers rock 60 62

Tomb 65 92
Liberty Bell 63 57
Footballer 62 58

Family 73 86
Superman 61 71
Actress 62 69
Giraffe 74 92

Table 7.8: Time taken for a single Conjugate gradient iteration on images of different
sizes

Image size CG iteration time(ms)
128x128 0.280
256x256 0.287
512x512 0.512

1024x1024 1.902

GPU scheme described in [23] which implements the push relabel method of com-

puting maximum flow. Their work was done on an ATI Radeon 9800 Pro card and

for the purposes of image denoising this implementation took around 3200 ms. It is

worth noting that graphics cards have undergone changes since [23] was published,

however we do not have any information on the running times on current hardware.

The bottleneck step is that of solving the system of normalization equations. The

time taken to perform a single conjugate gradient iteration for images of different

sizes is given in Table 7.8. As expected the computational effort increases linearly

with the number of pixels in the image except for very small images where over-

head costs seem to constitute a more significant fraction of the computation. This

implementation employed the Jacobi preconditioning procedure.
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7.2.2 Memory bound algorithms v/s compute bound algo-

rithms

Interestingly the GPU version of this algorithm is currently memory bound rather

than compute bound since this particular GPU offers a theoretical peak performance

of 330 GFLOPS. Using values from tables 7.3 and 7.7 our algorithm currently is run-

ning only at 16 GFLOPS. It is expected that further restructuring of the GPU code

to reduce memory traffic will significantly reduce the execution time. Similarly, as

the proposed approach is implemented on systems with greater memory bandwidth,

greater on-chip memory or larger numbers of processors its performance will scale

linearly.

To get an idea of the speeds that can practically be achieved on this GPU consider

the time taken by two simple operations, inner-products and SAXPY on 512 ×

512 matrices. Saxpy is performed at 88 µs and inner-products at 107 µs. Saxpy

involves 2 operations per element and hence the number of GFLOPS obtainable

here equals 512 ∗ 512 ∗ 2/88 = 6 GFLOPS. Therefore it can be seen how the latency

between the GPU Device Memory and the processors affect the performance even

in the case of simple operations. The ideal program therefore needs to pack a lot of

arithmetic operations into each kernel so that the DRAM latency will be hidden by

the computationally intensive operations being performed by the processors.

7.3 Potential further work on graph cuts

While this chapter has discussed the graph cut problem using the basic grid topology

where every pixel is connected to 4 of its neighbours, it is straightforward to extend

the analysis to handle the situation where each pixel has links to all 8 of its neighbours

or to the 3D grids encountered in medical imaging.

Coarse to fine and multigrid approaches are also natural candidates for further

investigation. The results obtained by solving the minimization problem on a coarser
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level could be used as a starting point for the optimization procedure on the finer

scale, hopefully with a concomitant decrease in the number of iterations required

to achieve convergence. Dynamic MRFs are an important topic of research since

they arise very naturally in problems such as video segmentation. Currently our

algorithm does not have a principled way of taking an initial solution and getting an

optimal solution in minimal time. Investigating this question should provide us with

an answer to solving dynamic MRFs, since the change in the graph from frame to

frame in a video sequence is not much and hence a good solution for the nth should

be a good solution for the (n + 1)th frame.

Another topic that deserves further attention is the issue of preconditioning

strategies. The experiments indicate that more sophisticated preconditioning strate-

gies such as those described in [19] can dramatically reduce the number of conjugate

gradient iterations required. As mentioned before, this particular preconditioner

does not fully exploit the parallelism on the NVIDIA 8800 due to the structural lim-

itations of this processor, however, the method is likely to work well on other parallel

systems such as the Cell processor. Here one would need to weigh the time required

to solve the preconditioner against the reduction in conjugate gradient iterations.
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Chapter 8

Formulating Stereo Matching as a

Linear Program

This chapter describes an approach to solving the stereo matching problem via a

novel method. The method proceeds by constructing a convex approximation to the

problem and solving this directly using interior point barrier method.

In particular through the convexification of the data term involved in stereo, a

convex objective function is created which can then be minimized using interior point

methods in a manner very similar to the graph cuts problem.

While the problem being tackled is stereo, the framework is general enough to

be extended to problems like motion and determination of parameters for warping,

which, like stereo are more suited to solution methodologies in a continuous domain.

This chapter introduces the stereo matching problem, discusses related work and

then shows one how to convert the problem into a linear program. Chapter 9 shows

how the interior point barrier method that was applied to the graph cuts problem

can be readily applied to the stereo LP with very similar equations. Finally chapter

10 provides results on the standard Middlebury data set.
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Figure 8.1: The Bumblebee stereohead from PointGrey

8.1 Introduction

Stereo matching is one of the classic problems in computer vision. It aims at finding

pixel correspondences across a pair of images taken of the same scene from different

locations. These two images are either obtained from a stereo head such as the

Bumblebee shown in Figure 8.1, or by using a single camera and displacing it from

one position to the other. In the most general case, the two positions could be

arbitrary, but for the purposes of this thesis proposal we will be dealing with pairs

of images from the Middlebury data set [81].

For any pair of images, it is possible to transform them so that the search for

correspondences is reduced to a 1-D search problem along the horizontal raster lines

of the images. This is known as rectification (this can be done quite compactly given

the camera projection matrices. See for example [29]). The pairs in the Middlebury

dataset are provided as rectified pairs.

Let us denote the left image as L and the right image as R. Then given a pixel

location in the left image (xL, yL), the corresponding pixel in the right image is to
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be found at some location (xR, yR), xR = xL − d, yR = yL where d is the disparity.

The aim is to accurately determine d for each pixel, thus creating what is called the

disparity map d(x, y).

Given two pixels that correspond, it is possible to triangulate the two matching

pixels to determine the location of the point in 3D space that got imaged to these

two pixels as described in most standard computer vision textbooks such as [41].

The main application of stereo therefore is to detect depth in the scene. This is used

for example in obstacle avoidance [16].

Like many other problems in the field, the stereo problem is often rephrased as

an optimization problem where the goal, in this case, is to minimize an objective

function which includes some terms that model the costs associated with matching

pixels at various disparities and others that seek to reward overall ‘smoothness’.

These optimization problems are often solved using discrete optimization tech-

niques such as belief propagation or graph cuts. This chapter seeks to demonstrate

that continuous convex optimization techniques can also be effectively employed in

this context. The original objective function is approximated by a convex variant

which can be tackled using interior point methods. One can exploit the structure

of the resulting problem to effectively minimize an objective function involving hun-

dreds of thousands of continuous variables in a manner very similar to the graph

cuts problem seen in the previous chapters.

The resulting approach has a number of useful features. Firstly it allows us to

handle problems, like stereo, where the decision variables are continuous without

requiring any intermediate quantization. Secondly, one can naturally incorporate

penalty terms involving more complex functions of the disparity values. This flexi-

bility is exploited by introducing a penalty term involving the Laplacian of the dis-

parity values which allows us to better model slanting surfaces. Thirdly the approach

allows the stereo problem to be reformulated as a sequence of convex optimization

problems which have the usual useful properties, such as a guarantee that any local
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minimum must be the global minimum.

8.2 Related Work

Scharstein and Szeliski have published an excellent taxonomy of stereo algorithms

in [80]. In this taxonomy, solution schemes can be divided into local methods where

individual pixels or pixel windows are matched across images and global methods

where a global energy function needs to be minimized.

Yoon and Kweon [99] introduce a new similarity measure that is based upon

the central assumption that a pixel in the left image and a pixel in the right image

that look alike and happen to be distinctive in each image, are more likely to be a

matched pair. Among local strategies this is the one that performs best.

Almost all of the top ranked algorithms on the Middlebury data set [81] are

global methods. Optimization methods that have been successfully applied to this

problem include dynamic programming, belief propagation and graph cuts.

The most successful dynamic programming method is that of Hirschmuller [43,

44]. In this work the energy function is optimized along 8 or 16 different directions

in what he terms a Semi Global Matching(SGM) method. Cues from segmentation

are used for handling untextured areas.

Many of the top ranked algorithms use belief propagation which is usually per-

formed using some variant of the method described in [26]. Sun et al [87] use a

symmetrical energy function which takes into account disparity maps as well as oc-

clusion maps from both images. Klaus et al [52] use oversegmentation and robust

plane fitting through the segments to come up with a set of candidate disparity

planes. Belief propagation is then used to solve an energy function on the segments.

An iterative algorithm using hierarchical belief propagation is proposed in Yang et

al [95] where the data term of the energy function is re-weighted in regions which

are occluded or unreliable.
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Utilization of graph cuts as an optimization technique can be seen for example

in Kolmogorov and Zabih [57].

To date linear programming has not been featured as a method for solving the

kinds of optimization problems commonly encountered in this context.

While linear programming has not been successfully applied to stereo previously,

it is worth noting that it has been applied to motion estimation [48, 5]. The work

by Jiang et al . [48] on matching feature points is similar in that the data term

associated with each pixel is approximated by a convex combination of points on the

lower convex hull of the match cost surface. However, their approach is formulated as

an optimization over the interpolating coefficients associated with these convex hull

points which is quite different from the approach described in this paper. Also their

method uses the simplex method for solving the LP while the approach described in

this paper employs an interior point solver which allows us to exploit the structure

of the problem more effectively.

The remainder of this chapter describes how solving the stereo matching problem

can be approximated as the solution to a huge linear program.

8.3 Formulation of the linear program

In this section the problem formulation will be presented in a 1 dimensional setting

(per scanline) for ease of explication. This formulation can easily be extended to

two dimensions by including both horizontal and vertical smoothing terms. All of

the results described in Chapter 10 were obtained by optimizing just such a ’two

dimensional’ global objective function over all of the pixel values.

The disparities along a scanline are represented by a vector d ∈ Rn where di

denotes the disparity associated with pixel i as shown in Figure 8.2. As is the case

with most energy minimization formulations, the objective function is expressed as

the sum of a data term, Edata, and a smoothness term. The smoothness term is in
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Figure 8.2: Solution of stereo matching along one scanline of the teddy image. The
dashed line shows ground truth disparities and the solid line shows the solution
obtained by the interior point method discussed in this thesis.
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turn divided into two components, Egrad and Elap which penalize the first and second

derivatives of the disparity function respectively.

E(d) =
W
∑

i=1

Edata(di) +
W−1
∑

i=1

Egrad(di, di+1) +
W−1
∑

i=2

Elap(di−1, di, di+1) (8.1)

The incorporation of a penalty on the second derivative allows us to express a

preference for piecewise linear disparity solutions which allow us to model slanted

surfaces in the scene. The addition of this Laplacian term in the energy function

is a significant difference from most energy minimization schemes which typically

consider only pairwise interactions between the pixels.

For the gradient based energy term a natural choice is simply the absolute dif-

ference |di − di+1|, but to allow for small changes in disparity we choose

Egrad(di, di+1) =







0 if |di − di+1| ≤ ε

wgi
(|di − di+1|− ε) otherwise

(8.2)

Where wgi
is a non-negative weight associated with the gradient at pixel i.

For the Laplacian based energy term we just use the discrete approximation of

the Laplacian.

Elap(di−1, di, di+1) = wli |di−1 − 2di − di+1| (8.3)

Again in a manner similar to the gradient term, wli represents the weight asso-

ciated with the Laplacian at pixel i.

These absolute value terms can be captured with linear inequalities by introduc-

ing auxiliary variables, ygi
and yli, which serve as proxies for these terms as described

in [9]. To capture the effect of Egrad(di, di+1) we introduce the following constraints
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ygi
≥ di − di+1 − ε

ygi
≥ di+1 − di − ε

0 ≤ ygi
≤ gMax (8.4)

Similarly the variables yl capture the effect of Elap(di−1, di, di+1)

yli ≥ −di−1 + 2di − di+1

yli ≥ di−1 − 2di + di+1

0 ≤ yli ≤ lMax (8.5)

The parameters gMax and lMax represent upper bounds on the values for the

gradient and Laplacian terms respectively. They can be derived from the range of

legal disparity values.

At this stage, the only component of the energy function that is not convex is

the data term. We address this issue in the following subsection.

8.3.1 Convex approximation of the data term

Conventionally in stereo the data term associated with assigning the label d to a

pixel (xL, yL) is given by some function of the intensity differences between a patch

around L(xL, yL) and a patch around R(xL − d, yL). Assume we have a discrete set

of potential disparity values dmin ≤ . . . ≤ dmax. Corresponding to each disparity

value we obtain a score that indicates the cost associated with that correspondence.

Given these scores, the disparity value that should be chosen based only on this

information is the one that provides the minimum score. Our aim is to lower bound

this score function with a continuous, convex function of the disparity.

To do this we construct a piecewise linear function in a manner similar to com-

puting the convex hull of the entries in the score array as shown in Figure 8.3. In
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Figure 8.3: The score function associated with one of the pixels in the Teddy data set
along with the corresponding piecewise linear convex approximation. In this case the
lower approximation captures the ambiguity associated with the multiple matches.
This ambiguity is later resolved because of the contributions of the smoothness terms.

situations where the pixel under consideration has a single well defined match in the

other image the convex approximation will capture that fact. In situations where

the pixel is not unique or where it has multiple possible matches the approxima-

tion will reflect that ambiguity which will ultimately be resolved by considering the

smoothness terms.

Note that we do not require the disparity values in the (disparity, score) pairs to

correspond to integral values. This allows us to easily incorporate subpixel disparity

scores directly in the score function.

This convex lower bound function associated with pixel i is modeled by introduc-

ing yet another auxiliary variable ymi
which is constrained to have a value greater

than all of the linear segments that comprise the lower bound. More specifically, if
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there are Si segments in the approximation of the score function for the ith pixel,

then we have the following constraints corresponding to the match variables.

ymi
≥ ajidi + bji, j ∈ {1, 2, . . . Si}

0 ≤ ymi
≤ yMaxi

(8.6)

where variables aji and bji represent the slope and intercept for the jth segment.

The data term Edata can now be written as a weighted sum of these ym score values.

Therefore the final formulation of the objective function can be written as follows:

E(d) =
W

∑

i=1

wmi
ymi

+
W−1
∑

i=1

wgi
ygi

+
W−2
∑

i=1

wliyli (8.7)

This objective function is then optimized under the matching constraints of 8.6,

the gradient constraints of 8.4 and the Laplacian constraints of 8.5.

We would, ideally, like to arrange matters such that the weights associated with

the variables, wmi
, wgi

, and wli, reflect the occlusion structure of the scene. More

specifically, for pixels that are half occluded the associated wmi
values should be

set to low values so that their match score is ignored in the overall optimization.

Similarly the weights associated with the gradient and Laplacian term should be large

everywhere except at occlusion boundaries and places where the disparity gradient

changes discontinuously. Section 9.1 discusses how these weights are estimated from

the available data.

8.4 !1 versus !2

It is important, especially in the context of stereo to understand why the !1 norm is

advantageous over the !2 norm when it comes to penalizing changes in disparity.

Assume optimization is being performed only over a scan-line, that is, consider

the problem to be one dimensional for the time being. We have 10 pixels x1, . . . , x10
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Table 8.1: Filling in unknown disparity values based on information from the ‘reli-
able’ pixels.

Pixel no: 1 2 3 4 5 6 7 8 9 10
Disparity 70 70 70 70 70 ? ? ? 80 80

Table 8.2: Solution 1 to the problem in table 8.1 of filling in unknown disparities -
An !1 norm based solution.

Pixel no: 1 2 3 4 5 6 7 8 9 10
Disparity 70 70 70 70 70 70 70 70 80 80

whose disparities have to be determined. Say we reliably determine that the disparity

of x1, . . . , x5 is 70 and the disparity of x9 and x10 is 80 as shown in table 8.1.

Now assuming that all the match weights and gradient weights are equal, consider

the two potential solutions in Tables 8.2 and 8.3.

If an !2 norm is used to penalize differences between neighbouring disparities, the

first solution will give rise to a penalty of 100. The second solution will result in a

penalty of only 3 × (2.5)2 = 18.75 and hence will be preferred. However, the actual

solution is more likely to be the one with the sudden jump in disparity as opposed to

the gradual disparity increase since it is likely that the disparities of 70 correspond

to one object and the disparities of 80 correspond to another object and therefore

there will be a sudden jump as we transition from one object to the other along the

scanline.

On the other hand, if the !1 norm is used, then both solutions will be penalized

Table 8.3: Solution 2 to the problem in table 8.1 of filling in unknown disparities -
An !2 norm based solution.

Pixel no: 1 2 3 4 5 6 7 8 9 10
Disparity 70 70 70 70 70 72.5 75 77.5 80 80
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equally. In this case, both will pay a penalty of 10. Therefore, unlike the !2 norm

there is no reason for the optimal solution to be biased towards gradual changes

in disparity over sharp changes in disparity. Since the sharp changes in disparity

are a more commonly occurring phenomena, usage of the !1 norm proves to be

advantageous.

The robustness of the !1 norm over the !2 norm is a well known property that has

been used in the domain of motion analysis in work by Ben-Ezra et al [5] which uses

the !1 norm as a measure of residual error for point-line correspondences. Again,

linear programming is used to solve this problem. L1 minimization has been used

to solve stereo problems using a PDE approach in work by Kumar et al [62]. The

smoothness term in the energy formulation for optical flow estimation in recent work

by Brox et al [14] makes use of a modified !1 minimization to robustly account for

discontinuities at object boundaries in the scene.
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Chapter 9

Solution of the stereo LP using

barrier method

This chapter describes how one can use the interior point barrier method described

in Chapter 4 to solve the stereo LP described in the previous chapter. Section 9.1

details the equations that come up as one uses this method and the second section

9.2 shows the kind of decisions that need to be made while solving stereo.

9.1 Using interior point method to solve the LP

The linear programming problem given in Equation 8.7 can be stated more compactly

as follows:

min wTx

st Ax ≤ b (9.1)

where x is a vector formed by concatenating all of the decision variables, x =
[

d ym yg yl

]T

, and w is the vector formed by the corresponding weights, w =
[

0 wm wg wl

]T

.
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b is a column vector that concatenates the intercepts of the line segments used

for the convexification, the bounds on disparities and the bounds on Laplacian and

gradient terms.

The matrix A concatenates all of the linear constraints and is given by

A =















































Am −Im 0 0

Bd 0 0 0

0 Bm 0 0

G 0 −I 0

−G 0 −I 0

0 0 Bg 0

L 0 0 −I

−L 0 0 −I

0 0 0 Bl















































(9.2)

where the Bd, Bm, Bg, Bl matrices correspond to the bounds on the d, ym, yg, yl

variables respectively.

The Am and Im matrices help to capture the constraints associated with the con-

vex lower bounds. Am captures the linear coefficients of the bounding line segments

and has the following structure:
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Am =

































































a11 0 · · · · · · 0

a21 0 · · · · · · 0
... 0 · · · · · · 0

aS11 0 · · · · · · 0

0 a12 0 · · · 0

0 a22 0 · · · 0

0
... 0 · · · 0

0 aS22 0 · · · 0

0 0
. . . . . . 0

0 · · · · · · 0 a1M

0 · · · · · · 0
...

0 · · · · · · 0 aSM M

































































(9.3)

Im is a sparse matrix with the same fill pattern as Am where the aij entries are

replaced with 1s.

G represents the gradient constraints

G =











1 −1 · · · 0

0
. . . . . .

...

0 0 1 −1











(9.4)

L represents the Laplacian constraints

L =











−1 2 −1 0 0

0
. . . . . . . . .

...

0 0 −1 2 −1











(9.5)

As shown in Chapter 4 the barrier method can be used to solve problems of this

form. Again we proceed by minimizing φ(x, t) = twTx −
m

∑

i=1

log(−(Ax − b)i) for

increasing values of t until convergence. At each value of t , the Newton step, needs

to be computed. This involves the solution of a system of linear equations involving
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the Hessian and the gradient of φ(x, t). The Hessian can be computed from the

following expression H = [AT diag(s−2)A] where s = b − Ax and s−2 denotes the

vector formed by inverting and squaring the elements of s. Similarly the gradient of

the φ(x, t) can be computed from the following expression :

g = −tw − AT s−1 (9.6)

Then the Newton step is computed by solving

[AT diag(s−2)A]δx = g (9.7)

Where δx = [δd δym δyg δyl]T . The vector g can be split into four sections corre-

sponding to the d, ym, yg and yl variables as follows: g = [ gd gm gg gl ]T Simi-

larly, divide the diagonal matrix, diag(s−2) into 9 blocks, D1, . . .D9, corresponding

to the block structure of the matrix A.

It can be shown that the Hessian matrix H = AT diag(s−2)A takes on the follow-

ing form: =
















Hd HT
m HT

g HT
l

Hm Dm 0 0

Hg 0 Dg 0

Hl 0 0 Dl

















(9.8)

where

Hd = AT
mD1Am + BT

d D2Bd + GT D+
g G + LT D+

l L

Hm = −AT
mD1Im

Hg = GD−
g

Hl = LD−
l (9.9)

The diagonal matrices D+
g , D−

g , D+
l , D−

l , Dg, Dl, Dm are given by the following

expressions.
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D+
g = D4 + D5 (9.10)

D+
l = D7 + D8 (9.11)

D−
g = D5 − D4 (9.12)

D−
l = D8 − D7 (9.13)

Dg = D+
g + BT

g D6Bg (9.14)

Dl = D+
l + BT

l D9Bl (9.15)

Dm = −IT
mD1Im + BT

mD3Bm (9.16)

At this point we observe that since the Dm, Dg and Dl matrices are all diagonal

we can readily solve for δym, δyg and δyl in terms of δd by computing the Schur

complement as follows: δym = D−1
m (gm − Hmδd), δyg = D−1

g (gg − Hgδd), δyl =

D−1
l (gl − Hlδd). Substituting these expressions back into the system yields the

following expression where all of the auxiliary variables have been elided.

(Hd − HT
mD−1

m Hm − HT
g D−1

g Hg − HT
l D−1

l Hl)δd

= (gd − HT
mD−1

m gm − HT
g D−1

g gg − HT
l D−1

l gl) (9.17)

This can be written more concisely as follows:

H ′
dδd = g′

d (9.18)

In short, computing the Newton Step boils down to solving the linear system

in Equation 9.18. Note that the size of this system depends only on the dimension

of the disparity vector, d. All of the auxiliary variables that were introduced have

been removed which means that the computational complexity of this key stage is

independent of the number of constraints that were used to construct the convex

approximation.
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The complete algorithm for solving the optimization problem is outlined in Al-

gorithm 11.

Algorithm 11 Calculate the optimal disparity(d) for the problem in 9.1

1: choose an initial set of disparities and ym, yg and yl

2: choose an initial t value and a µ value and set newton decrement = ∞
3: while t ≤tmax value do
4: while Newton decrement is greater than a threshold do
5: Compute the Hessian, H , from equation 9.8
6: Compute the gradient, g, from equation 9.6
7: Compute δd from equation 9.18
8: Use δd to obtain δym,δyg and δyl.
9: Compute Newton decrement = gT δx

10: Compute the step size β using line search
11: Update d, ym, yg, yl by βδd, βδym, βδyg and βδyl respectively.
12: end while
13: t = µ ∗ t
14: end while

9.1.1 Preconditioning strategies

Let us examine the structure of H ′
d. H ′

d contains scaled versions of GT G, LT L and

AT
mAm. AT

mAm is diagonal, GT G is tridiagonal and LT L is pentadiagonal. This

means that LT L is the dominant contributor to the sparsity structure of the matrix

in question. Therefore the main step of the algorithm is simply the solution of a

symmetric, positive definite pentadiagonal system.

As noted previously, the actual implementation of the algorithm involves smooth-

ness terms in both the horizontal and vertical directions. This results in block penta-

diagonal systems which have pentadiagonal blocks along the diagonal and diagonal

blocks on the off diagonal. Essentially, the H ′
d matrix associated with the two di-

mensional version of this formulation has the following structure:
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A1 BT
1 CT

1 0 0

B1
. . . . . . . . . 0

C1
. . . . . . . . . CT

n−2

0
. . . . . . . . . BT

n−1

0 0 Cn−2 Bn−1 An























(9.19)

where the Ai are pentadiagonal and the Bi and the Ci are diagonal.

As we have seen before in Chapter 5, such structured matrices are ideal candi-

dates for iterative solvers like conjugate gradients [33]. Also by performing incom-

plete Cholesky decomposition of these matrices in a manner similar to [19], good

preconditioning can be achieved which significantly reduces the number of conjugate

gradient iterations needed for convergence.

Let us try and first compute an exact Cholesky decomposition of a block penta-

diagonal matrix. The factors will have to be lower block tridiagonal and upper block

tridiagonal.























G1 0 0 0 0

F1 G2 0 0 0

E1 F2 G3 0 0

0 E2 F3 G4 0

0 0 E3 F4 G5













































GT
1 F T

1 ET
1 0 0

0 GT
2 F T

2 ET
2 0

0 0 GT
3 F T

3 ET
3

0 0 0 GT
4 F T

4

0 0 0 0 GT
5
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A1 BT
1 CT

1 0 0

B1 A2 BT
2 CT

2 0

C1 B2 A3 BT
3 CT

3

0 C2 B3 A4 BT
4

0 0 C3 B4 A5























(9.20)

Similar to the Concus and Golub preconditioner, the following set of equations

are obtained.
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G1G
T
1 ≡ Q1 = A1 (9.21)

P1 ≡ B1 (9.22)

F1 = P1G
−T
1 (9.23)

G2G
T
2 ≡ Q2 = A2 − F1F

T
1 (9.24)

E1 = C1G
−T
1 (9.25)

P2 = B2 − E1F
T
1 (9.26)

F2 = P2G
−T
2 (9.27)

G3G
T
3 ≡ Q3 = A3 − F2F

T
2 − E1E

T
1 (9.28)

The problem as in the case of the Cholesky decomposition of block tridiagonal

matrices seen in section 5.2.4 is that while Q1 is guaranteed to be pentadiagonal

and hence easily factorizable, the Qi, i ≥ 2 are not guaranteed to be structured in

any manner. Hence an approximation needs to be made so that each Qi has definite

structure in terms of the number of non-zero diagonals. This is accomplished by

simply limiting the number of non-zero diagonals of Qi that are retained at every

step. The larger the number of diagonals chosen, the higher the complexity of the

Cholesky factorization into Gi, but the better the pre-conditioning effect. The trade-

off, of course, is that more non-zero diagonals necessitates more storage. In practice

storing 10 non-zero diagonals seems to provide an appropriate tradeoff between the

effectiveness of the preconditioner and the storage footprint of the algorithm.

9.2 Stereo implementation

The first step in our stereo matching procedure is to compute a correlation volume

which encodes for each pixel the costs associated with all legal disparities. For

this purpose the Adaptive Matching Score method described by Yoon and Kweon

in [98] is employed. In this implementation 33x33 windows were used along with the
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following parameter values: γp = 36, γc = 7 and T = 40. Prior to computing the

support weights in each window, the color image was smoothed using a 5x5 median

filter to enhance color homogeneity while respecting image edges.

Once the match scores had been computed for all integer disparities, a quadratic

fit was used in the vicinity of local minima to establish subpixel offset and subpixel

score values. This resulted in a set of (disparity, score) values for each pixel where the

disparity values are not all integral. The convex approximation procedure described

in section 8.3.1 was then applied to the score function associated with every pixel to

produce a piecewise linear convex lower approximation for use in the optimization

procedure.

The structure of the constraint system associated with the LP is determined by

these convex approximations and the gradient and Laplacian equations which are

fixed. What remains then is to specify the weights associated with the match terms,

wm , the gradient terms, wg and the Laplacian terms, wl.

The match weights associated with each pixel should represent the degree of

confidence in that pixels match score. The reasoning here is that pixels that are

occluded or otherwise suspicious should have low wm values reflecting the fact that

their match costs should be devalued while the weights associated with pixels whose

disparities are more certain should be enhanced.

We begin by using the initial disparity estimates provided by the Yoon and Kweon

matcher to decide on which pixels appear reliable by using a simple left right check.

Additionally, we use the disparity discontinuities found in the right image to predict

occlusions in the left image and vice versa in a manner similar to the approach

described in Sun et al . [87]. The resulting match weights wm essentially represent

an approximation for the occluded regions in the image.

Figure 9.1 shows what these match weight images look like for various images.

The weights associated with the gradient and Laplacian term are computed by

considering the color differences between neighboring pixels. Similar weighting terms
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(a) tsukuba (b) venus

(c) teddy (d) cones

Figure 9.1: Match weights computed for the four images of the Middlebury dataset.
These weights represent an estimate for the occlusion regions in the image.
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are used in most modern stereo matching algorithms. In this particular case the

weight associated with the gradient term, ygi
, is computed as follows

wgi = sg exp(−(∆ci/σ)
2) (9.29)

Where ∆ci represents the Euclidean difference between the colors associated with

pixel i and pixel i + 1 in Lab space. The weight associated with the Laplacian term

yli is computed as follows:

wli = sl exp(−((∆ci−1/σ)
2 + (∆ci/σ)

2)/2) (9.30)

Note that the Laplacian weight considers the difference between pixel i and i− 1

as well as the difference between pixels i and i + 1. In this implementation the

parameter values were set as follows: sg = 1, sl = 2, σ = 6. Once again the image is

smoothed with a 5x5 median filter before the color differences, ∆ci, are computed.
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Chapter 10

Stereo results

The proposed method was applied to the Middlebury data set [81] and the results

are summarized in figures 10.1, 10.2, 10.4 and 10.3. Each of the figures show the left

image of the stereo pair, the ground truth disparity, the result of our implementation

of the Adaptive Support weight method and the result obtained after the proposed

optimization scheme has been applied.

Although the theory developed incorporates both penalties on the gradient and

the Laplacian, on the current Middlebury evaluation the performance with or without

the Laplacian term seems to be the same. This seems to indicate incorrent weighting

more that it seems to be a case of the unnecessary term being added. Further analysis

needs to be done to weight the gradient and Laplacian penalties appropriately.

Pixels that have errors exceeding a 0.5 pixel threshold are shown in figure 10.5.

Note that this is the strictest possible threshold in the Middlebury dataset.

The entire procedure was implemented in Matlab and the time required to per-

form the LP optimization was 8 minutes on a Intel Core 2Duo system with 2GB of

memory. During this procedure the system performed 40 Newton iterations where

each step took approximately 13.4 seconds. Again the vast majority of the compu-

tational effort is spent inverting the sparse system in equation 9.18. As is typical of

the barrier method, the system converges to an answer quite rapidly.
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(a) left image (b) ground truth

(c) adaptive score (d) our result

Figure 10.1: Result on the Tsukuba image. The figure shows the left image, the
ground truth, the result obtained using the adaptive score method and the final
result of the proposed method.
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(a) left image (b) ground truth

(c) adaptive score (d) our result

Figure 10.2: Result on the Venus image. The figure shows the left image, the ground
truth, the result obtained using the adaptive score method and the final result of
the proposed method.
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(a) left image (b) ground truth

(c) adaptive score (d) ground truth

Figure 10.3: Result on the Teddy image. The figure shows the left image, the ground
truth, the result obtained using the adaptive score method and the final result of
the proposed method.
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(a) left image (b) ground truth

(c) adaptive score (d) our result

Figure 10.4: Result on the Cones image. The figure shows the left image, the ground
truth, the result obtained using the adaptive score method and the final result of
the proposed method.
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(a) tsukuba (b) venus

(c) teddy (d) cones

Figure 10.5: Evaluation of the results obtained by the interior point algorithm -
pixels having a disparity greater than 0.5 away from ground truth are indicated.

127



Table 10.1: Ranking of the new algorithm in the Middlebury evaluation table with
a 0.5 pixel error threshold for the Tsukuba and Venus images.

Tsukuba Venus
Methods nonocc all disc nonocc all disc

SubPixDoubleBP [96] 8.78 9.45 14.9 0.72 1.12 5.24
C-SemiGlobal [44] 13.9 14.7 18.9 3.3 3.82 10.9
ImproveSubPix [31] 8.96 9.66 16.2 4.62 5.41 16.9
OverSegBP [101] 7.75 8.17 13.8 4.33 4.73 16.8
SemiGlob [43] 13.4 14.3 20.3 4.55 5.38 15.7
GenModel [86] 7.89 10.0 18.5 4.59 6.03 23.5

LP 18.7 19.3 20.8 3.0 3.71 18.8
LP with no lap 19.2 19.6 18.1 2.75 3.65 16.7

Adaptive Weight (our) 19.8 21.4 18.6 3.67 5.28 16.9

Table 10.1 shows the percentage of erroneous pixels in the final result with a

0.5 pixel threshold and compares it against other state of the art methods for the

Tsukuba and Venus images. It also shows shows how the proposed optimization

method improves upon a naive interpretation of the match scores returned by the

Yoon and Kweon matcher. Table 10.2 does the same for the Cones and Teddy

images.

10.1 Potential future work

There are a number of directions that could be taken to further improve the results

on the given data sets. The current system performs a single pass to arrive at the

final result. One can imagine a system that proceeds in several rounds where the

results of one round are used to refine the weights used in the next round.

Other methods make use of explicit color segmentations and plane fitting meth-

ods. These approaches are particularly effective on this data set where planar sur-

faces predominate. This type of analysis could easily be incorporated into the over-

all system. Explicit segmentations could also serve to improve performance on and
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Table 10.2: Ranking in the Middlebury evaluation table with a 0.5 pixel error thresh-
old for the Teddy and Cones images

Teddy Cones
Methods nonocc all disc nonocc all disc

SubPixDoubleBP [96] 10.1 16.4 21.3 8.49 14.7 16.5
C-SemiGlobal [44] 9.82 17.4 22.8 5.37 11.7 12.8
ImproveSubPix 11.0 17.8 24.1 4.90 10.8 12.2

OverSegBP [101] 13.2 19.3 27.5 6.53 12.6 14.0
SemiGlob [43] 11.0 18.5 26.1 4.93 12.5 13.5
GenModel [86] 14.8 22.8 31.8 10.2 20.2 19.0

LP 13.5 19.2 29.7 9.57 16.2 20.3
LP with no lap 13.1 18.3 28.2 9.60 17.2 19.1

Adaptive Weight (our) 14.0 22.9 28.0 9.24 19.5 18.3

around occlusion boundaries.

While the Matlab implementation does a reasonable job of performing a large

scale optimization on a quarter of a million continuous variables, we feel that there

is ample room for further improvement in this area. More specifically the structure

of equation 9.18 makes it particularly amenable to parallel solution methodologies

that could exploit the abundance of floating point performance afforded by GPUs

and other parallel architectures in a manner very similar to the graph cuts imple-

mentation.
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Chapter 11

Conclusion

This thesis has described mechanisms for tackling some energy minimization prob-

lems in computer vision by converting them into linear programs. The theory of

convex optimization was then used to find efficient solutions to the linear programs.

Vision problems have a lot of inherent structure to them and this can be exploited

to provide efficient algorithms.

A general methodology was put forth in this thesis which converts energy min-

imization problems into linear programs and then uses the interior point barrier

method to solve them. As a result of solving for the Newton steps in the barrier

method, the bottleneck step becomes the solution of large number of linear equa-

tions. The method is most applicable for the cases where these linear equations have

sparseness structure associated with them.

Two different problems were tackled using this methodology. The first problem

was the discrete graph cuts problem. Specifically we used the method to convert

this discrete problem to the continuous problem of unconstrained !1 norm minimiza-

tion. This was then used for the interactive foreground-background segmentation.

The procedure developed was highly parallelizable and the thesis described an im-

plementation on a GPU.

Importantly, although the formulation of the graph is slightly different from the
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Table 11.1: Single Precision Floating Point performance afforded by a range of cur-
rent CPUs and GPUs

Processor GFLOPS
Intel Core 2 Duo 8
NVIDIA 7800 35
ATLI R580 125

NVIDIA 8800 330
Sony/IBM Cell 205

one used in Kolmogorov and Zabih [58], it has the ability to deal with the exact

same set of energy functions. Therefore any energy minimization problem that is

solved via α expansion and hence via repeated computation of a min-cut can be

solved using the !1 norm minimization.

The main advantage of viewing graph cuts from this continuous perspective is

that it provides a more direct understanding of the intermediate stages in the cre-

ation of a mincut. It also manages to connect the problem to other areas of active

research. !1 norm minimization has been studied in other areas such as !1 regular-

ized logistic regression [54], robust subspace computation [51], motion analysis [5]

etc. The linear equations being solved are very similar to Poisson equations which

have been extensively studied in fields such as mechanical engineering.

Considering the remarkable advances in CPU and GPU performance that have

been enabled by decreasing feature size and increasing parallelism, the new graph

cuts algorithm should be able to exploit the upcoming hardware products. High

performance dual core processors are currently standard on desktops, quad-core and

teraflop systems from Intel are on the horizon; GPU performance is increasing even

faster. Current GFLOPS values of some of the popular parallel architectures are

shown in table 11.1. The proposed implementation scheme is designed to exploit the

performance afforded by these types of systems.

The other problem that was tackled was stereo matching. The cost function for
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stereo was approximated by a convex lower bound and once again a linear program

was formulated. Solution via the barrier method led to sparse and structured linear

equation systems.

There are two main observations underlying this approach. The first is that

the proposed convex functions provide a reasonable model of the true objective

function in most cases and effectively captures the ambiguities inherent in the data.

The second is that the Hessian matrices associated with the resulting optimization

problems have special structure which mirrors the clique structure of the underlying

objective function.

Stereo matching involves variables that are inherently continuous and the usage of

convex optimization provides one with the ability to directly incorporate this aspect

of the problem. While this thesis concentrates on the application of the convex

approximation to stereo, one can extend the idea to other problems that have similar

matching goals. Therefore problems such as motion, parametric warping etc could

also be handled.

The linear programs that are formed during the course of solving both the graph

cuts problem and stereo matching contain an extremely large number of variables

and constraints. They are beyond the reach of state of the art LP solvers since

they are unable to identify the connectivity structure present in the MRFs. To solve

them, one has to be able to exploit this structure. Therefore, a major contribution

of this thesis is the ability of the methods to transfer the connectivity structure of

an MRF into the bandedness of a sparse matrix. In essence, the crucial step of the

method always is the solution of sparse and structured linear equations.

In conclusion, the thesis provides a very effective technique for structured energy

minimization problems. The structure is exploited to efficiently solve the normal

equations that arise out of interior point barrier methods. This leads to algorithms

that are amenable to parallelism. In certain cases, the continuous representation

models the problem in a better manner. Overall, the area of energy minimization
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for large scale MRFs has been dominated by discrete optimization techniques. Using

the methods in this thesis, one has a plausible alternative that uses continuous

optimization.
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