
Graph Cuts via ‘1 Norm Minimization

Arvind Bhusnurmath, Student Member, IEEE, and
Camillo J. Taylor, Member, IEEE

Abstract—Graph cuts have become an increasingly important tool for solving a

number of energy minimization problems in computer vision and other fields. In

this paper, the graph cut problem is reformulated as an unconstrained ‘1 norm

minimization that can be solved effectively using interior point methods. This

reformulation exposes connections between graph cuts and other related

continuous optimization problems. Eventually, the problem is reduced to solving a

sequence of sparse linear systems involving the Laplacian of the underlying

graph. The proposed procedure exploits the structure of these linear systems in a

manner that is easily amenable to parallel implementations. Experimental results

obtained by applying the procedure to graphs derived from image processing

problems are provided.

Index Terms—Convex optimization, computer vision, graph-theoretic methods,

linear programming.

Ç

1 INTRODUCTION

GRAPH cuts have emerged as an important tool for solving a
number of energy minimization problems encountered in compu-
ter vision and machine learning. In their seminal paper,
Kolmogorov and Zabih [14] show that any energy function that
satisfies a property called regularity can be minimized by finding
the minimum cut of a graph whose edge weights are related to the
energy function. The energy functions that are encountered in
many computer vision problems satisfy this condition, which
helps to explain the popularity of the approach.

Problems like image restoration [4], segmentation [6], [18], etc.,

have been reduced to graph cut problems. The graph cut

methodology can also be applied to problems on 3D grids such as

surface reconstruction [19]. Fig. 1 shows the typical structure of the

resulting graphs. Here, the nodes s and t correspond to class labels,

while the interior nodes correspond to the pixels in the image.
It is well known that, like many combinatorial optimization

problems, the min-cut problem can be formulated as a linear

program (LP) [16]. This paper presents an analysis that shows that

this problem can be phrased as an unconstrained ‘1 norm

minimization. This analysis allows us to draw connections

between the graph cut problem and other ‘1 norm optimization

problems such as those described by Koh et al. [13]. In many

problems that are of interest to computer vision, the special

structure of the problem can be exploited very effectively in this

formulation.
Section 3 describes how the ‘1 norm minimization problem can

be tackled using an interior point method. Using this approach, the

original optimization problem is effectively reduced to the problem

of solving a sequence of sparse linear systems involving the graph

Laplacian. In this case, we can exploit the fact that these Laplacian

matrices have a regular structure and a number of useful numerical

properties which make them particularly amenable to solution by

methods such as conjugate gradients. In fact, linear systems

with this structure have been extensively studied in the context

of solving the Poisson equation and related partial differential

equations on 2D domains. The paper describes how techniques

developed for these problems can be adapted to solve graph cut

problems.
Importantly, the proposed optimization procedure can be

carried out using vector operations that are highly amenable to

parallelization. This means that the system is well suited to

implementation on modern multicore CPUs and GPUs.

1.1 Related Work

Graph cut problems are usually solved using the equivalent

maxflow formulation with Ford-Fulkerson or Push-relabel meth-

ods, which can be found in standard algorithms textbooks such as

Cormen et al. [8]. However, as previously noted, most of the

graphs that are encountered in vision problems tend to have an

extremely structured form based on the underlying pixel grid.

Boykov and Kolmogorov [5] exploit this fact and tune the Ford-

Fulkerson algorithm to obtain a better performance. The basic idea

is to employ two search trees, one emanating from the source and

one from the sink, which are updated over the course of the

algorithm. Parallel implementations using the push relabel

approach on a GPU have also been described by Dixit et al. [9].

Their implementation offered some advantages over standard

push relabel methods when the CPU and GPU were combined or

when the maxflow problem was approximated. In contrast, our

approach is based on a monotonically convergent continuous

optimization scheme that is executed entirely on the GPU,

avoiding costly GPU to CPU transfers.
Grady [11] formulates the interactive foreground background

segmentation problem using the random walker framework and

solves a system of equations involving the graph Laplacian that

are very similar to the ones obtained in this work. This method is

also implemented on the GPU in Grady et al. [12].
Sinop and Grady [20] have independently established connec-

tions between ‘1 norm and graph cuts. Their work shows that the

Random Walker algorithm and the graph cuts algorithm both

minimize energy. The random walker uses the ‘2 norm measure,

while graph cuts uses the ‘1 norm. This paper establishes the same

result through duality theory and also provides an implementation

of the ‘1 norm minimization, which is highly parallelizable.

2 THEORY

The goal of the min-cut problem is to divide the nodes in the graph

shown in Fig. 1 into two disjoint sets, one containing s and the

other containing t, such that the sum of the weights of the edges

connecting these two sets is minimized. In the sequel, n will

denote the number of interior nodes in the graph, while m will

represent the total number of edges. This min-cut problem is

typically solved by considering the associated max-flow problem.

That is, if we view the edges as pipes and the associated edge

weights as capacities, we can consider the problem of maximizing

the total flow between the source node, s, and the sink node, t,

subject to the constraint that each of the interior nodes is neither a

sink nor a source of flow. The max-flow problem can be expressed

as an LP, as shown in (1).
Let x 2 IRm denote a vector indicating the flow in each of the

edges of the graph. A positive entry in this flow vector

corresponds to a flow along the direction of the arrow associated

with that edge, while a negative value corresponds to a flow in the

opposite direction. In other words, the edges in our graph are

undirected and the associated arrows merely represent the

convention used to interpret the flow values.

1866 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 10, OCTOBER 2008

. The authors are with the GRASP Laboratory, University of Pennsylvania,
3330 Walnut St., Levine Hall, Philadelphia, PA 19104.
E-mail: bhusnur4@seas.upenn.edu, cjtaylor@cis.upenn.edu.

Manuscript received 10 Oct. 2007; revised 6 Feb. 2008; accepted 19 Mar.
2008; published online 31 Mar. 2008.
Recommended for acceptance by R. Zabih.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number
TPAMI-2007-10-0696.
Digital Object Identifier no. 10.1109/TPAMI.2008.82.

0162-8828/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

The goal of the optimization problem is to maximize the inner

product cTx, where c 2 IRm is a binary vector with þ1 entries for

all of the edges emanating from s and 0 entries elsewhere; this

inner product effectively computes the net flow out of node s.
In order to express the constraint that the net flow associated

with each of the interior nodes in the graph should be zero, we

introduce the node edge incidence matrix A 2 IRn�m whose rows

and columns correspond to interior nodes and graph edges,

respectively. Each column of this matrix corresponds to an edge in

the graph and will contain at most two nonzero entries, a þ1 entry

in the row corresponding to the node at the head of the arrow

associated with that edge and a �1 for the node at the other end of

the edge. Note that those columns corresponding to edges starting

at s or terminating at t will only contain a single nonzero entry

since the A matrix does not contain rows corresponding to the s

and t nodes.
The product Ax 2 IRn denotes the sum of the flows impinging

upon each of the interior nodes due to the flow assignment x. The

constraint Ax ¼ 0 reflects the fact that the net flow at each of the

interior nodes should be zero. The vector w 2 IRm represents the

nonnegative weights associated with each of the edges in the

graph. The inequalities �w � x and x � w reflect the capacity

constraints associated with each of the edges:

max
x

cTx

st Ax ¼ 0

�w � x � w:

ð1Þ

A careful reader will note that this formulation differs slightly

from the one presented by Kolmogorov and Zabih [14], which

makes use of a directed graph. However, it can be shown that this

formulation allows us to represent precisely the same set of

objective functions as the ones described in that work.
Instead of tackling the LP described in (1) directly, we proceed

by formulating the associated dual problem. More specifically, by

adding Lagrangians � corresponding to the capacity constraint

and � corresponding to the conservation constraint, we can

compute the optimal value of our original primal problem by

maximizing the associated Lagrangian dual function, which gives

rise to the following dual problem:

min
�;�

wT ð�þ þ ��Þ

st AT� � c ¼ ð�� � �þÞ
�þ � 0; �� � 0:

ð2Þ

It can be seen that, for a fixed value of �, the minimum value

that ð�� þ �þÞi attains is jðAT� � cÞij.
This property allows us to reformulate the optimization

problem in (2) as follows:

min
�

Xm
i¼1

wi ðAT� � cÞi
�� ��; ð3Þ

which can be rewritten as

min
�

diagðwÞðAT� � cÞ
�� ��

1
: ð4Þ

Notice that the resulting optimization problem is an uncon-

strained ‘1 norm minimization, where the decision variables

correspond to the Lagrange multipliers � 2 IRn. Here, the

symmetries of the undirected graph cut formulation allow us to

derive a result that is stronger than the LP formulations available

for the more general directed graph cut problem [8], [16]. The

unconstrained formulation in (4) is advantageous in many ways. It

underlines the connection between graph cuts and convex

optimization and allows us to employ continuous optimization

techniques that can exploit the structure of the problem.
It is possible to show that the �i variables in (4) will converge to

binary values without any external prodding. This is shown in the

Appendix. The fact that the node weights, �, will converge to

binary values at the global minimum is a useful property with

important practical consequences. First, it means that the

optimization procedure yields the node labels immediately,

without the need for an intervening flow interpretation. Second,

the fact that the weights tend toward discrete values makes it easy

to employ rounding as the barrier method approaches conver-

gence. It also reduces the numerical precision required to execute

the algorithm; in practice, one can carry out the procedure using a

single-precision floating-point arithmetic. Contrast this with the

problems one encounters in applying the barrier method to the

max flow LP formulation where numerical issues can make it

difficult to determine whether a given link is saturated with flow

or merely close to saturation [17].

3 IMPLEMENTATION

The resulting unconstrained ‘1 norm minimization problem

described in (4) can itself be formulated as an LP by

introducing an auxiliary variable y 2 IRm, where y � ðAT� �
cÞ and y � �ðAT� � cÞ, as described in [3]. The associated LP is

shown below:

min wTy

st
AT �I
�AT �I

� �
�

y

� �
�

c

�c

� �
:

ð5Þ

This problem can be solved using the interior point method

with logarithmic barrier potentials. In this approach, the original

LP is replaced with the following convex objective function:

�ð�;yÞ ¼ tðwTyÞ �
Xm
i¼1

logðyi � ziÞ �
Xm
i¼1

logðyi þ ziÞ; ð6Þ

where z ¼ ðAT� � cÞ. The scalar t is used to weigh the original

objective function against the barrier potentials associated with the

linear constraints.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 10, OCTOBER 2008 1867

Fig. 1. The figure shows the typical grid-like graph found in vision problems. The

dashed curve indicates the min cut.

This objective function is minimized using Newton’s method.

On each iteration of this procedure, a locally optimal step,

½�� �y�T , is computed by solving the following linear system:

ADþA
T AD�

D�A
T Dþ

� �
��
�y

� �
¼ � Aðd1 � d2Þ

tw� ðd1 þ d2Þ

� �
; ð7Þ

where d1i ¼ 1=ðyi � ziÞ, d2i ¼ 1=ðyi þ ziÞ, Dþ and D� are diagonal

matrices whose diagonal entries are computed as follows: Dþii ¼
ðd2

1i
þ d2

2i
Þ and D�ii ¼ ðd2

2i
� d2

1i
Þ. By applying block elimination to

factor out �y, the system can be further reduced to

AdiagðdÞAT
� �

�� ¼ �Ag; ð8Þ

where

di ¼ 2= y2
i þ z2

i

� �
ð9Þ

and

gi ¼
2zi

y2
i � z2

i

þ 2yizi
y2
i þ z2

i

twi �
2yi

y2
i � z2

i

� 	
: ð10Þ

Once �� has been obtained from (8), the �y component of the

step can be computed using the following expression:

�y ¼ D�1
þ ðd1 þ d2Þ � tw�D�AT��
� �

: ð11Þ

The entire interior point optimization procedure is outlined in

pseudocode as Algorithm 1. Let s denote the s-link weights and t

denote the t-link weights. The input to this procedure is the vector

of edge weights, w. As an initial solution to our interior point

method, we take the weight of the source edge that is incident on

the node and divide that by the sum of the source edge weight and

the sink edge weight, � ¼ s=ðsþ tÞ, which gives a purely data

driven labeling.

Algorithm 1. Solve min-cut: min� kdiagðwÞðAT� � cÞk1

1: choose t, � and set � ¼ s=ðsþ tÞ
2: choose y such that y � jAT� � cj
3: while change in ‘1 norm since last (outer) iteration

above threshold1 do

4: while change in ‘1 norm since last (inner) iteration

above threshold2 do

5: Compute d from (9)

6: Compute g from (10)

7: Solve ðAdiagðdÞAT Þ�� ¼ �Ag to get ��

8: Compute �y from (11)

9: If necessary, scale step by � so that � þ ���, yþ ��y

are feasible.

10: end while

11: t ¼ � � t
12: end while

Note that the principal step in this procedure is the solution of

the sparse linear system given in (8), which means that the original

‘1 norm minimization problem has been reduced to the problem of

solving a sequence of sparse linear systems.
At this point, we note that the matrix L ¼ ðAdiagðdÞAT Þ

corresponds to a weighted graph Laplacian [1], where the

vector d indicates the weights that are to be associated with each

of the edges of the graph. In fact, the matrix L corresponds to the

Graph Laplacian without the rows and columns associated with

the s and t nodes.
The matrix is symmetric by construction and, since the entries

in d are all positive, it is also positive definite. The entries along the

diagonal of this matrix Lii correspond to the sum of the weights of

the edges impinging on the corresponding interior node in the
graph—including the links to the s and t nodes. For the off
diagonal elements, Lij, it can be shown that �Lij will correspond
to the weight of the edge connecting nodes i and j. This value will
be zero if the two nodes are not connected. From these two
observations, we can conclude that the matrix will be strictly
diagonally dominant since the diagonal entries will include the
weights associated with the links to the s and t nodes, which do
not make an appearance in any of the off-diagonal entries:

L ¼

A1 B1

B1 A2 B2

B2 A3 B3

B3 A4 � � �
� � � � � �

0
BBBB@

1
CCCCA: ð12Þ

The resulting sparse, banded matrix reflects the topology of the
underlying grid and takes the block tridiagonal form shown in (12),
where the Ai submatrices are tridiagonal and the Bi submatrices
are diagonal. Matrices with this structure are frequently encoun-
tered in the process of solving partial differential equations, such
as Poisson’s equation, on two-dimensional domains.

The numerical properties of the matrix L make the resulting
linear system amenable to solution by the method of conjugate
gradients [10]. Iterative techniques are preferred over direct
techniques like Cholesky decomposition in this case because of
the size of the matrix and the storage that would be required for
the resulting factors.

A distinct advantage of the conjugate gradients technique is
that the steps in this algorithm can be readily parallelized. Each
conjugate gradient step involves one matrix vector multiplication,
two inner products, and three Scalar Alpha X Plus Y (SAXPY)
operations. All of these operations are amenable to implementa-
tion on the parallel architectures found on modern GPUs and
multicore processors, as shown in [2] and [15]. In this case, we can
exploit the fact that the matrix we seek to invert, L, has a regular
structure that further simplifies the matrix vector multiplication
operation required on each iteration of the conjugate gradients
procedure.

The conjugate gradients algorithm can be accelerated by
choosing an appropriate symmetric preconditioning matrix, C,
and then applying conjugate gradients to solve the system
ðCACÞðCC�1xÞ ¼ Cb, as described in [10]. The goal here is to
choose a matrix C in such a way that the preconditioned matrix
CAC 	 I þB, where B is a low rank matrix.

Concus et al. [7] describe preconditioning strategies that are
specifically designed for the types of matrices that we seek to
invert. Section 4 presents results that illustrate how effective these
strategies can be in improving the convergence rate of the solver.

Experiments were also carried out using a simpler precondi-
tioning strategy, where the matrix C is chosen as follows:
C ¼ diagðaÞ, ai ¼ 1=

ffiffiffiffiffiffiffi
Aii

p
. This is the Jacobi preconditioner. When

this preconditioner is applied to a diagonally dominant matrix,
such as L, it produces a normalized variant, where the diagonal
elements are all 1 and the off diagonal elements all have
magnitudes less than 1. Multiplying with this preconditioner does
not affect the fill pattern of the matrix.

Koh et al. [13] also describe how the preconditioned conjugate
gradients method can be used to solve ‘1 regularized logistic
regression problems. In this work, we are able to exploit the
structure of the Graph Laplacian matrix, L, for further speedups.

4 RESULTS

Experiments were carried out on graphs derived from actual
image processing problems in order to determine how well the
proposed scheme would work in practice. Since the scheme

1868 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 10, OCTOBER 2008

essentially reduces the mincut problem to the problem of solving a
sequence of sparse linear systems, one can gauge the computa-
tional effort required to resolve a given graph cut by recording the
total number of conjugate gradient iterations that are performed in
the course of driving the system to convergence. Three variants of
the scheme were used in these experiments; the first variant
employed the conjugate gradients method without any precondi-
tioning, the second made use of the Jacobi (diagonal) precondi-
tioner described in the previous section, while the third used the
preconditioning strategy described by Concus et al. [7].

The method was applied to the foreground/background
segmentation problems shown in Fig. 2. In these experiments,
the underlying weighted graphs were constructed using the
GrabCut algorithm described by Rother et al. [18]. All of the
images in question are 512� 512. Table 1 shows the number of

conjugate gradient iterations taken by each of the three variants of

the optimization procedure performing a single graph cut
operation.

These results demonstrate that the preconditioning schemes

are, in fact, quite successful at accelerating the convergence of the

conjugate gradients procedure in this situation. The diagonal

preconditioner reduces the number of iterations required by a
factor of 0.27 on average, while the Concus and Golub precondi-

tioner reduces the complexity even further.
In all cases, the implementation converges in less than

15 Newton steps, which is consistent with the observed perfor-

mance of interior point methods.
The proposed scheme was implemented on an Nvidia GeForce

8800 GTX GPU using Nvidia’s newly released Compute Unified
Device Architecture (CUDA). The Jacobi preconditioner was

employed because of its relative simplicity. The implementation

was applied to the segmentation problems shown in Fig. 2 and the
timings achieved on these 512� 512 problems are summarized in

Table 2. For purposes of comparison, we also applied the flow-

based graph cut method proposed by Boykov and Kolmogorov [5]

to the same problems and recorded the timings achieved with a
2.66 GHz Intel Core 2 Duo processor with a 4 Mbyte cache.

Although the two implementations use completely different

hardware, these experiments provide some basis for comparison.
It is instructive to note how close the algorithm gets to the final

solution within the first few Newton steps. Intermediate results are
shown in Fig. 4. Fig. 3 shows the reduction in the ‘1 norm as a

function of increasing Newton iterations. We tabulate the number

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 10, OCTOBER 2008 1869

Fig. 2. These segmentation examples were used to test the graph cut implementation described in the previous sections. The graph weights were computed using a

variant of the Grab Cut procedure described in [18].

TABLE 1
Iterations Taken for Separating the Foreground in Each Image in Fig. 2,

Using Different Preconditioning Strategies

of conjugate gradient iterations taken in each Newton step in

Table 3. It is clear from the figure and the table that this is an

algorithm with diminishing returns. The later stages take up more

iterations (hence, more time) and do not seem to be changing the

segmentation quality too much. This pattern was observed

consistently in all of our experiments. One can, therefore, obtain

acceptable segmentations in approximately half the time given in

Table 2 by exploiting this observation. Note that this approach to

approximation is justified by the monotonically decreasing ‘1

norm and differs from the push relabel approximation described

by Dixit et al. [9].
Interestingly, an analysis of the current GPU implementation

shows that it is currently memory bound rather than compute

bound. On this application, the 8800 GPU delivers an effective

performance of 16 GFlops, which is a small fraction of its theoretical

peak performance of 330 GFlops. This is due to the fact that the

underlying BLAS operations have low arithmetic intensity. On

future multicore systems with larger on-chip memories, improved

caching mechanisms, or greater memory bandwidth, the perfor-

mance of the scheme will improve proportionately.

5 CONCLUSION

This paper describes how the graph cut problems of interest in

computer vision can be rephrased as unconstrained ‘1 norm

minimization problems. This perspective allows us to recognize

connections between graph cut problems and other ‘1 norm

optimization problems.
In the process of solving these optimization problems with an

interior point method, one ends up solving a series of linear

systems similar to those encountered in solving Poisson’s equation

on a grid. We can exploit the regularity and structure of these

systems to develop optimized solvers that are amenable to

parallelization.

APPENDIX

CONVERGENCE OF THE NODE LABELS TO 0/1 VALUES

Proposition 1.1. The unconstrained Lagrangian variables � in the

formulation given in problem (4) converge to either 0 or 1.

Proof. We first note that the unconstrained ‘1 norm minimization
arose out of the dual problem derived from the linear
programming formulation of the maxflow problem. In the
optimal flow assignment, every vertex is either connected to s

or to t via a path consisting only of unsaturated edges.1 Let us
call such a path an unsaturated path.

The Langrangians � correspond to the labeling of the pixels.
Let us label the source as 1, while the label corresponding to the
sink is 0.

Now, consider what happens when an edge i, connecting
nodes j and k, is unsaturated in the final optimal flow
assignment. We apply the KKT conditions and, in particular,
complementary slackness [3] to the formulation in the primal-
dual pair of problems (1) and (2). The complementary slackness
conditions state that, when optimality is reached, the product of
the constraint and the Lagrange multiplier corresponding to
that constraint will be zero. Therefore, we get the following for
edge i:

ðx� wÞi 6¼ 0) ð�þÞi ¼ 0

ð�x� wÞi 6¼ 0) ð��Þi ¼ 0

) ðAT� � cÞi ¼ 0:

ð13Þ

This implies that if edge i is unsaturated, then the Lagrange
multipliers associated with it will be 0. Now, depending upon
the type of edge that i is, we have three cases:

1. ci ¼ 1 for an s edge. The corresponding row in AT has a
single þ1 entry and, therefore, � will have to be 1 for
the pixel that is being connected to the source by this
edge.

2. ci ¼ 0 for an internal edge. Here, it can be seen that
both pixels being connected by this edge will have to
have the same label.

3. ci ¼ 0 for a t edge. The row in AT has a single �1 entry
and, therefore, the pixel that is being connected to the
sink by this edge will have to be labeled 0.

Therefore, all nodes connected to s by an unsaturated edge
will be labeled 1 and this label propagates along every
unsaturated edge. This leads to the conclusion that all nodes
connected to s by an unsaturated path will be labeled 1 and all
nodes connected to t by an unsaturated path will be labeled 0.
When optimality is reached, every internal node has to belong
to one of these two sets and, hence, every internal node is either
going to be labeled 0 or 1. tu

1870 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 10, OCTOBER 2008

TABLE 2
Time Taken to Extract the Foreground of Images on the GPU

versus a Flow-Based Method on the CPU

Fig. 3. ‘1 norm value at the end of each Newton step for the superman image.

TABLE 3
Number of Conjugate Gradient Iterations for Each Newton Step

in the Superman Image

1. Here, we tacitly assume that the maxflow solution is unique.

REFERENCES

[1] N. Biggs, Algebraic Graph Theory, second ed. Cambridge Math. Library,
1993.

[2] J. Bolz, I. Farmer, E. Grinspun, and P. Schroder, “Sparse Matrix Solvers on
the GPU: Conjugate Gradients and Multigrid,” Proc. ACM SIGGRAPH ’03,
ACM Trans. Graphics, pp. 917-924, 2003.

[3] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge Univ.
Press, 2004.

[4] Y. Boykov, O. Veksler, and R. Zabih, “Fast Approximate Energy
Minimization via Graph Cuts,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 23, no. 11, pp. 1222-1239, Nov. 2001.

[5] Y. Boykov and V. Kolmogorov, “An Experimental Comparison of Min-
Cut/Max-Flow Algorithms for Energy Minimization in Vision,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 26, no. 9, pp. 1124-1137,
Sept. 2004.

[6] Y. Boykov and M. Jolly, “Interactive Graph Cuts for Optimal Boundary and
Region Segmentation of Objects in N-D Images,” Proc. Eighth Int’l Conf.
Computer Vision, pp. 105-112, 2001.

[7] P. Concus, G. Golub, and G. Meurant, “Block Preconditioning for the
Conjugate Gradient Method,” SIAM J. Scientific Computing, vol. 6, no. 1,
pp. 220-252, 1985.

[8] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to Algorithms,
second ed. MIT Press, 2002.

[9] N. Dixit, R. Keriven, and N. Paragios, “GPU-Cuts: Combinatorial
Optimisation, Graphic Processing Units and Adaptive Object Extraction,”
Laboratoire Centre Enseignement Recherche Traitement Information
Systèmes (CERTIS), Ecole Nationale des Ponts et Chaussees (ENPC),
Mar. 2005.

[10] G. Golub and C. Van Loan, Matrix Computations, third ed. Johns Hopkins
Univ. Press, 1998.

[11] L. Grady, “Random Walks for Image Segmentation,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 28, no. 11, pp. 1768-1783, Nov. 2006.

[12] L. Grady, T. Schiwetz, S. Aharon, and R. Westermann, “Random Walks for
Interactive Organ Segmentation in Two and Three Dimensions: Imple-
mentation and Validation,” Proc. Int’l Conf. Medical Image Computing and
Computer-Assisted Intervention, pp. 773-780, 2005.

[13] K. Koh, S. Kim, and S. Boyd, “An Interior-Point Method for Large-Scale l1
Regularized Logistic Regression,” J. Machine Learning Research, vol. 8,
pp. 1519-1555, July 2007.

[14] V. Kolmogorov and R. Zabih, “What Energy Functions Can Be Minimized
via Graph Cuts,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 26, no. 2, pp. 147-159, Feb. 2004.

[15] J. Kruger and R. Westermann, “Linear Algebra Operators for GPU
Implementation of Numerical Algorithms,” Proc. ACM SIGGRAPH ’03,
ACM Trans. Graphics, pp. 908-916, 2003.

[16] C. Papadimitriou and K. Steiglitz, Combinatorial Optimization—Algorithms
and Complexity. Prentice Hall, 1982.

[17] M. Resende and P. Pardalos, Advances in Linear and Integer Programming,
Oxford Lecture Series in Math. and Its Applications, 1996.

[18] C. Rother, V. Kolmogorov, and A. Blake, “Grabcut—Interactive Fore-
ground Extraction Using Iterated Graph Cuts,” Proc. ACM SIGGRAPH ’04,
ACM Trans. Graphics, pp. 309-314, 2004.

[19] S. Sinha and M. Pollefeys, “Multi-View Reconstruction Using Photo-
Consistency and Exact Silhouette Constraints: A Maximum Flow Formula-
tion,” Proc. 10th Int’l Conf. Computer Vision, pp. 349-356, 2005.

[20] A.K. Sinop and L. Grady, “A Seeded Image Segmentation Framework
Unifying Graph Cuts and Random Walker which Yields a New
Algorithm,” Proc. 11th Int’l Conf. Computer Vision, pp. 1-8, 2007.

. For more information on this or any other computing topic, please visit
our Digital Library at www.computer.org/publications/dlib.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 10, OCTOBER 2008 1871

Fig. 4. The various stages of the graph cuts algorithm on the superman image. (a) Initial. (b) After six Newton steps. (c) After seven Newton steps. (d) Final result.

