
This is page 367
Printer: Opaque this

14
Basics of Classical Lie Groups: The
Exponential Map, Lie Groups, and Lie
Algebras

Le rôle prépondérant de la théorie des groupes en mathématiques a
été longtemps insoupçonné; il y a quatre-vingts ans, le nom même de
groupe était ignoré. C’est Galois qui, le premier, en a eu une notion
claire, mais c’est seulement depuis les travaux de Klein et surtout de
Lie que l’on a commencé à voir qu’il n’y a presque aucune théorie
mathématique où cette notion ne tienne une place importante.

—Henri Poincaré

14.1 The Exponential Map

The inventors of Lie groups and Lie algebras (starting with Lie!) regarded
Lie groups as groups of symmetries of various topological or geometric
objects. Lie algebras were viewed as the “infinitesimal transformations”
associated with the symmetries in the Lie group. For example, the group
SO(n) of rotations is the group of orientation-preserving isometries of the
Euclidean space En. The Lie algebra so(n,R) consisting of real skew sym-
metric n × n matrices is the corresponding set of infinitesimal rotations.
The geometric link between a Lie group and its Lie algebra is the fact that
the Lie algebra can be viewed as the tangent space to the Lie group at the
identity. There is a map from the tangent space to the Lie group, called
the exponential map. The Lie algebra can be considered as a linearization
of the Lie group (near the identity element), and the exponential map pro-
vides the “delinearization,” i.e., it takes us back to the Lie group. These
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concepts have a concrete realization in the case of groups of matrices, and
for this reason we begin by studying the behavior of the exponential maps
on matrices.

We begin by defining the exponential map on matrices and proving some
of its properties. The exponential map allows us to “linearize” certain al-
gebraic properties of matrices. It also plays a crucial role in the theory of
linear differential equations with constant coefficients. But most of all, as
we mentioned earlier, it is a stepping stone to Lie groups and Lie algebras.
On the way to Lie algebras, we derive the classical “Rodrigues-like” formu-
lae for rotations and for rigid motions in R2 and R3. We give an elementary
proof that the exponential map is surjective for both SO(n) and SE(n),
not using any topology, just our normal forms for matrices.

The last section gives a quick introduction to Lie groups and Lie algebras.
We define manifolds as embedded submanifolds of RN , and we define linear
Lie groups, using the famous result of Cartan (apparently actually due to
Von Neumann) that a closed subgroup of GL(n,R) is a manifold, and
thus a Lie group. This way, Lie algebras can be “computed” using tangent
vectors to curves of the form t �→ A(t), where A(t) is a matrix. This section
is inspired from Artin [5], Chevalley [31], Marsden and Ratiu [120], Curtis
[38], Howe [91], and Sattinger and Weaver [147].

Given an n × n (real or complex) matrix A = (ai, j), we would like to
define the exponential eA of A as the sum of the series

eA = In +
∑
p≥1

Ap

p!
=
∑
p≥0

Ap

p!
,

letting A0 = In. The problem is, Why is it well-defined? The following
lemma shows that the above series is indeed absolutely convergent.

Lemma 14.1.1 Let A = (ai j) be a (real or complex) n×n matrix, and let

µ = max{|ai j | | 1 ≤ i, j ≤ n}.
If Ap = (ap

i j), then ∣∣ap
i j

∣∣ ≤ (nµ)p

for all i, j, 1 ≤ i, j ≤ n. As a consequence, the n2 series

∑
p≥0

ap
i j

p!

converge absolutely, and the matrix

eA =
∑
p≥0

Ap

p!

is a well-defined matrix.
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Proof . The proof is by induction on p. For p = 0, we have A0 = In,
(nµ)0 = 1, and the lemma is obvious. Assume that

|ap
i j | ≤ (nµ)p

for all i, j, 1 ≤ i, j ≤ n. Then we have

∣∣ap+1
i j

∣∣ =
∣∣∣∣∣

n∑
k=1

ap
i kak j

∣∣∣∣∣ ≤
n∑

k=1

∣∣ap
i k

∣∣∣∣ak j

∣∣ ≤ µ

n∑
k=1

∣∣ap
i k

∣∣ ≤ nµ(nµ)p = (nµ)p+1,

for all i, j, 1 ≤ i, j ≤ n. For every pair (i, j) such that 1 ≤ i, j ≤ n, since∣∣ap
i j

∣∣ ≤ (nµ)p,

the series ∑
p≥0

∣∣ap
i j

∣∣
p!

is bounded by the convergent series

enµ =
∑
p≥0

(nµ)p

p!
,

and thus it is absolutely convergent. This shows that

eA =
∑
k≥0

Ak

k!

is well defined.

It is instructive to compute explicitly the exponential of some simple
matrices. As an example, let us compute the exponential of the real skew
symmetric matrix

A =
(

0 −θ
θ 0

)
.

We need to find an inductive formula expressing the powers An. Let us
observe that(

0 −θ
θ 0

)
= θ

(
0 −1
1 0

)
and

(
0 −θ
θ 0

)2

= −θ2
(

1 0
0 1

)
.

Then, letting

J =
(

0 −1
1 0

)
,

we have

A4n = θ4nI2,

A4n+1 = θ4n+1J,
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A4n+2 = −θ4n+2I2,

A4n+3 = −θ4n+3J,

and so

eA = I2 +
θ

1!
J − θ2

2!
I2 − θ3

3!
J +

θ4

4!
I2 +

θ5

5!
J − θ6

6!
I2 − θ7

7!
J + · · · .

Rearranging the order of the terms, we have

eA =
(

1 − θ2

2!
+
θ4

4!
− θ6

6!
+ · · ·

)
I2 +

(
θ

1!
− θ3

3!
+
θ5

5!
− θ7

7!
+ · · ·

)
J.

We recognize the power series for cos θ and sin θ, and thus

eA = cos θI2 + sin θJ,

that is

eA =
(

cos θ − sin θ
sin θ cos θ

)
.

Thus, eA is a rotation matrix! This is a general fact. If A is a skew
symmetric matrix, then eA is an orthogonal matrix of determinant +1, i.e.,
a rotation matrix. Furthermore, every rotation matrix is of this form; i.e.,
the exponential map from the set of skew symmetric matrices to the set
of rotation matrices is surjective. In order to prove these facts, we need to
establish some properties of the exponential map. But before that, let us
work out another example showing that the exponential map is not always
surjective. Let us compute the exponential of a real 2× 2 matrix with null
trace of the form

A =
(
a b
c −a

)
.

We need to find an inductive formula expressing the powers An. Observe
that

A2 = (a2 + bc)I2 = −det(A)I2.

If a2 + bc = 0, we have

eA = I2 +A.

If a2 + bc < 0, let ω > 0 be such that ω2 = −(a2 + bc). Then, A2 = −ω2I2.
We get

eA = I2 +
A

1!
− ω2

2!
I2 − ω2

3!
A+

ω4

4!
I2 +

ω4

5!
A− ω6

6!
I2 − ω6

7!
A+ · · · .

Rearranging the order of the terms, we have

eA =
(

1 − ω2

2!
+
ω4

4!
− ω6

6!
+ · · ·

)
I2 +

1
ω

(
ω − ω3

3!
+
ω5

5!
− ω7

7!
+ · · ·

)
A.
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We recognize the power series for cosω and sinω, and thus

eA = cosω I2 +
sinω
ω

A.

If a2 + bc > 0, let ω > 0 be such that ω2 = (a2 + bc). Then A2 = ω2I2. We
get

eA = I2 +
A

1!
+
ω2

2!
I2 +

ω2

3!
A+

ω4

4!
I2 +

ω4

5!
A+

ω6

6!
I2 +

ω6

7!
A+ · · · .

Rearranging the order of the terms, we have

eA =
(

1 +
ω2

2!
+
ω4

4!
+
ω6

6!
+ · · ·

)
I2 +

1
ω

(
ω +

ω3

3!
+
ω5

5!
+
ω7

7!
+ · · ·

)
A.

If we recall that coshω =
(
eω + e−ω

)
/2 and sinhω =

(
eω − e−ω

)
/2, we

recognize the power series for coshω and sinhω, and thus

eA = coshω I2 +
sinhω
ω

A.

It immediately verified that in all cases,

det
(
eA
)

= 1.

This shows that the exponential map is a function from the set of 2 × 2
matrices with null trace to the set of 2 × 2 matrices with determinant 1.
This function is not surjective. Indeed, tr(eA) = 2 cosω when a2 + bc < 0,
tr(eA) = 2 coshω when a2 + bc > 0, and tr(eA) = 2 when a2 + bc = 0. As
a consequence, for any matrix A with null trace,

tr
(
eA
) ≥ −2,

and any matrix B with determinant 1 and whose trace is less than −2 is
not the exponential eA of any matrix A with null trace. For example,

B =
(
a 0
0 a−1

)
,

where a < 0 and a �= −1, is not the exponential of any matrix A with null
trace.

A fundamental property of the exponential map is that if λ1, . . . , λn are
the eigenvalues of A, then the eigenvalues of eA are eλ1 , . . . , eλn . For this
we need two lemmas.

Lemma 14.1.2 Let A and U be (real or complex) matrices, and assume
that U is invertible. Then

eUAU−1
= UeAU−1.

Proof . A trivial induction shows that

UApU−1 = (UAU−1)p,
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and thus

eUAU−1
=
∑
p≥0

(UAU−1)p

p!
=
∑
p≥0

UApU−1

p!

= U


∑

p≥0

Ap

p!


U−1 = UeAU−1.

Say that a square matrix A is an upper triangular matrix if it has the
following shape,



a1 1 a1 2 a1 3 . . . a1 n−1 a1 n

0 a2 2 a2 3 . . . a2 n−1 a2 n

0 0 a3 3 . . . a3 n−1 a3 n

...
...

...
. . .

...
...

0 0 0 . . . an−1 n−1 an−1 n

0 0 0 . . . 0 an n


 ,

i.e., ai j = 0 whenever j < i, 1 ≤ i, j ≤ n.

Lemma 14.1.3 Given any complex n× n matrix A, there is an invertible
matrix P and an upper triangular matrix T such that

A = PTP−1.

Proof . We prove by induction on n that if f : Cn → Cn is a linear map,
then there is a basis (u1, . . . , un) with respect to which f is represented
by an upper triangular matrix. For n = 1 the result is obvious. If n > 1,
since C is algebraically closed, f has some eigenvalue λ1 ∈ C, and let u1

be an eigenvector for λ1. We can find n − 1 vectors (v2, . . . , vn) such that
(u1, v2, . . . , vn) is a basis of Cn, and let W be the subspace of dimension
n− 1 spanned by (v2, . . . , vn). In the basis (u1, v2 . . . , vn), the matrix of f
is of the form 


a1 1 a1 2 . . . a1 n

0 a2 2 . . . a2 n
...

...
. . .

...
0 an 2 . . . an n


 ,

since its first column contains the coordinates of λ1u1 over the basis (u1, v2,
. . . , vn). Letting p: Cn → W be the projection defined such that p(u1) = 0
and p(vi) = vi when 2 ≤ i ≤ n, the linear map g:W → W defined as the
restriction of p ◦ f to W is represented by the (n − 1) × (n − 1) matrix
(ai j)2≤i,j≤n over the basis (v2, . . . , vn). By the induction hypothesis, there
is a basis (u2, . . . , un) ofW such that g is represented by an upper triangular
matrix (bi j)1≤i,j≤n−1.
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However,

Cn = Cu1 ⊕W,

and thus (u1, . . . , un) is a basis for Cn. Since p is the projection from
Cn = Cu1 ⊕W onto W and g:W →W is the restriction of p ◦ f to W , we
have

f(u1) = λ1u1

and

f(ui+1) = a1 iu1 +
n−1∑
j=1

bi juj+1

for some a1 i ∈ C, when 1 ≤ i ≤ n − 1. But then the matrix of f with
respect to (u1, . . . , un) is upper triangular. Thus, there is a change of basis
matrix P such that A = PTP−1 where T is upper triangular.

Remark: If E is a Hermitian space, the proof of Lemma 14.1.3 can be
easily adapted to prove that there is an orthonormal basis (u1, . . . , un) with
respect to which the matrix of f is upper triangular. In terms of matrices,
this means that there is a unitary matrix U and an upper triangular matrix
T such that A = UTU∗. This is usually known as Schur’s lemma. Using
this result, we can immediately rederive the fact that if A is a Hermitian
matrix, then there is a unitary matrix U and a real diagonal matrix D such
that A = UDU∗.

If A = PTP−1 where T is upper triangular, note that the diagonal entries
on T are the eigenvalues λ1, . . . , λn of A. Indeed, A and T have the same
characteristic polynomial. This is because if A and B are any two matrices
such that A = PBP−1, then

det(A− λ I) = det(PBP−1 − λP IP−1),
= det(P (B − λ I)P−1),
= det(P ) det(B − λ I) det(P−1),
= det(P ) det(B − λ I) det(P )−1,

= det(B − λ I).

Furthermore, it is well known that the determinant of a matrix of the form


λ1 − λ a1 2 a1 3 . . . a1 n−1 a1 n

0 λ2 − λ a2 3 . . . a2 n−1 a2 n

0 0 λ3 − λ . . . a3 n−1 a3 n

...
...

...
. . .

...
...

0 0 0 . . . λn−1 − λ an−1 n

0 0 0 . . . 0 λn − λ



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is (λ1 − λ) · · · (λn − λ), and thus the eigenvalues of A = PTP−1 are the
diagonal entries of T . We use this property to prove the following lemma.

Lemma 14.1.4 Given any complex n× n matrix A, if λ1, . . . , λn are the
eigenvalues of A, then eλ1 , . . . , eλn are the eigenvalues of eA. Furthermore,
if u is an eigenvector of A for λi, then u is an eigenvector of eA for eλi .

Proof . By Lemma 14.1.3 there is an invertible matrix P and an upper
triangular matrix T such that

A = PTP−1.

By Lemma 14.1.2,

ePTP−1
= PeTP−1.

However, we showed that A and T have the same eigenvalues, which are
the diagonal entries λ1, . . . , λn of T , and eA = ePTP−1

= PeTP−1 and eT

have the same eigenvalues, which are the diagonal entries of eT . Clearly,
the diagonal entries of eT are eλ1 , . . . , eλn . Now, if u is an eigenvector of A
for the eigenvalue λ, a simple induction shows that u is an eigenvector of
An for the eigenvalue λn, from which is follows that u is an eigenvector of
eA for eλ.

As a consequence, we can show that

det(eA) = etr(A),

where tr(A) is the trace of A, i.e., the sum a1 1+· · ·+an n of its diagonal en-
tries, which is also equal to the sum of the eigenvalues of A. This is because
the determinant of a matrix is equal to the product of its eigenvalues, and
if λ1, . . . , λn are the eigenvalues of A, then by Lemma 14.1.4, eλ1 , . . . , eλn

are the eigenvalues of eA, and thus

det
(
eA
)

= eλ1 · · · eλn = eλ1+···+λn = etr(A).

This shows that eA is always an invertible matrix, since ez is never null for
every z ∈ C. In fact, the inverse of eA is e−A, but we need to prove another
lemma. This is because it is generally not true that

eA+B = eAeB ,

unless A and B commute, i.e., AB = BA. We need to prove this last fact.

Lemma 14.1.5 Given any two complex n×n matrices A,B, if AB = BA,
then

eA+B = eAeB .

Proof . Since AB = BA, we can expand (A + B)p using the binomial
formula:

(A+B)p =
p∑

k=0

(
p
k

)
AkBp−k,
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and thus

1
p!

(A+B)p =
p∑

k=0

AkBp−k

k!(p− k)!
.

Note that for any integer N ≥ 0, we can write

2N∑
p=0

1
p!

(A+B)p =
2N∑
p=0

p∑
k=0

AkBp−k

k!(p− k)!

=

(
N∑

p=0

Ap

p!

)(
N∑

p=0

Bp

p!

)
+

∑
max(k,l) > N

k+l≤ 2N

Ak

k!
Bl

l!
,

where there are N(N + 1) pairs (k, l) in the second term. Letting

‖A‖ = max{|ai j | | 1 ≤ i, j ≤ n}, ‖B‖ = max{|bi j | | 1 ≤ i, j ≤ n},
and µ = max(‖A‖, ‖B‖), note that for every entry ci j in

(
Ak/k!

) (
Bl/l!

)
we have

|ci j | ≤ n
(nµ)k

k!
(nµ)l

l!
≤ (n2µ)2N

N !
.

As a consequence, the absolute value of every entry in

∑
max(k,l) > N

k+l≤ 2N

Ak

k!
Bl

l!

is bounded by

N(N + 1)
(n2µ)2N

N !
,

which goes to 0 as N �→ ∞. From this, it immediately follows that

eA+B = eAeB .

Now, using Lemma 14.1.5, since A and −A commute, we have

eAe−A = eA+−A = e0n = In,

which shows that the inverse of eA is e−A.
We will now use the properties of the exponential that we have just

established to show how various matrices can be represented as exponentials
of other matrices.
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14.2 The Lie Groups GL(n, R), SL(n, R), O(n),
SO(n), the Lie Algebras gl(n, R), sl(n, R),
o(n), so(n), and the Exponential Map

First, we recall some basic facts and definitions. The set of real invertible
n× n matrices forms a group under multiplication, denoted by GL(n,R).
The subset of GL(n,R) consisting of those matrices having determinant
+1 is a subgroup of GL(n,R), denoted by SL(n,R). It is also easy to
check that the set of real n × n orthogonal matrices forms a group under
multiplication, denoted by O(n). The subset of O(n) consisting of those
matrices having determinant +1 is a subgroup of O(n), denoted by SO(n).
We will also call matrices in SO(n) rotation matrices. Staying with easy
things, we can check that the set of real n×n matrices with null trace forms
a vector space under addition, and similarly for the set of skew symmetric
matrices.

Definition 14.2.1 The group GL(n,R) is called the general linear group,
and its subgroup SL(n,R) is called the special linear group. The group O(n)
of orthogonal matrices is called the orthogonal group, and its subgroup
SO(n) is called the special orthogonal group (or group of rotations). The
vector space of real n × n matrices with null trace is denoted by sl(n,R),
and the vector space of real n× n skew symmetric matrices is denoted by
so(n).

Remark: The notation sl(n,R) and so(n) is rather strange and deserves
some explanation. The groups GL(n,R), SL(n,R), O(n), and SO(n) are
more than just groups. They are also topological groups, which means
that they are topological spaces (viewed as subspaces of Rn2

) and that the
multiplication and the inverse operations are continuous (in fact, smooth).
Furthermore, they are smooth real manifolds.1 Such objects are called Lie
groups. The real vector spaces sl(n) and so(n) are what is called Lie alge-
bras. However, we have not defined the algebra structure on sl(n,R) and
so(n) yet. The algebra structure is given by what is called the Lie bracket ,
which is defined as

[A, B] = AB −BA.

Lie algebras are associated with Lie groups. What is going on is that the
Lie algebra of a Lie group is its tangent space at the identity, i.e., the space
of all tangent vectors at the identity (in this case, In). In some sense, the
Lie algebra achieves a “linearization” of the Lie group. The exponential

1We refrain from defining manifolds right now, not to interupt the flow of intuitive
ideas.
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map is a map from the Lie algebra to the Lie group, for example,

exp: so(n) → SO(n)

and

exp: sl(n,R) → SL(n,R).

The exponential map often allows a parametrization of the Lie group
elements by simpler objects, the Lie algebra elements.

One might ask, What happened to the Lie algebras gl(n,R) and o(n)
associated with the Lie groups GL(n,R) and O(n)? We will see later that
gl(n,R) is the set of all real n× n matrices, and that o(n) = so(n).

The properties of the exponential map play an important role in studying
a Lie group. For example, it is clear that the map

exp: gl(n,R) → GL(n,R)

is well-defined, but since every matrix of the form eA has a positive
determinant, exp is not surjective. Similarly, since

det(eA) = etr(A),

the map

exp: sl(n,R) → SL(n,R)

is well-defined. However, we showed in Section 14.1 that it is not surjective
either. As we will see in the next theorem, the map

exp: so(n) → SO(n)

is well-defined and surjective. The map

exp: o(n) → O(n)

is well-defined, but it is not surjective, since there are matrices in O(n)
with determinant −1.

Remark: The situation for matrices over the field C of complex numbers
is quite different, as we will see later.

We now show the fundamental relationship between SO(n) and so(n).

Theorem 14.2.2 The exponential map

exp: so(n) → SO(n)

is well-defined and surjective.

Proof . First, we need to prove that if A is a skew symmetric matrix, then
eA is a rotation matrix. For this, first check that(

eA
)�

= eA�
.
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Then, since A� = −A, we get(
eA
)�

= eA�
= e−A,

and so (
eA
)�
eA = e−AeA = e−A+A = e0n = In,

and similarly,

eA
(
eA
)�

= In,

showing that eA is orthogonal. Also,

det
(
eA
)

= etr(A),

and since A is real skew symmetric, its diagonal entries are 0, i.e., tr(A) = 0,
and so det(eA) = +1.

For the surjectivity, we will use Theorem 11.4.4 and Theorem 11.4.5.
Theorem 11.4.4 says that for every skew symmetric matrix A there is an
orthogonal matrix P such that A = PDP�, where D is a block diagonal
matrix of the form

D =



D1 . . .

D2 . . .
...

...
. . .

...
. . . Dp




such that each block Di is either 0 or a two-dimensional matrix of the form

Di =
(

0 −θi

θi 0

)
where θi ∈ R, with θi > 0. Theorem 11.4.5 says that for every orthogonal
matrix R there is an orthogonal matrix P such that R = PE P�, where E
is a block diagonal matrix of the form

E =



E1 . . .

E2 . . .
...

...
. . .

...
. . . Ep




such that each block Ei is either 1, −1, or a two-dimensional matrix of the
form

Ei =
(

cos θi − sin θi

sin θi cos θi

)
.

If R is a rotation matrix, there is an even number of −1’s and they can be
grouped into blocks of size 2 associated with θ = π. Let D be the block
matrix associated with E in the obvious way (where an entry 1 in E is
associated with a 0 in D). Since by Lemma 14.1.2

eA = ePDP−1
= PeDP−1,
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and since D is a block diagonal matrix, we can compute eD by computing
the exponentials of its blocks. If Di = 0, we get Ei = e0 = +1, and if

Di =
(

0 −θi

θi 0

)
,

we showed earlier that

eDi =
(

cos θi − sin θi

sin θi cos θi

)
,

exactly the block Ei. Thus, E = eD, and as a consequence,

eA = ePDP−1
= PeDP−1 = PEP−1 = PE P� = R.

This shows the surjectivity of the exponential.

When n = 3 (and A is skew symmetric), it is possible to work out an
explicit formula for eA. For any 3 × 3 real skew symmetric matrix

A =


 0 −c b

c 0 −a
−b a 0


 ,

letting θ =
√
a2 + b2 + c2 and

B =


 a2 ab ac
ab b2 bc
ac bc c2


 ,

we have the following result known as Rodrigues’s formula (1840).

Lemma 14.2.3 The exponential map exp: so(3) → SO(3) is given by

eA = cos θ I3 +
sin θ
θ

A+
(1 − cos θ)

θ2
B,

or, equivalently, by

eA = I3 +
sin θ
θ

A+
(1 − cos θ)

θ2
A2

if θ �= 0, with e03 = I3.

Proof sketch. First, prove that

A2 = −θ2I +B,

AB = BA = 0.

From the above, deduce that

A3 = −θ2A,
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and for any k ≥ 0,

A4k+1 = θ4kA,

A4k+2 = θ4kA2,

A4k+3 = −θ4k+2A,

A4k+4 = −θ4k+2A2.

Then prove the desired result by writing the power series for eA and
regrouping terms so that the power series for cos and sin show up.

The above formulae are the well-known formulae expressing a rotation
of axis specified by the vector (a, b, c) and angle θ. Since the exponential
is surjective, it is possible to write down an explicit formula for its inverse
(but it is a multivalued function!). This has applications in kinematics,
robotics, and motion interpolation.

14.3 Symmetric Matrices, Symmetric Positive
Definite Matrices, and the Exponential Map

Recall that a real symmetric matrix is called positive (or positive semidef-
inite) if its eigenvalues are all positive or null, and positive definite if its
eigenvalues are all strictly positive. We denote the vector space of real sym-
metric n × n matrices by S(n), the set of symmetric positive matrices by
SP(n), and the set of symmetric positive definite matrices by SPD(n).

The next lemma shows that every symmetric positive definite matrix A is
of the form eB for some unique symmetric matrix B. The set of symmetric
matrices is a vector space, but it is not a Lie algebra because the Lie bracket
[A,B] is not symmetric unless A and B commute, and the set of symmetric
(positive) definite matrices is not a multiplicative group, so this result is of
a different flavor as Theorem 14.2.2.

Lemma 14.3.1 For every symmetric matrix B, the matrix eB is symmet-
ric positive definite. For every symmetric positive definite matrix A, there
is a unique symmetric matrix B such that A = eB.

Proof . We showed earlier that(
eB
)�

= eB�
.

If B is a symmetric matrix, then since B� = B, we get(
eB
)�

= eB�
= eB ,

and eB is also symmetric. Since the eigenvalues λ1, . . . , λn of the symmetric
matrix B are real and the eigenvalues of eB are eλ1 , . . . , eλn , and since
eλ > 0 if λ ∈ R, eB is positive definite.
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If A is symmetric positive definite, by Theorem 11.4.3 there is an
orthogonal matrix P such that A = PDP�, where D is a diagonal matrix

D =



λ1 . . .

λ2 . . .
...

...
. . .

...
. . . λn


 ,

where λi > 0, since A is positive definite. Letting

L =




log λ1 . . .
log λ2 . . .

...
...

. . .
...

. . . log λn


 ,

it is obvious that eL = D, with log λi ∈ R, since λi > 0.
Let

B = PLP�.

By Lemma 14.1.2, we have

eB = ePL P�
= ePLP−1

= PeLP−1 = PeL P� = PDP� = A.

Finally, we prove that if B1 and B2 are symmetric and A = eB1 = eB2 , then
B1 = B2. Since B1 is symmetric, there is an orthonormal basis (u1, . . . , un)
of eigenvectors of B1. Let µ1, . . . , µn be the corresponding eigenvalues. Sim-
ilarly, there is an orthonormal basis (v1, . . . , vn) of eigenvectors of B2. We
are going to prove that B1 and B2 agree on the basis (v1, . . . , vn), thus
proving that B1 = B2.

Let µ be some eigenvalue of B2, and let v = vi be some eigenvector of
B2 associated with µ. We can write

v = α1u1 + · · · + αnun.

Since v is an eigenvector of B2 for µ and A = eB2 , by Lemma 14.1.4

A(v) = eµv = eµα1u1 + · · · + eµαnun.

On the other hand,

A(v) = A(α1u1 + · · · + αnun) = α1A(u1) + · · · + αnA(un),

and since A = eB1 and B1(ui) = µiui, by Lemma 14.1.4 we get

A(v) = eµ1α1u1 + · · · + eµnαnun.

Therefore, αi = 0 if µi �= µ. Letting

I = {i | µi = µ, i ∈ {1, . . . , n}},
we have

v =
∑
i∈I

αiui.
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Now,

B1(v) = B1

(∑
i∈I

αiui

)
=
∑
i∈I

αiB1(ui) =
∑
i∈I

αiµiui

=
∑
i∈I

αiµui = µ

(∑
i∈I

αiui

)
= µv,

since µi = µ when i ∈ I. Since v is an eigenvector of B2 for µ,

B2(v) = µv,

which shows that

B1(v) = B2(v).

Since the above holds for every eigenvector vi, we have B1 = B2.

Lemma 14.3.1 can be reformulated as stating that the map exp:S(n) →
SPD(n) is a bijection. It can be shown that it is a homeomorphism. In the
case of invertible matrices, the polar form theorem can be reformulated as
stating that there is a bijection between the topological space GL(n,R) of
real n× n invertible matrices (also a group) and O(n) × SPD(n).

As a corollary of the polar form theorem (Theorem 12.1.3) and Lemma
14.3.1, we have the following result: For every invertible matrix A there is
a unique orthogonal matrix R and a unique symmetric matrix S such that

A = ReS .

Thus, we have a bijection between GL(n,R) and O(n)×S(n). But S(n) it-
self is isomorphic to Rn(n+1)/2. Thus, there is a bijection between GL(n,R)
and O(n) × Rn(n+1)/2. It can also be shown that this bijection is a
homeomorphism. This is an interesting fact. Indeed, this homeomorphism
essentially reduces the study of the topology of GL(n,R) to the study of
the topology of O(n). This is nice, since it can be shown that O(n) is
compact.

In A = ReS , if det(A) > 0, then R must be a rotation matrix (i.e.,
det(R) = +1), since det

(
eS
)
> 0. In particular, if A ∈ SL(n,R), since

det(A) = det(R) = +1, the symmetric matrix S must have a null trace,
i.e., S ∈ S(n) ∩ sl(n,R). Thus, we have a bijection between SL(n,R) and
SO(n) × (S(n) ∩ sl(n,R)).

We can also use the results of Section 11.4 to show that the exponential
map is a surjective map from the skew Hermitian matrices to the unitary
matrices.
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14.4 The Lie Groups GL(n, C), SL(n, C), U(n),
SU(n), the Lie Algebras gl(n, C), sl(n, C),
u(n), su(n), and the Exponential Map

The set of complex invertible n×n matrices forms a group under multipli-
cation, denoted by GL(n,C). The subset of GL(n,C) consisting of those
matrices having determinant +1 is a subgroup of GL(n,C), denoted by
SL(n,C). It is also easy to check that the set of complex n × n unitary
matrices forms a group under multiplication, denoted by U(n). The subset
of U(n) consisting of those matrices having determinant +1 is a subgroup
of U(n), denoted by SU(n). We can also check that the set of complex
n × n matrices with null trace forms a real vector space under addition,
and similarly for the set of skew Hermitian matrices and the set of skew
Hermitian matrices with null trace.

Definition 14.4.1 The group GL(n,C) is called the general linear group,
and its subgroup SL(n,C) is called the special linear group. The group
U(n) of unitary matrices is called the unitary group, and its subgroup
SU(n) is called the special unitary group. The real vector space of complex
n×n matrices with null trace is denoted by sl(n,C), the real vector space
of skew Hermitian matrices is denoted by u(n), and the real vector space
u(n) ∩ sl(n,C) is denoted by su(n).

Remarks:

(1) As in the real case, the groups GL(n,C), SL(n,C), U(n), and SU(n)
are also topological groups (viewed as subspaces of R2n2

), and in fact,
smooth real manifolds. Such objects are called (real) Lie groups. The
real vector spaces sl(n,C), u(n), and su(n) are Lie algebras associated
with SL(n,C), U(n), and SU(n). The algebra structure is given by
the Lie bracket , which is defined as

[A, B] = AB −BA.

(2) It is also possible to define complex Lie groups, which means that
they are topological groups and smooth complex manifolds. It turns
out that GL(n,C) and SL(n,C) are complex manifolds, but not U(n)
and SU(n).

� One should be very careful to observe that even though the Lie
algebras sl(n,C), u(n), and su(n) consist of matrices with complex

coefficients, we view them as real vector spaces. The Lie algebra sl(n,C) is
also a complex vector space, but u(n) and su(n) are not! Indeed, if A is a
skew Hermitian matrix, iA is not skew Hermitian, but Hermitian!
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Again the Lie algebra achieves a “linearization” of the Lie group. In the
complex case, the Lie algebras gl(n,C) is the set of all complex n × n
matrices, but u(n) �= su(n), because a skew Hermitian matrix does not
necessarily have a null trace.

The properties of the exponential map also play an important role in
studying complex Lie groups. For example, it is clear that the map

exp: gl(n,C) → GL(n,C)

is well-defined, but this time, it is surjective! One way to prove this is to
use the Jordan normal form. Similarly, since

det
(
eA
)

= etr(A),

the map

exp: sl(n,C) → SL(n,C)

is well-defined, but it is not surjective! As we will see in the next theorem,
the maps

exp: u(n) → U(n)

and

exp: su(n) → SU(n)

are well-defined and surjective.

Theorem 14.4.2 The exponential maps

exp: u(n) → U(n) and exp: su(n) → SU(n)

are well-defined and surjective.

Proof . First, we need to prove that if A is a skew Hermitian matrix, then
eA is a unitary matrix. For this, first check that(

eA
)∗

= eA∗
.

Then, since A∗ = −A, we get(
eA
)∗

= eA∗
= e−A,

and so (
eA
)∗
eA = e−AeA = e−A+A = e0n = In,

and similarly, eA
(
eA
)∗ = In, showing that eA is unitary. Since

det
(
eA
)

= etr(A),

if A is skew Hermitian and has null trace, then det(eA) = +1.
For the surjectivity we will use Theorem 11.4.7. First, assume that A is

a unitary matrix. By Theorem 11.4.7, there is a unitary matrix U and a
diagonal matrix D such that A = UDU∗. Furthermore, since A is unitary,
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the entries λ1, . . . , λn in D (the eigenvalues of A) have absolute value +1.
Thus, the entries in D are of the form cos θ + i sin θ = eiθ. Thus, we can
assume that D is a diagonal matrix of the form

D =



eiθ1 . . .

eiθ2 . . .
...

...
. . .

...
. . . eiθp


 .

If we let E be the diagonal matrix

E =



iθ1 . . .

iθ2 . . .
...

...
. . .

...
. . . iθp




it is obvious that E is skew Hermitian and that

eE = D.

Then, letting B = UEU∗, we have

eB = A,

and it is immediately verified that B is skew Hermitian, since E is.
If A is a unitary matrix with determinant +1, since the eigenvalues of A

are eiθ1 , . . . , eiθp and the determinant of A is the product

eiθ1 · · · eiθp = ei(θ1+···+θp)

of these eigenvalues, we must have

θ1 + · · · + θp = 0,

and so, E is skew Hermitian and has zero trace. As above, letting

B = UEU∗,

we have

eB = A,

where B is skew Hermitian and has null trace.

We now extend the result of Section 14.3 to Hermitian matrices.

14.5 Hermitian Matrices, Hermitian Positive
Definite Matrices, and the Exponential Map

Recall that a Hermitian matrix is called positive (or positive semidefinite) if
its eigenvalues are all positive or null, and positive definite if its eigenvalues
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are all strictly positive. We denote the real vector space of Hermitian n×n
matrices by H(n), the set of Hermitian positive matrices by HP(n), and
the set of Hermitian positive definite matrices by HPD(n).

The next lemma shows that every Hermitian positive definite matrix A is
of the form eB for some unique Hermitian matrix B. As in the real case, the
set of Hermitian matrices is a real vector space, but it is not a Lie algebra
because the Lie bracket [A,B] is not Hermitian unless A and B commute,
and the set of Hermitian (positive) definite matrices is not a multiplicative
group.

Lemma 14.5.1 For every Hermitian matrix B, the matrix eB is Hermi-
tian positive definite. For every Hermitian positive definite matrix A, there
is a unique Hermitian matrix B such that A = eB.

Proof . It is basically the same as the proof of Theorem 14.5.1, except that a
Hermitian matrix can be written as A = UDU∗, where D is a real diagonal
matrix and U is unitary instead of orthogonal.

Lemma 14.5.1 can be reformulated as stating that the map exp:H(n) →
HPD(n) is a bijection. In fact, it can be shown that it is a homeomorphism.
In the case of complex invertible matrices, the polar form theorem can be
reformulated as stating that there is a bijection between the topological
space GL(n,C) of complex n × n invertible matrices (also a group) and
U(n) × HPD(n). As a corollary of the polar form theorem and Lemma
14.5.1, we have the following result: For every complex invertible matrix A,
there is a unique unitary matrix U and a unique Hermitian matrix S such
that

A = U eS .

Thus, we have a bijection between GL(n,C) and U(n) ×H(n). But H(n)
itself is isomorphic to Rn2

, and so there is a bijection between GL(n,C) and
U(n)× Rn2

. It can also be shown that this bijection is a homeomorphism.
This is an interesting fact. Indeed, this homeomorphism essentially reduces
the study of the topology of GL(n,C) to the study of the topology of
U(n). This is nice, since it can be shown that U(n) is compact (as a real
manifold).

In the polar decomposition A = UeS , we have |det(U)| = 1, since U is
unitary, and tr(S) is real, since S is Hermitian (since it is the sum of the
eigenvalues of S, which are real), so that det

(
eS
)
> 0. Thus, if det(A) = 1,

we must have det
(
eS
)

= 1, which implies that S ∈ H(n) ∩ sl(n,C). Thus,
we have a bijection between SL(n,C) and SU(n) × (H(n) ∩ sl(n,C)).

In the next section we study the group SE(n) of affine maps induced by
orthogonal transformations, also called rigid motions, and its Lie algebra.
We will show that the exponential map is surjective. The groups SE(2)
and SE(3) play play a fundamental role in robotics, dynamics, and motion
planning.
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14.6 The Lie Group SE(n) and the Lie Algebra
se(n)

First, we review the usual way of representing affine maps of Rn in terms
of (n+ 1) × (n+ 1) matrices.

Definition 14.6.1 The set of affine maps ρ of Rn, defined such that

ρ(X) = RX + U,

where R is a rotation matrix (R ∈ SO(n)) and U is some vector in Rn, is
a group under composition called the group of direct affine isometries, or
rigid motions, denoted by SE(n).

Every rigid motion can be represented by the (n+ 1) × (n+ 1) matrix(
R U
0 1

)
in the sense that (

ρ(X)
1

)
=
(
R U
0 1

)(
X
1

)
iff

ρ(X) = RX + U.

Definition 14.6.2 The vector space of real (n + 1) × (n + 1) matrices of
the form

A =
(

Ω U
0 0

)
,

where Ω is a skew symmetric matrix and U is a vector in Rn, is denoted
by se(n).

Remark: The group SE(n) is a Lie group, and its Lie algebra turns out
to be se(n).

We will show that the exponential map exp: se(n) → SE(n) is surjective.
First, we prove the following key lemma.

Lemma 14.6.3 Given any (n+ 1) × (n+ 1) matrix of the form

A =
(

Ω U
0 0

)
where Ω is any matrix and U ∈ Rn,

Ak =
(

Ωk Ωk−1U
0 0

)
,
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where Ω0 = In. As a consequence,

eA =
(
eΩ V U
0 1

)
,

where

V = In +
∑
k≥1

Ωk

(k + 1)!
.

Proof . A trivial induction on k shows that

Ak =
(

Ωk Ωk−1U
0 0

)
.

Then we have

eA =
∑
k≥0

Ak

k!
,

= In+1 +
∑
k≥1

1
k!

(
Ωk Ωk−1U
0 0

)
,

=
(
In +

∑
k≥0

Ωk

k!

∑
k≥1

Ωk−1

k! U
0 1

)
,

=
(
eΩ V U
0 1

)
.

We can now prove our main theorem. We will need to prove that V is
invertible when Ω is a skew symmetric matrix. It would be tempting to
write V as

V = Ω−1(eΩ − I).

Unfortunately, for odd n, a skew symmetric matrix of order n is not in-
vertible! Thus, we have to find another way of proving that V is invertible.
However, observe that we have the following useful fact:

V = In +
∑
k≥1

Ωk

(k + 1)!
=
∫ 1

0

eΩtdt.

This is what we will use in Theorem 14.6.4 to prove surjectivity.

Theorem 14.6.4 The exponential map

exp: se(n) → SE(n)

is well-defined and surjective.
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Proof . Since Ω is skew symmetric, eΩ is a rotation matrix, and by Theorem
14.2.2, the exponential map

exp: so(n) → SO(n)

is surjective. Thus, it remains to prove that for every rotation matrix R,
there is some skew symmetric matrix Ω such that R = eΩ and

V = In +
∑
k≥1

Ωk

(k + 1)!

is invertible. By Theorem 11.4.4, for every skew symmetric matrix Ω there
is an orthogonal matrix P such that Ω = PDP�, where D is a block
diagonal matrix of the form

D =



D1 . . .

D2 . . .
...

...
. . .

...
. . . Dp




such that each block Di is either 0 or a two-dimensional matrix of the form

Di =
(

0 −θi

θi 0

)
where θi ∈ R, with θi > 0. Actually, we can assume that θi �= k2π for all
k ∈ Z, since when θi = k2π we have eDi = I2, and Di can be replaced by
two one-dimensional blocks each consisting of a single zero. To compute V ,
since Ω = PDP� = PDP−1, observe that

V = In +
∑
k≥1

Ωk

(k + 1)!

= In +
∑
k≥1

PDkP−1

(k + 1)!

= P


In +

∑
k≥1

Dk

(k + 1)!


P−1

= PWP−1,

where

W = In +
∑
k≥1

Dk

(k + 1)!
.

We can compute

W = In +
∑
k≥1

Dk

(k + 1)!
=
∫ 1

0

eDtdt,
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by computing

W =



W1 . . .

W2 . . .
...

...
. . .

...
. . . Wp




by blocks. Since

eDi =
(

cos θi − sin θi

sin θi cos θi

)

when Di is a 2 × 2 skew symmetric matrix and Wi =
∫ 1

0
eDitdt, we get

Wi =
(∫ 1

0
cos(θit)dt

∫ 1

0
− sin(θit)dt∫ 1

0
sin(θit)dt

∫ 1

0
cos(θit)dt

)
=

1
θi

(
sin(θit) |10 cos(θit) |10

− cos(θit) |10 sin(θit) |10

)
,

that is,

Wi =
1
θi

(
sin θi −(1 − cos θi)

1 − cos θi sin θi

)
,

and Wi = 1 when Di = 0. Now, in the first case, the determinant is

1
θ2i

(
(sin θi)2 + (1 − cos θi)2

)
=

2
θ2i

(1 − cos θi),

which is nonzero, since θi �= k2π for all k ∈ Z. Thus, each Wi is invertible,
and so is W , and thus, V = PWP−1 is invertible.

In the case n = 3, given a skew symmetric matrix

Ω =


 0 −c b

c 0 −a
−b a 0


 ,

letting θ =
√
a2 + b2 + c2, it it easy to prove that if θ = 0, then

eA =
(
I3 U
0 1

)
,

and that if θ �= 0 (using the fact that Ω3 = −θ2Ω), then

eΩ = I3 +
sin θ
θ

Ω +
(1 − cos θ)

θ2
Ω2

and

V = I3 +
(1 − cos θ)

θ2
Ω +

(θ − sin θ)
θ3

Ω2.

We finally reach the best vista point of our hike, the formal definition of
(linear) Lie groups and Lie algebras.



14.7. Finale: Lie Groups and Lie Algebras 391

14.7 Finale: Lie Groups and Lie Algebras

In this section we attempt to define precisely Lie groups and Lie algebras.
One of the reasons that Lie groups are nice is that they have a differential
structure, which means that the notion of tangent space makes sense at any
point of the group. Furthermore, the tangent space at the identity happens
to have some algebraic structure, that of a Lie algebra. Roughly, the tangent
space at the identity provides a “linearization” of the Lie group, and it turns
out that many properties of a Lie group are reflected in its Lie algebra, and
that the loss of information is not too severe. The challenge that we are
facing is that unless our readers are already familiar with manifolds, the
amount of basic differential geometry required to define Lie groups and Lie
algebras in full generality is overwhelming.

Fortunately, all the Lie groups that we need to consider are subspaces of
RN for some sufficiently large N . In fact, they are all isomorphic to sub-
groups of GL(N,R) for some suitable N , even SE(n), which is isomorphic
to a subgroup of SL(n + 1). Such groups are called linear Lie groups (or
matrix groups). Since the groups under consideration are subspaces of RN ,
we do not need the definition of an abstract manifold. We just have to de-
fine embedded submanifolds (also called submanifolds) of RN (in the case
of GL(n,R), N = n2). This is the path that we will follow.

In general, the difficult part in proving that a subgroup of GL(n,R)
is a Lie group is to prove that it is a manifold. Fortunately, there is a
characterization of the linear groups that obviates much of the work. This
characterization rests on two theorems. First, a Lie subgroup H of a Lie
group G (where H is an embedded submanifold of G) is closed in G (see
Warner [176], Chapter 3, Theorem 3.21, page 97). Second, a theorem of
Von Neumann and Cartan asserts that a closed subgroup of GL(n,R) is an
embedded submanifold, and thus, a Lie group (see Warner [176], Chapter
3, Theorem 3.42, page 110). Thus, a linear Lie group is a closed subgroup
of GL(n,R).

Since our Lie groups are subgroups (or isomorphic to subgroups) of
GL(n,R) for some suitable n, it is easy to define the Lie algebra of a
Lie group using curves. This approach to define the Lie algebra of a matrix
group is followed by a number of authors, such as Curtis [38]. However,
Curtis is rather cavalier, since he does not explain why the required curves
actually exist, and thus, according to his definition, Lie algebras could be
the trivial vector space! Although we will not prove the theorem of Von
Neumann and Cartan, we feel that it is important to make clear why the
definitions make sense, i.e., why we are not dealing with trivial objects.

A small annoying technical problem will arise in our approach, the prob-
lem with discrete subgroups. If A is a subset of RN , recall that A inherits
a topology from RN called the subspace topology , and defined such that a
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subset V of A is open if

V = A ∩ U
for some open subset U of RN . A point a ∈ A is said to be isolated if there
is there is some open subset U of RN such that

{a} = A ∩ U,
in other words, if {a} is an open set in A.

The group GL(n,R) of real invertible n × n matrices can be viewed as
a subset of Rn2

, and as such, it is a topological space under the subspace
topology (in fact, a dense open subset of Rn2

). One can easily check that
multiplication and the inverse operation are continuous, and in fact smooth
(i.e., C∞-continuously differentiable). This makes GL(n,R) a topological
group. Any subgroup G of GL(n,R) is also a topological space under the
subspace topology. A subgroup G is called a discrete subgroup if it has some
isolated point. This turns out to be equivalent to the fact that every point
of G is isolated, and thus, G has the discrete topology (every subset of G
is open). Now, because GL(n,R) is Hausdorff, it can be shown that every
discrete subgroup of GL(n,R) is closed (which means that its complement
is open). Thus, discrete subgroups of GL(n,R) are Lie groups! But these
are not very interesting Lie groups, and so we will consider only closed
subgroups of GL(n,R) that are not discrete.

Let us now review the definition of an embedded submanifold. For
simplicity, we restrict our attention to smooth manifolds. For detailed
presentations, see DoCarmo [51, 52], Milnor [127], Marsden and Ratiu
[120], Berger and Gostiaux [14], or Warner [176]. For the sake of brevity,
we use the terminology manifold (but other authors would say embedded
submanifolds, or something like that).

The intuition behind the notion of a smooth manifold in RN is that a
subspace M is a manifold of dimension m if every point p ∈M is contained
in some open subset set U of M (in the subspace topology) that can be
parametrized by some function ϕ: Ω → U from some open subset Ω of the
origin in Rm, and that ϕ has some nice properties that allow the definition
of smooth functions onM and of the tangent space at p. For this, ϕ has to be
at least a homeomorphism, but more is needed: ϕ must be smooth, and the
derivative ϕ′(0m) at the origin must be injective (letting 0m = (0, . . . , 0)︸ ︷︷ ︸

m

).

Definition 14.7.1 Given any integers N,m, with N ≥ m ≥ 1, an m-
dimensional smooth manifold in RN , for short a manifold , is a nonempty
subset M of RN such that for every point p ∈M there are two open subsets
Ω ⊆ Rm and U ⊆ M , with p ∈ U , and a smooth function ϕ: Ω → RN

such that ϕ is a homeomorphism between Ω and U = ϕ(Ω), and ϕ′(t0)
is injective, where t0 = ϕ−1(p). The function ϕ: Ω → U is called a (local)
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parametrization of M at p. If 0m ∈ Ω and ϕ(0m) = p, we say that ϕ: Ω → U
is centered at p.

Recall that M ⊆ RN is a topological space under the subspace topology,
and U is some open subset of M in the subspace topology, which means
that U = M∩W for some open subset W of RN . Since ϕ: Ω → U is a home-
omorphism, it has an inverse ϕ−1:U → Ω that is also a homeomorphism,
called a (local) chart . Since Ω ⊆ Rm, for every point p ∈ M and every
parametrization ϕ: Ω → U of M at p, we have ϕ−1(p) = (z1, . . . , zm) for
some zi ∈ R, and we call z1, . . . , zm the local coordinates of p (w.r.t. ϕ−1).
We often refer to a manifold M without explicitly specifying its dimension
(the integer m).

Intuitively, a chart provides a “flattened” local map of a region on a
manifold. For instance, in the case of surfaces (2-dimensional manifolds), a
chart is analogous to a planar map of a region on the surface. For a concrete
example, consider a map giving a planar representation of a country, a
region on the earth, a curved surface.

Remark: We could allow m = 0 in definition 14.7.1. If so, a manifold
of dimension 0 is just a set of isolated points, and thus it has the discrete
topology. In fact, it can be shown that a discrete subset of RN is countable.
Such manifolds are not very exciting, but they do correspond to discrete
subgroups.

Example 14.1 The unit sphere S2 in R3 defined such that

S2 =
{
(x, y, z) ∈ R3 | x2 + y2 + z2 = 1

}
is a smooth 2-manifold, because it can be parametrized using the following
two maps ϕ1 and ϕ2:

ϕ1: (u, v) �→
(

2u
u2 + v2 + 1

,
2v

u2 + v2 + 1
,
u2 + v2 − 1
u2 + v2 + 1

)
and

ϕ2: (u, v) �→
(

2u
u2 + v2 + 1

,
2v

u2 + v2 + 1
,

1 − u2 − v2

u2 + v2 + 1

)
.

The map ϕ1 corresponds to the inverse of the stereographic projection
from the north pole N = (0, 0, 1) onto the plane z = 0, and the map ϕ2

corresponds to the inverse of the stereographic projection from the south
pole S = (0, 0,−1) onto the plane z = 0, as illustrated in Figure 14.1. We
leave as an exercise to check that the map ϕ1 parametrizes S2 − {N} and
that the map ϕ2 parametrizes S2−{S} (and that they are smooth, homeo-
morphisms, etc.). Using ϕ1, the open lower hemisphere is parametrized by
the open disk of center O and radius 1 contained in the plane z = 0.
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O

N

S

ϕ1(u, v)

ϕ2(u, v)

(u, v)

z = 0

Figure 14.1. Inverse stereographic projections

The chart ϕ−1
1 assigns local coordinates to the points in the open lower

hemisphere. If we draw a grid of coordinate lines parallel to the x and y axes
inside the open unit disk and map these lines onto the lower hemisphere
using ϕ1, we get curved lines on the lower hemisphere. These “coordinate
lines” on the lower hemisphere provide local coordinates for every point
on the lower hemisphere. For this reason, older books often talk about
curvilinear coordinate systems to mean the coordinate lines on a surface
induced by a chart. We urge our readers to define a manifold structure on
a torus. This can be done using four charts.

Every open subset of RN is a manifold in a trivial way. Indeed, we can use
the inclusion map as a parametrization. In particular, GL(n,R) is an open
subset of Rn2

, since its complement is closed (the set of invertible matrices
is the inverse image of the determinant function, which is continuous).
Thus, GL(n,R) is a manifold. We can view GL(n,C) as a subset of R(2n)2

using the embedding defined as follows: For every complex n × n matrix
A, construct the real 2n × 2n matrix such that every entry a + ib in A is
replaced by the 2 × 2 block (

a −b
b a

)

where a, b ∈ R. It is immediately verified that this map is in fact a group
isomorphism. Thus, we can view GL(n,C) as a subgroup of GL(2n,R),
and as a manifold in R(2n)2 .

A 1-manifold is called a (smooth) curve, and a 2-manifold is called
a (smooth) surface (although some authors require that they also be
connected).
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U1

U2

Ω1

Ω2

U1 ∩ U2ϕ−1
2 ◦ ϕ1

ϕ1

ϕ2

ϕ−1
1 (U1 ∩ U2)

ϕ−1
2 (U1 ∩ U2)

Figure 14.2. Parametrizations and transition functions

The following two lemmas provide the link with the definition of an ab-
stract manifold. The first lemma is easily shown using the inverse function
theorem.

Lemma 14.7.2 Given an m-dimensional manifold M in RN , for every
p ∈ M there are two open sets Ω,W ⊆ RN with 0N ∈ Ω and p ∈ M ∩W ,
and a smooth diffeomorphism ϕ: Ω →W , such that ϕ(0N ) = p and

ϕ(Ω ∩ (Rm × {0N−m})) = M ∩W.
The next lemma is easily shown from Lemma 14.7.2. It is a key technical

result used to show that interesting properties of maps between manifolds
do not depend on parametrizations.

Lemma 14.7.3 Given an m-dimensional manifold M in RN , for every
p ∈ M and any two parametrizations ϕ1: Ω1 → U1 and ϕ2: Ω2 → U2 of M
at p, if U1 ∩ U2 �= ∅, the map ϕ−1

2 ◦ ϕ1:ϕ−1
1 (U1 ∩ U2) → ϕ−1

2 (U1 ∩ U2) is a
smooth diffeomorphism.

The maps ϕ−1
2 ◦ ϕ1:ϕ−1

1 (U1 ∩ U2) → ϕ−1
2 (U1 ∩ U2) are called transition

maps. Lemma 14.7.3 is illustrated in Figure 14.2.
Let us review the definitions of a smooth curve in a manifold and the

tangent vector at a point of a curve.

Definition 14.7.4 Let M be an m-dimensional manifold in RN . A smooth
curve γ in M is any function γ: I →M where I is an open interval in R and
such that for every t ∈ I, letting p = γ(t), there is some parametrization
ϕ: Ω → U of M at p and some open interval ]t− ε, t+ ε[⊆ I such that the
curve ϕ−1 ◦ γ: ]t− ε, t+ ε[ → Rm is smooth.
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γ′(t)

γ

p M

Figure 14.3. Tangent vector to a curve on a manifold

Using Lemma 14.7.3, it is easily shown that Definition 14.7.4 does not
depend on the choice of the parametrization ϕ: Ω → U at p.

Lemma 14.7.3 also implies that γ viewed as a curve γ: I → RN is smooth.
Then the tangent vector to the curve γ: I → RN at t, denoted by γ′(t), is
the value of the derivative of γ at t (a vector in RN ) computed as usual:

γ′(t) = lim
h�→0

γ(t+ h) − γ(t)
h

.

Given any point p ∈ M , we will show that the set of tangent vectors
to all smooth curves in M through p is a vector space isomorphic to the
vector space Rm. The tangent vector at p to a curve γ on a manifold M is
illustrated in Figure 14.3.

Given a smooth curve γ: I →M , for any t ∈ I, letting p = γ(t), since M
is a manifold, there is a parametrization ϕ: Ω → U such that ϕ(0m) = p ∈ U
and some open interval J ⊆ I with t ∈ J and such that the function

ϕ−1 ◦ γ:J → Rm

is a smooth curve, since γ is a smooth curve. Letting α = ϕ−1 ◦ γ, the
derivative α′(t) is well-defined, and it is a vector in Rm. But ϕ ◦α:J →M
is also a smooth curve, which agrees with γ on J , and by the chain rule,

γ′(t) = ϕ′(0m)(α′(t)),

since α(t) = 0m (because ϕ(0m) = p and γ(t) = p). Observe that γ′(t) is a
vector in RN . Now, for every vector v ∈ Rm, the curve α:J → Rm defined
such that

α(u) = (u− t)v
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for all u ∈ J is clearly smooth, and α′(t) = v. This shows that the set of
tangent vectors at t to all smooth curves (in Rm) passing through 0m is the
entire vector space Rm. Since every smooth curve γ: I →M agrees with a
curve of the form ϕ ◦ α:J → M for some smooth curve α:J → Rm (with
J ⊆ I) as explained above, and since it is assumed that ϕ′(0m) is injective,
ϕ′(0m) maps the vector space Rm injectively to the set of tangent vectors
to γ at p, as claimed. All this is summarized in the following definition.

Definition 14.7.5 Let M be an m-dimensional manifold in RN . For every
point p ∈ M , the tangent space TpM at p is the set of all vectors in RN

of the form γ′(0), where γ: I → M is any smooth curve in M such that
p = γ(0). The set TpM is a vector space isomorphic to Rm. Every vector
v ∈ TpM is called a tangent vector to M at p.

We can now define Lie groups (postponing defining smooth maps).

Definition 14.7.6 A Lie group is a nonempty subset G of RN (N ≥ 1)
satisfying the following conditions:

(a) G is a group.

(b) G is a manifold in RN .

(c) The group operation · :G×G→ G and the inverse map −1:G→ G
are smooth.

(Smooth maps are defined in Definition 14.7.10). It is immediately ver-
ified that GL(n,R) is a Lie group. Since all the Lie groups that we are
considering are subgroups of GL(n,R), the following definition is in order.

Definition 14.7.7 A linear Lie group is a subgroup G of GL(n,R) (for
some n ≥ 1) which is a smooth manifold in Rn2

.

Let M(n,R) denote the set of all real n× n matrices (invertible or not).
If we recall that the exponential map

exp:A �→ eA

is well defined on M(n,R), we have the following crucial theorem due to
Von Neumann and Cartan.

Theorem 14.7.8 A closed subgroup G of GL(n,R) is a linear Lie group.
Furthermore, the set g defined such that

g = {X ∈ M(n,R) | etX ∈ G for all t ∈ R}
is a vector space equal to the tangent space TIG at the identity I, and g is
closed under the Lie bracket [−,−] defined such that [A,B] = AB−BA for
all A,B ∈ M(n,R).

Theorem 14.7.8 applies even when G is a discrete subgroup, but in this
case, g is trivial (i.e., g = {0}). For example, the set of nonnull reals R∗ =
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R−{0} = GL(1,R) is a Lie group under multiplication, and the subgroup

H = {2n | n ∈ Z}
is a discrete subgroup of R∗. Thus, H is a Lie group. On the other hand, the
set Q∗ = Q−{0} of nonnull rational numbers is a multiplicative subgroup
of R∗, but it is not closed, since Q is dense in R.

The proof of Theorem 14.7.8 involves proving that when G is not a
discrete subgroup, there is an open subset Ω ⊆ M(n,R) such that 0n,n ∈ Ω,
an open subset W ⊆ M(n,R) such that I ∈W , and that exp:Ω →W is a
diffeomorphism such that

exp(Ω ∩ g) = W ∩G.
If G is closed and not discrete, we must have m ≥ 1, and g has dimension
m.

With the help of Theorem 14.7.8 it is now very easy to prove that SL(n),
O(n), SO(n), SL(n,C), U(n), and SU(n) are Lie groups. We can also prove
that SE(n) is a Lie group as follows. Recall that we can view every element
of SE(n) as a real (n+ 1) × (n+ 1) matrix(

R U
0 1

)
where R ∈ SO(n) and U ∈ Rn. In fact, such matrices belong to SL(n+1).
This embedding of SE(n) into SL(n+ 1) is a group homomorphism, since
the group operation on SE(n) corresponds to multiplication in SL(n+ 1):(

RS RV + U
0 1

)
=
(
R U
0 1

)(
S V
0 1

)
.

Note that the inverse is given by(
R−1 −R−1U

0 1

)
=
(
R� −R�U
0 1

)
.

Also note that the embedding shows that as a manifold, SE(n) is diffeomor-
phic to SO(n)×Rn (given a manifold M1 of dimension m1 and a manifold
M2 of dimension m2, the product M1 ×M2 can be given the structure of
a manifold of dimension m1 +m2 in a natural way). Thus, SE(n) is a Lie
group with underlying manifold SO(n) × Rn, and in fact, a subgroup of
SL(n+ 1).

� Even though SE(n) is diffeomorphic to SO(n)×Rn as a manifold,
it is not isomorphic to SO(n)×Rn as a group, because the group

multiplication on SE(n) is not the multiplication on SO(n)×Rn. Instead,
SE(n) is a semidirect product of SO(n) and Rn; see Chapter 2, Problem
2.19.

Returning to Theorem 14.7.8, the vector space g is called the Lie algebra
of the Lie group G. Lie algebras are defined as follows.
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Definition 14.7.9 A (real) Lie algebra A is a real vector space together
with a bilinear map [·, ·]:A×A → A called the Lie bracket on A such that
the following two identities hold for all a, b, c ∈ A:

[a, a] = 0,

and the so-called Jacobi identity

[a, [b, c]] + [c, [a, b]] + [b, [c, a]] = 0.

It is immediately verified that [b, a] = −[a, b].

In view of Theorem 14.7.8, the vector space g = TIG associated with
a Lie group G is indeed a Lie algebra. Furthermore, the exponential map
exp: g → G is well-defined. In general, exp is neither injective nor surjective,
as we observed earlier. Theorem 14.7.8 also provides a kind of recipe for
“computing” the Lie algebra g = TIG of a Lie group G. Indeed, g is the
tangent space to G at I, and thus we can use curves to compute tangent
vectors. Actually, for every X ∈ TIG, the map

γX : t �→ etX

is a smooth curve in G, and it is easily shown that γ′X(0) = X. Thus, we
can use these curves. As an illustration, we show that the Lie algebras of
SL(n) and SO(n) are the matrices with null trace and the skew symmetric
matrices.

Let t �→ R(t) be a smooth curve in SL(n) such that R(0) = I. We have
det(R(t)) = 1 for all t ∈]− ε, ε [. Using the chain rule, we can compute the
derivative of the function

t �→ det(R(t))

at t = 0, and we get

det′I(R
′(0)) = 0.

It is an easy exercise to prove that

det′I(X) = tr(X),

and thus tr(R′(0)) = 0, which says that the tangent vector X = R′(0) has
null trace. Another proof consists in observing that X ∈ sl(n,R) iff

det(etX) = 1

for all t ∈ R. Since det(etX) = etr(tX), for t = 1, we get tr(X) = 0, as
claimed. Clearly, sl(n,R) has dimension n2 − 1.

Let t �→ R(t) be a smooth curve in SO(n) such that R(0) = I. Since
each R(t) is orthogonal, we have

R(t)R(t)� = I

for all t ∈] − ε, ε [. Taking the derivative at t = 0, we get

R′(0)R(0)� +R(0)R′(0)� = 0,
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but since R(0) = I = R(0)�, we get

R′(0) +R′(0)� = 0,

which says that the tangent vector X = R′(0) is skew symmetric. Since
the diagonal elements of a skew symmetric matrix are null, the trace is
automatically null, and the condition det(R) = 1 yields nothing new. This
shows that o(n) = so(n). It is easily shown that so(n) has dimension n(n−
1)/2.

As a concrete example, the Lie algebra so(3) of SO(3) is the real vector
space consisting of all 3 × 3 real skew symmetric matrices. Every such
matrix is of the form 

 0 −d c
d 0 −b
−c b 0




where b, c, d ∈ R. The Lie bracket [A,B] in so(3) is also given by the usual
commutator, [A,B] = AB −BA.

We can define an isomorphism of Lie algebras ψ: (R3,×) → so(3) by the
formula

ψ(b, c, d) =


 0 −d c

d 0 −b
−c b 0


 .

It is indeed easy to verify that

ψ(u× v) = [ψ(u), ψ(v)].

It is also easily verified that for any two vectors u = (b, c, d) and v =
(b′, c′, d′) in R3

ψ(u)(v) = u× v.

The exponential map exp: so(3) → SO(3) is given by Rodrigues’s formula
(see Lemma 14.2.3):

eA = cos θ I3 +
sin θ
θ

A+
(1 − cos θ)

θ2
B,

or equivalently by

eA = I3 +
sin θ
θ

A+
(1 − cos θ)

θ2
A2

if θ �= 0, where

A =


 0 −d c

d 0 −b
−c b 0


 ,

θ =
√
b2 + c2 + d2, B = A2 + θ2I3, and with e03 = I3.
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Using the above methods, it is easy to verify that the Lie algebras
gl(n,R), sl(n,R), o(n), and so(n), are respectively M(n,R), the set of ma-
trices with null trace, and the set of skew symmetric matrices (in the last
two cases). A similar computation can be done for gl(n,C), sl(n,C), u(n),
and su(n), confirming the claims of Section 14.4. It is easy to show that
gl(n,C) has dimension 2n2, sl(n,C) has dimension 2(n2 − 1), u(n) has
dimension n2, and su(n) has dimension n2 − 1.

For example, the Lie algebra su(2) of SU(2) (or S3) is the real vector
space consisting of all 2 × 2 (complex) skew Hermitian matrices of null
trace. Every such matrix is of the form

i(dσ1 + cσ2 + bσ3) =
(

ib c+ id
−c+ id −ib

)
,

where b, c, d ∈ R, and σ1, σ2, σ3 are the Pauli spin matrices (see Section
8.1), and thus the matrices iσ1, iσ2, iσ3 form a basis of the Lie algebra
su(2). The Lie bracket [A,B] in su(2) is given by the usual commutator,
[A,B] = AB −BA.

It is easily checked that the vector space R3 is a Lie algebra if we define
the Lie bracket on R3 as the usual cross product u × v of vectors. Then
we can define an isomorphism of Lie algebras ϕ: (R3,×) → su(2) by the
formula

ϕ(b, c, d) =
i

2
(dσ1 + cσ2 + bσ3) =

1
2

(
ib c+ id

−c+ id −ib
)
.

It is indeed easy to verify that

ϕ(u× v) = [ϕ(u), ϕ(v)].

Returning to su(2), letting θ =
√
b2 + c2 + d2, we can write

dσ1 + cσ2 + bσ3 =
(

b −ic+ d
ic+ d −b

)
= θA,

where

A =
1
θ
(dσ1 + cσ2 + bσ3) =

1
θ

(
b −ic+ d

ic+ d −b
)
,

so that A2 = I, and it can be shown that the exponential map exp: su(2) →
SU(2) is given by

exp(iθA) = cos θ 1 + i sin θ A.

In view of the isomorphism ϕ: (R3,×) → su(2), where

ϕ(b, c, d) =
1
2

(
ib c+ id

−c+ id −ib
)

= i
θ

2
A,
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the exponential map can be viewed as a map exp: (R3,×) → SU(2) given
by the formula

exp(θv) =
[
cos

θ

2
, sin

θ

2
v

]
,

for every vector θv, where v is a unit vector in R3 and θ ∈ R. In this form,
exp(θv) is a quaternion corresponding to a rotation of axis v and angle θ.

As we showed, SE(n) is a Lie group, and its lie algebra se(n) described
in Section 14.6 is easily determined as the subalgebra of sl(n+1) consisting
of all matrices of the form (

B U
0 0

)
where B ∈ so(n) and U ∈ Rn. Thus, se(n) has dimension n(n+ 1)/2. The
Lie bracket is given by(
B U
0 0

)(
C V
0 0

)
−
(
C V
0 0

)(
B U
0 0

)
=
(
BC − CB BV − CU

0 0

)
.

We conclude by indicating the relationship between homomorphisms of Lie
groups and homomorphisms of Lie algebras. First, we need to explain what
is meant by a smooth map between manifolds.

Definition 14.7.10 Let M1 (m1-dimensional) and M2 (m2-dimensional)
be manifolds in RN . A function f :M1 →M2 is smooth if for every p ∈M1

there are parametrizations ϕ: Ω1 → U1 of M1 at p and ψ: Ω2 → U2 of M2

at f(p) such that f(U1) ⊆ U2 and

ψ−1 ◦ f ◦ ϕ: Ω1 → Rm2

is smooth.

Using Lemma 14.7.3, it is easily shown that Definition 14.7.10 does not
depend on the choice of the parametrizations ϕ: Ω1 → U1 and ψ: Ω2 → U2.
A smooth map f between manifolds is a smooth diffeomorphism if f is
bijective and both f and f−1 are smooth maps.

We now define the derivative of a smooth map between manifolds.

Definition 14.7.11 Let M1 (m1-dimensional) and M2 (m2-dimensional)
be manifolds in RN . For any smooth function f :M1 →M2 and any p ∈M1,
the function f ′p:TpM1 → Tf(p)M2, called the tangent map of f at p, or
derivative of f at p, or differential of f at p, is defined as follows: For every
v ∈ TpM1 and every smooth curve γ: I → M1 such that γ(0) = p and
γ′(0) = v,

f ′p(v) = (f ◦ γ)′(0).

The map f ′p is also denoted by dfp or Tpf . Doing a few calculations
involving the facts that

f ◦ γ = (f ◦ ϕ) ◦ (ϕ−1 ◦ γ) and γ = ϕ ◦ (ϕ−1 ◦ γ)
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and using Lemma 14.7.3, it is not hard to show that f ′p(v) does not depend
on the choice of the curve γ. It is easily shown that f ′p is a linear map.

Finally, we define homomorphisms of Lie groups and Lie algebras and
see how they are related.

Definition 14.7.12 Given two Lie groups G1 and G2, a homomorphism
(or map) of Lie groups is a function f :G1 → G2 that is a homomorphism
of groups and a smooth map (between the manifolds G1 and G2). Given
two Lie algebras A1 and A2, a homomorphism (or map) of Lie algebras is
a function f :A1 → A2 that is a linear map between the vector spaces A1

and A2 and that preserves Lie brackets, i.e.,

f([A,B]) = [f(A), f(B)]

for all A,B ∈ A1.

An isomorphism of Lie groups is a bijective function f such that both f
and f−1 are maps of Lie groups, and an isomorphism of Lie algebras is a
bijective function f such that both f and f−1 are maps of Lie algebras. It is
immediately verified that if f :G1 → G2 is a homomorphism of Lie groups,
then f ′I : g1 → g2 is a homomorphism of Lie algebras. If some additional
assumptions are made about G1 and G2 (for example, connected, simply
connected), it can be shown that f is pretty much determined by f ′I .

Alert readers must have noticed that we only defined the Lie algebra of
a linear group. In the more general case, we can still define the Lie algebra
g of a Lie group G as the tangent space TIG at the identity I. The tangent
space g = TIG is a vector space, but we need to define the Lie bracket.
This can be done in several ways. We explain briefly how this can be done
in terms of so-called adjoint representations. This has the advantage of not
requiring the definition of left-invariant vector fields, but it is still a little
bizarre!

Given a Lie group G, for every a ∈ G we define left translation as the
map La:G → G such that La(b) = ab for all b ∈ G, and right translation
as the map Ra:G → G such that Ra(b) = ba for all b ∈ G. The maps La

and Ra are diffeomorphisms, and their derivatives play an important role.
The inner automorphisms Ra−1 ◦La (also written as Ra−1La) also play an
important role. Note that

Ra−1La(b) = aba−1.

The derivative

(Ra−1La)′I : g → g

of Ra−1La at I is an isomorphism of Lie algebras, denoted by Ada: g → g.
The map a �→ Ada is a map of Lie groups

Ad:G→ GL(g),
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called the adjoint representation of G (where GL(g) denotes the Lie group
of all bijective linear maps on g).

In the case of a linear group, one can verify that

Ad(a)(X) = Ada(X) = aXa−1

for all a ∈ G and all X ∈ g. The derivative

Ad′
I : g → gl(g)

of Ad at I is map of Lie algebras, denoted by ad: g → gl(g), called the
adjoint representation of g (where gl(g) denotes the Lie algebra of all linear
maps on g).

In the case of a linear group, it can be verified that

ad(A)(B) = [A, B]

for all A,B ∈ g. One can also check that the Jacobi identity on g is equiv-
alent to the fact that ad preserves Lie brackets, i.e., ad is a map of Lie
algebras:

ad([A, B]) = [ad(A), ad(B)]

for all A,B ∈ g (where on the right, the Lie bracket is the commutator of
linear maps on g). Thus, we recover the Lie bracket from ad.

This is the key to the definition of the Lie bracket in the case of a general
Lie group (not just a linear Lie group). We define the Lie bracket on g as

[A, B] = ad(A)(B).

To be complete, we would have to define the exponential map exp: g → G
for a general Lie group. For this we would need to introduce some left-
invariant vector fields induced by the derivatives of the left translations,
and integral curves associated with such vector fields.

This is not hard, but we feel that it is now time to stop our introduction
to Lie groups and Lie algebras, even though we have not even touched many
important topics, for instance vector fields and differential foms. Readers
who wish to learn more about Lie groups and Lie algebras should con-
sult (more or less listed in order of difficulty) Curtis [38], Sattinger and
Weaver [147], and Marsden and Ratiu [120]. The excellent lecture notes
by Carter, Segal, and Macdonald [30] constitute a very efficient (although
somewhat terse) introduction to Lie algebras and Lie groups. Classics such
as Weyl [180] and Chevalley [31] are definitely worth consulting, although
the presentation and the terminology may seem a bit old fashioned. For
more advanced texts, one may consult Abraham and Marsden [1], Warner
[176], Sternberg [161], Bröcker and tom Dieck [22], and Knapp [102]. For
those who read French, Mneimné and Testard [128] is very clear and quite
thorough, and uses very little differential geometry, although it is more ad-
vanced than Curtis. Chapter 1, by Bryant, in Freed and Uhlenbeck [24] is
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also worth reading, but the pace is fast, and Chapters 7 and 8 of Fulton
and Harris [69] are very good, but familiarity with manifolds is assumed.

14.8 Applications of Lie Groups and Lie Algebras

Some applications of Lie groups and Lie algebras to robotics and motion
planning are discussed in Selig [155] and Murray, Li, and Sastry [131].
Applications to physics are discussed in Sattinger and Weaver [147] and
Marsden and Ratiu [120].

The fact that the exponential maps exp: so(3) → SO(3) and exp: se(3) →
SE(3) are surjective is important in robotics applications. Indeed, some
matrices associated with joints arising in robot kinematics can be written
as exponentials eθs, where θ is a joint angle and s ∈ se(3) is the so-called
joint screw (see Selig [155], Chapter 4). One should also observe that if a
rigid motion (R, b) is used to define the position of a rigid body, then the
velocity of a point p is given by (R′p + b′). In other words, the element
(R′, b′) of the Lie algebra se(3) is a sort of velocity vector.

The surjectivity of the exponential map exp: se(3) → SE(3) implies that
there is a map log:SE(3) → se(3), although it is multivalued. Still, this log
“function” can be used to perform motion interpolation. For instance, given
two rigid motions B1, B2 ∈ SE(3) specifying the position of a rigid body
B, we can compute log(B1) and log(B2), which are just elements of the
Euclidean space se(3), form the linear interpolant (1−t) log(B1)+t log(B2),
and then apply the exponential map to get an interpolating rigid motion

e(1−t) log(B1)+t log(B2).

Of course, this can also be done for a sequence of rigid motions B1, . . . , Bn,
where n > 2, and instead of using affine interpolation between two con-
secutive positions, a polynomial spline can be used to interpolate between
the log(Bi)’s in se(3). This approach has been investigated by Kim, M.-J.,
Kim, M.-S. and Shin [98, 99], and Park and Ravani [133, 134].

R.S. Ball published a treatise on the theory of screws in 1900 [8].
Basically, Ball’s screws are rigid motions, and his instantaneous screws
correspond to elements of the Lie algebra se(3) (they are rays in se(3)). A
screw system is simply a subspace of se(3). Such systems were first inves-
tigated by Ball [8]. The first heuristic classification of screw systems was
given by Hunt [92]. Screw systems play an important role in kinematics,
see McCarthy [124] and Selig [155], Chapter 8.

Lie groups and Lie algebras are also a key ingredient in the use of sym-
metries in motion, to reduce the number of parameters in the equations of
motion, and in optimal control. Such applications are described in a very
exciting paper by Marsden and Ostrowski [119] (see also the references in
this paper).
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14.9 Problems

Problem 14.1 Given a Hermitian space E, for every linear map f :E →
E, prove that there is an orthonormal basis (u1, . . . , un) with respect to
which the matrix of f is upper triangular. In terms of matrices, this means
that there is a unitary matrix U and an upper triangular matrix T such
that A = UTU∗.

Remark: This extension of Lemma 14.1.3 is usually known as Schur’s
lemma.

Problem 14.2 Prove that the torus obtained by rotating a circle of ra-
dius b contained in a plane containing the z-axis and whose center is on a
circle of center O and radius b in the xy-plane is a manifold by giving four
parametrizations. What are the conditions required on a, b?
Hint . What about

x = a cos θ + b cos θ cosϕ,
y = a sin θ + b sin θ cosϕ,
z = b sinϕ?

Problem 14.3 (a) Prove that the maps ϕ1 and ϕ2 parametrizing the
sphere are indeed smooth and injective, that ϕ′

1(u, v) and ϕ′
2(u, v) are

injective, and that ϕ1 and ϕ2 give the sphere the structure of a manifold.
(b) Prove that the map ψ1:∆(1) → S2 defined such that

ψ1(x, y) =
(
x, y,

√
1 − x2 − y2

)
,

where ∆(1) is the unit open disk, is a parametrization of the open upper
hemisphere. Show that there are five other similar parametrizations, which,
together with ψ1, make S2 into a manifold.

Problem 14.4 Use Lemma 14.7.3 to prove that Definition 14.7.4 does not
depend on the choice of the parametrization ϕ: Ω → U at p.

Problem 14.5 Given a linear Lie group G, for every X ∈ TIG, letting γ
be the smooth curve in G

γX : t �→ etX ,

prove that γ′X(0) = X.

Problem 14.6 Prove that

det′I(X) = tr(X).

Hint . Find the directional derivative

lim
t→0

det(I + tX) − det(I)
t

.
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Problem 14.7 Confirm that gl(n,C), sl(n,C), u(n), and su(n), are the
vector spaces of matrices described in Section 14.4. Prove that gl(n,C) has
dimension 2n2, sl(n,C) has dimension 2(n2 − 1), u(n) has dimension n2,
and su(n) has dimension n2 − 1.

Problem 14.8 Prove that the map ϕ: (R3,×) → su(2) defined by the
formula

ϕ(b, c, d) =
i

2
(dσ1 + cσ2 + bσ3) =

1
2

(
ib c+ id

−c+ id −ib
)

is an isomorphism of Lie algebras. If

A =
1
θ

(
b −ic+ d

ic+ d −b
)
,

where θ =
√
b2 + c2 + d2, prove that the exponential map exp: su(2) →

SU(2) is given by

exp(iθA) = cos θ 1 + i sin θ A.

Problem 14.9 Prove that Definition 14.7.10 does not depend on the
parametrizations ϕ: Ω1 → U1 and ψ: Ω2 → U2.

Problem 14.10 In Definition 14.7.11, prove that f ′p(v) does not depend
on the choice of the curve γ, and that f ′p is a linear map.

Problem 14.11 In the case of a linear group, prove that

Ad(a)(X) = Ada(X) = aXa−1

for all a ∈ G and all X ∈ g.

Problem 14.12 In the case of a linear group, prove that

ad(A)(B) = [A, B]

for all A,B ∈ g.
Check that the Jacobi identity on g is equivalent to the fact that ad

preserves Lie brackets, i.e., ad is a map of Lie algebras:

ad([A, B]) = [ad(A), ad(B)]

for all A,B ∈ g (where on the right, the Lie bracket is the commutator of
linear maps on g).

Problem 14.13 Consider the Lie algebra su(2), whose basis is the Pauli
spin matrices σ1, σ2, σ3 (see Chapter 6, Section 8.1). The map ad(X) is a
linear map for every X ∈ g, since ad: g → gl(g). Compute the matrices
representing ad(σ1), ad(σ2), ad(σ3).

Problem 14.14 (a) Consider the affine maps ρ of A2 defined such that

ρ

(
x
y

)
=
(

cos θ − sin θ
sin θ cos θ

)(
x
y

)
+
(
u
v

)
,
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where θ, u, v ∈ R.
Given any map ρ as above, letting

R =
(

cos θ − sin θ
sin θ cos θ

)
, X =

(
x
y

)
, and U =

(
u
v

)
,

ρ can be represented by the 3 × 3 matrix

A =
(
R U
0 1

)
=


 cos θ − sin θ u

sin θ cos θ v
0 0 1




in the sense that (
ρ(X)

1

)
=
(
R U
0 1

)(
X
1

)
iff

ρ(X) = RX + U.

Prove that these maps are affine bijections and that they form a group,
denoted by SE(2) (the direct affine isometries, or rigid motions, of A2).
Prove that such maps preserve the inner product of R2, i.e., that for any
four points a, b, c, d ∈ A2,

ρ(ac) · ρ(bd) = ac · bd.

If θ �= k2π (k ∈ Z), prove that ρ has a unique fixed point cρ, and that w.r.t.
any frame with origin cρ, ρ is a rotation of angle θ and of center cρ.

(b) Let us now consider the set of matrices of the form
 0 −θ u
θ 0 v
0 0 0




where θ, u, v ∈ R. Verify that this set of matrices is a vector space iso-
morphic to (R3,+). This vector space is denoted by se(2). Show that in
general, AB �= BA.

(c) Given a matrix

A =


 0 −θ u
θ 0 v
0 0 0




letting

Ω =
(

0 −θ
θ 0

)
and U =

(
u
v

)
we can write

A =
(

Ω U
0 0

)
.
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Prove that

An =
(

Ωn Ωn−1U
0 0

)
where Ω0 = I2. Prove that if θ = k2π (k ∈ Z), then

eA =
(
I2 U
0 1

)
,

and that if θ �= k2π (k ∈ Z), then

eA =




cos θ − sin θ u
θ sin θ + v

θ (cos θ − 1)

sin θ cos θ u
θ (− cos θ + 1) + v

θ sin θ

0 0 1


 .

Hint . Letting V = Ω−1(eΩ − I2), prove that

V = I2 +
∑
k≥1

Ωk

(k + 1)!

and that

eA =
(
eΩ V U
0 1

)
.

Another proof consists in showing that

A3 = −θ2A,
and that

eA = I3 +
sin θ
θ

A+
1 − cos θ

θ2
A2.

(d) Prove that eA is a direct affine isometry in SE(2). If θ �= k2π (k ∈
Z), prove that V is invertible, and thus prove that the exponential map
exp: se(2) → SE(2) is surjective. How do you need to restrict θ to get an
injective map?

Remark: Rigid motions can be used to describe the motion of rigid bodies
in the plane. Given a fixed Euclidean frame (O, (e1, e2)), we can assume
that some moving frame (C, (u1, u2)) is attached (say glued) to a rigid
body B (for example, at the center of gravity of B) so that the position
and orientation of B in the plane are completely (and uniquely) determined
by some rigid motion

A =
(
R U
0 1

)
,

where U specifies the position of C w.r.t. O, and R specifies the orientation
(i.e., angle) of B w.r.t. the fixed frame (O, (e1, e2)). Then, a motion of B
in the plane corresponds to a curve in the space SE(2). The space SE(2) is
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topologically quite complex (in particular, it is “curved”). The exponential
map allows us to work in the simpler (noncurved) Euclidean space se(2).
Thus, given a sequence of “snapshots” of B, say B0, B1, . . . , Bm, we can
try to find an interpolating motion (a curve in SE(2)) by finding a sim-
pler curve in se(2) (say, a B-spline) using the inverse of the exponential
map. Of course, it is desirable that the interpolating motion be reasonably
smooth and “natural.” Computer animations of such motions can be easily
implemented.

Problem 14.15 (a) Consider the set of affine maps ρ of A3 defined such
that

ρ(X) = RX + U,

where R is a rotation matrix (an orthogonal matrix of determinant +1)
and U is some vector in R3. Every such a map can be represented by the
4 × 4 matrix (

R U
0 1

)
in the sense that (

ρ(X)
1

)
=
(
R U
0 1

)(
X
1

)
iff

ρ(X) = RX + U.

Prove that these maps are affine bijections and that they form a group,
denoted by SE(3) (the direct affine isometries, or rigid motions, of A3).
Prove that such maps preserve the inner product of R3, i.e., that for any
four points a, b, c, d ∈ A3,

ρ(ac) · ρ(bd) = ac · bd.

Prove that these maps do not always have a fixed point.
(b) Let us now consider the set of 4 × 4 matrices of the form

A =
(

Ω U
0 0

)
,

where Ω is a skew symmetric matrix

Ω =


 0 −c b

c 0 −a
−b a 0


 ,

and U is a vector in R3.
Verify that this set of matrices is a vector space isomorphic to (R6,+).

This vector space is denoted by se(3). Show that in general, AB �= BA.
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(c) Given a matrix

A =
(

Ω U
0 0

)
as in (b), prove that

An =
(

Ωn Ωn−1U
0 0

)
where Ω0 = I3. Given

Ω =


 0 −c b

c 0 −a
−b a 0


 ,

let θ =
√
a2 + b2 + c2. Prove that if θ = k2π (k ∈ Z), then

eA =
(
I3 U
0 1

)
,

and that if θ �= k2π (k ∈ Z), then

eA =
(
eΩ V U
0 1

)
,

where

V = I3 +
∑
k≥1

Ωk

(k + 1)!
.

(d) Prove that

eΩ = I3 +
sin θ
θ

Ω +
(1 − cos θ)

θ2
Ω2

and

V = I3 +
(1 − cos θ)

θ2
Ω +

(θ − sin θ)
θ3

Ω2.

Hint . Use the fact that

Ω3 = −θ2Ω.
(e) Prove that eA is a direct affine isometry in SE(3). Prove that V is

invertible.
Hint . Assume that the inverse of V is of the form

W = I3 + aΩ + bΩ2,

and show that a, b, are given by a system of linear equations that always
has a unique solution.
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Prove that the exponential map exp: se(3) → SE(3) is surjective. You
may use the fact that exp: so(3) → SO(3) is surjective, where

exp(Ω) = eΩ = I3 +
sin θ
θ

Ω +
(1 − cos θ)

θ2
Ω2.

Remark: Rigid motions can be used to describe the motion of rigid bodies
in space. Given a fixed Euclidean frame (O, (e1, e2, e3)), we can assume that
some moving frame (C, (u1, u2, u3)) is attached (say glued) to a rigid body
B (for example, at the center of gravity of B) so that the position and
orientation of B in space are completely (and uniquely) determined by
some rigid motion

A =
(
R U
0 1

)
,

where U specifies the position of C w.r.t. O, and R specifies the orien-
tation of B w.r.t. the fixed frame (O, (e1, e2, e3)). Then a motion of B
in space corresponds to a curve in the space SE(3). The space SE(3) is
topologically quite complex (in particular, it is “curved”). The exponential
map allows us to work in the simpler (noncurved) Euclidean space se(3).
Thus, given a sequence of “snapshots” of B, say B0, B1, . . . , Bm, we can
try to find an interpolating motion (a curve in SE(3)) by finding a sim-
pler curve in se(3) (say, a B-spline) using the inverse of the exponential
map. Of course, it is desirable that the interpolating motion be reasonably
smooth and “natural.” Computer animations of such motions can be easily
implemented.

Problem 14.16 Let A and B be the 4 × 4 matrices

A =




0 −θ1 0 0
θ1 0 0 0
0 0 0 −θ2
0 0 θ2 0




and

B =




cos θ1 − sin θ1 0 0
sin θ1 cos θ1 0 0

0 0 cos θ2 − sin θ2
0 0 sin θ2 cos θ2




where θ1, θ2 ≥ 0. (i) Compute A2, and prove that

B = eA,

where

eA = In +
∑
p≥1

Ap

p!
=
∑
p≥0

Ap

p!
,
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letting A0 = In. Use this to prove that for every orthogonal 4 × 4 matrix
B there is a skew symmetric matrix A such that

B = eA.

(ii) Given a skew symmetric 4 × 4 matrix A, prove that there are two
skew symmetric matrices A1 and A2 and some θ1, θ2 ≥ 0 such that

A = A1 +A2,

A3
1 = −θ21A1,

A3
2 = −θ22A2,

A1A2 = A2A1 = 0,
tr(A2

1) = −2θ21,
tr(A2

2) = −2θ22,

and where Ai = 0 if θi = 0 and A2
1 +A2

2 = −θ21I4 if θ2 = θ1.
Using the above, prove that

eA = I4 +
sin θ1
θ1

A1 +
sin θ2
θ2

A2 +
(1 − cos θ1)

θ21
A2

1 +
(1 − cos θ2)

θ22
A2

2.

(iii) Given an orthogonal 4× 4 matrix B, prove that there are two skew
symmetric matrices A1 and A2 and some θ1, θ2 ≥ 0 such that

B = I4 +
sin θ1
θ1

A1 +
sin θ2
θ2

A2 +
(1 − cos θ1)

θ21
A2

1 +
(1 − cos θ2)

θ22
A2

2,

where

A3
1 = −θ21A1,

A3
2 = −θ22A2,

A1A2 = A2A1 = 0,
tr(A2

1) = −2θ21,
tr(A2

2) = −2θ22,

and where Ai = 0 if θi = 0 and A2
1 +A2

2 = −θ21I4 if θ2 = θ1. Prove that

1
2
(B −B�) =

sin θ1
θ1

A1 +
sin θ2
θ2

A2,

1
2
(B +B�) = I4 +

(1 − cos θ1)
θ21

A2
1 +

(1 − cos θ2)
θ22

A2
2,

tr(B) = 2 cos θ1 + 2 cos θ2.

(iv) Prove that if sin θ1 = 0 or sin θ2 = 0, then A1, A2, and the cos θi can
be computed from B. Prove that if θ2 = θ1, then

B = cos θ1I4 +
sin θ1
θ1

(A1 +A2),

and cos θ1 and A1 +A2 can be computed from B.
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(v) Prove that

1
4
tr
((
B −B�)2) = 2 cos2 θ1 + 2 cos2 θ2 − 4.

Prove that cos θ1 and cos θ2 are solutions of the equation

x2 − sx+ p = 0,

where

s =
1
2
tr(B), p =

1
8

(tr(B))2 − 1
16

tr
((
B −B�)2)− 1.

Prove that we also have

cos2 θ1 cos2 θ2 = det
(

1
2
(
B +B�)) .

If sin θi �= 0 for i = 1, 2 and cos θ2 �= cos θ1, prove that the system

1
2
(
B −B�) =

sin θ1
θ1

A1 +
sin θ2
θ2

A2,

1
4
(
B +B�) (B −B�) =

sin θ1 cos θ1
θ1

A1 +
sin θ2 cos θ2

θ2
A2

has a unique solution for A1 and A2.
(vi) Prove that A = A1 + A2 has an orthonormal basis of eigenvectors

such that the first two are a basis of the plane w.r.t. which B is a rotation
of angle θ1, and the last two are a basis of the plane w.r.t. which B is a
rotation of angle θ2.

Remark: I do not know a simple way to compute such an orthonormal
basis of eigenvectors of A = A1 +A2, but it should be possible!


