
Chapter 8

Dirichlet–Voronoi Diagrams and
Delaunay Triangulations

8.1 Dirichlet–Voronoi Diagrams

In this chapter we present the concepts of a Voronoi diagram and of a Delaunay triangu-
lation. These are important tools in computational geometry and Delaunay triangulations
are important in problems where it is necessary to fit 3D data using surface splines. It is
usually useful to compute a good mesh for the projection of this set of data points onto the
xy-plane, and a Delaunay triangulation is a good candidate.

Our presentation of Voronoi diagrams and Delaunay triangulations is far from thor-
ough. We are primarily interested in defining these concepts and stating their most impor-
tant properties. For a comprehensive exposition of Voronoi diagrams, Delaunay triangula-
tions, and more topics in computational geometry, our readers may consult O’Rourke [31],
Preparata and Shamos [32], Boissonnat and Yvinec [8], de Berg, Van Kreveld, Overmars,
and Schwarzkopf [5], or Risler [33]. The survey by Graham and Yao [23] contains a very
gentle and lucid introduction to computational geometry.

In Section 8.6 (which relies on Section 8.5), we show that the Delaunay triangulation
of a set of points, P , is the stereographic projection of the convex hull of the set of points
obtained by mapping the points in P onto the sphere using inverse stereogrgaphic projection.
We also prove that the Voronoi diagram of P is obtained by taking the polar dual of the
above convex hull and projecting it from the north pole (back onto the hyperplane containing
P ). A rigorous proof of this second fact is not trivial because the central projection from
the north pole is only a partial map. To give a rigorous proof, we have to use projective
completions. But then, we need to define what is a convex polyhedron in projective space
and for this, we use the results of Chapter 5 (especially, Section 5.2).

Some practical applications of Voronoi diagrams and Delaunay triangulations are briefly
discussed in Section 8.7.

Let E be a Euclidean space of finite dimension, that is, an affine space E whose underlying
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Figure 8.1: The bisector line L of a and b

vector space
−→E is equipped with an inner product (and has finite dimension). For concrete-

ness, one may safely assume that E = Em, although what follows applies to any Euclidean
space of finite dimension. Given a set P = {p1, . . . , pn} of n points in E , it is often useful to
find a partition of the space E into regions each containing a single point of P and having
some nice properties. It is also often useful to find triangulations of the convex hull of P
having some nice properties. We shall see that this can be done and that the two problems
are closely related. In order to solve the first problem, we need to introduce bisector lines
and bisector planes.

For simplicity, let us first assume that E is a plane i.e., has dimension 2. Given any two
distinct points a, b ∈ E , the line orthogonal to the line segment (a, b) and passing through
the midpoint of this segment is the locus of all points having equal distance to a and b. It
is called the bisector line of a and b. The bisector line of two points is illustrated in Figure
8.1.

If h = 1
2 a+

1
2 b is the midpoint of the line segment (a, b), letting m be an arbitrary point

on the bisector line, the equation of this line can be found by writing that hm is orthogonal
to ab. In any orthogonal frame, letting m = (x, y), a = (a1, a2), b = (b1, b2), the equation of
this line is

(b1 − a1)(x− (a1 + b1)/2) + (b2 − a2)(y − (a2 + b2)/2) = 0,

which can also be written as

(b1 − a1)x+ (b2 − a2)y = (b21 + b22)/2− (a21 + a22)/2.

The closed half-plane H(a, b) containing a and with boundary the bisector line is the locus
of all points such that

(b1 − a1)x+ (b2 − a2)y ≤ (b21 + b22)/2− (a21 + a22)/2,
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and the closed half-plane H(b, a) containing b and with boundary the bisector line is the
locus of all points such that

(b1 − a1)x+ (b2 − a2)y ≥ (b21 + b22)/2− (a21 + a22)/2.

The closed half-plane H(a, b) is the set of all points whose distance to a is less that or equal
to the distance to b, and vice versa for H(b, a). Thus, points in the closed half-plane H(a, b)
are closer to a than they are to b.

We now consider a problem called the post office problem by Graham and Yao [23]. Given
any set P = {p1, . . . , pn} of n points in the plane (considered as post offices or sites), for
any arbitrary point x, find out which post office is closest to x. Since x can be arbitrary,
it seems desirable to precompute the sets V (pi) consisting of all points that are closer to pi
than to any other point pj �= pi. Indeed, if the sets V (pi) are known, the answer is any post
office pi such that x ∈ V (pi). Thus, it remains to compute the sets V (pi). For this, if x is
closer to pi than to any other point pj �= pi, then x is on the same side as pi with respect to
the bisector line of pi and pj for every j �= i, and thus

V (pi) =
�

j �=i

H(pi, pj).

If E has dimension 3, the locus of all points having equal distance to a and b is a plane.
It is called the bisector plane of a and b. The equation of this plane is also found by writing
that hm is orthogonal to ab. The equation of this plane is

(b1 − a1)(x− (a1 + b1)/2) + (b2 − a2)(y − (a2 + b2)/2)

+ (b3 − a3)(z − (a3 + b3)/2) = 0,

which can also be written as

(b1 − a1)x+ (b2 − a2)y + (b3 − a3)z = (b21 + b22 + b23)/2− (a21 + a22 + a23)/2.

The closed half-space H(a, b) containing a and with boundary the bisector plane is the locus
of all points such that

(b1 − a1)x+ (b2 − a2)y + (b3 − a3)z ≤ (b21 + b22 + b23)/2− (a21 + a22 + a23)/2,

and the closed half-space H(b, a) containing b and with boundary the bisector plane is the
locus of all points such that

(b1 − a1)x+ (b2 − a2)y + (b3 − a3)z ≥ (b21 + b22 + b23)/2− (a21 + a22 + a23)/2.

The closed half-space H(a, b) is the set of all points whose distance to a is less that or equal
to the distance to b, and vice versa for H(b, a). Again, points in the closed half-space H(a, b)
are closer to a than they are to b.



148 CHAPTER 8. DIRICHLET–VORONOI DIAGRAMS

Given any set P = {p1, . . . , pn} of n points in E (of dimension m = 2, 3), it is often useful
to find for every point pi the region consisting of all points that are closer to pi than to any
other point pj �= pi, that is, the set

V (pi) = {x ∈ E | d(x, pi) ≤ d(x, pj), for all j �= i},

where d(x, y) = (xy · xy)1/2, the Euclidean distance associated with the inner product · on
E . From the definition of the bisector line (or plane), it is immediate that

V (pi) =
�

j �=i

H(pi, pj).

Families of sets of the form V (pi) were investigated by Dirichlet [15] (1850) and Voronoi
[44] (1908). Voronoi diagrams also arise in crystallography (Gilbert [21]). Other applications,
including facility location and path planning, are discussed in O’Rourke [31]. For simplicity,
we also denote the set V (pi) by Vi, and we introduce the following definition.

Definition 8.1 Let E be a Euclidean space of dimension m ≥ 1. Given any set P = {p1, . . .,
pn} of n points in E , the Dirichlet–Voronoi diagram Vor(P ) of P = {p1, . . . , pn} is the family
of subsets of E consisting of the sets Vi =

�
j �=i

H(pi, pj) and of all of their intersections.

Dirichlet–Voronoi diagrams are also called Voronoi diagrams , Voronoi tessellations , or
Thiessen polygons . Following common usage, we will use the terminology Voronoi diagram.
As intersections of convex sets (closed half-planes or closed half-spaces), the Voronoi regions
V (pi) are convex sets. In dimension two, the boundaries of these regions are convex polygons,
and in dimension three, the boundaries are convex polyhedra.

Whether a region V (pi) is bounded or not depends on the location of pi. If pi belongs
to the boundary of the convex hull of the set P , then V (pi) is unbounded, and otherwise
bounded. In dimension two, the convex hull is a convex polygon, and in dimension three,
the convex hull is a convex polyhedron. As we will see later, there is an intimate relationship
between convex hulls and Voronoi diagrams.

Generally, if E is a Euclidean space of dimensionm, given any two distinct points a, b ∈ E ,
the locus of all points having equal distance to a and b is a hyperplane. It is called the bisector
hyperplane of a and b. The equation of this hyperplane is still found by writing that hm is
orthogonal to ab. The equation of this hyperplane is

(b1 − a1)(x1 − (a1 + b1)/2) + · · ·+ (bm − am)(xm − (am + bm)/2) = 0,

which can also be written as

(b1 − a1)x1 + · · ·+ (bm − am)xm = (b21 + · · ·+ b2
m
)/2− (a21 + · · ·+ a2

m
)/2.



8.1. DIRICHLET–VORONOI DIAGRAMS 149

The closed half-space H(a, b) containing a and with boundary the bisector hyperplane is the
locus of all points such that

(b1 − a1)x1 + · · ·+ (bm − am)xm ≤ (b21 + · · ·+ b2
m
)/2− (a21 + · · ·+ a2

m
)/2,

and the closed half-space H(b, a) containing b and with boundary the bisector hyperplane is
the locus of all points such that

(b1 − a1)x1 + · · ·+ (bm − am)xm ≥ (b21 + · · ·+ b2
m
)/2− (a21 + · · ·+ a2

m
)/2.

The closed half-space H(a, b) is the set of all points whose distance to a is less than or equal
to the distance to b, and vice versa for H(b, a).

Figure 8.2 shows the Voronoi diagram of a set of twelve points.

Figure 8.2: A Voronoi diagram

In the general case where E has dimension m, the definition of the Voronoi diagram
Vor(P ) of P is the same as Definition 8.1, except that H(pi, pj) is the closed half-space
containing pi and having the bisector hyperplane of a and b as boundary. Also, observe that
the convex hull of P is a convex polytope.

We will now state a lemma listing the main properties of Voronoi diagrams. It turns out
that certain degenerate situations can be avoided if we assume that if P is a set of points in
an affine space of dimension m, then no m + 2 points from P belong to the same (m − 1)-
sphere. We will say that the points of P are in general position. Thus when m = 2, no 3.5
points in P are cocyclic, and when m = 3, no 5 points in P are on the same sphere.
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Lemma 8.1 Given a set P = {p1, . . . , pn} of n points in some Euclidean space E of dimen-
sion m (say Em), if the points in P are in general position and not in a common hyperplane
then the Voronoi diagram of P satisfies the following conditions:

(1) Each region Vi is convex and contains pi in its interior.

(2) Each vertex of Vi belongs to m+ 1 regions Vj and to m+ 1 edges.

(3) The region Vi is unbounded iff pi belongs to the boundary of the convex hull of P .

(3.5) If p is a vertex that belongs to the regions V1, . . . , Vm+1, then p is the center of the
(m− 1)-sphere S(p) determined by p1, . . . , pm+1. Furthermore, no point in P is inside
the sphere S(p) (i.e., in the open ball associated with the sphere S(p)).

(5) If pj is a nearest neighbor of pi, then one of the faces of Vi is contained in the bisector
hyperplane of (pi, pj).

(6)
n�

i=1

Vi = E , and
◦
V i ∩

◦
V j= ∅, for all i, j, with i �= j,

where
◦
V i denotes the interior of Vi.

Proof . We prove only some of the statements, leaving the others as an exercise (or see Risler
[33]).

(1) Since Vi =
�

j �=i
H(pi, pj) and each half-space H(pi, pj) is convex, as an intersection

of convex sets, Vi is convex. Also, since pi belongs to the interior of each H(pi, pj), the point
pi belongs to the interior of Vi.

(2) Let Fi,j denote Vi ∩ Vj. Any vertex p of the Vononoi diagram of P must belong to r
faces Fi,j. Now, given a vector space E and any two subspaces M and N of E, recall that
we have the Grassmann relation

dim(M) + dim(N) = dim(M +N) + dim (M ∩N).

Then since p belongs to the intersection of the hyperplanes that form the boundaries of the
Vi, and since a hyperplane has dimension m− 1, by the Grassmann relation, we must have
r ≥ m. For simplicity of notation, let us denote these faces by F1,2, F2,3, . . . , Fr,r+1. Since
Fi,j = Vi ∩ Vj, we have

Fi,j = {p | d(p, pi) = d(p, pj) ≤ d(p, pk), for all k �= i, j},

and since p ∈ F1,2 ∩ F2,3 ∩ · · · ∩ Fr,r+1, we have

d(p, p1) = · · · = d(p, pr+1) < d(p, pk) for all k /∈ {1, . . . , r + 1}.
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This means that p is the center of a sphere passing through p1, . . . , pr+1 and containing no
other point in P . By the assumption that points in P are in general position, we must
have r ≤ m, and thus r = m. Thus, p belongs to V1 ∩ · · · ∩ Vm+1, but to no other Vj with
j /∈ {1, . . . ,m + 1}. Furthermore, every edge of the Voronoi diagram containing p is the
intersection of m of the regions V1, . . . , Vm+1, and so there are m+ 1 of them.

For simplicity, let us again consider the case where E is a plane. It should be noted that
certain Voronoi regions, although closed, may extend very far. Figure 8.3 shows such an
example.

Figure 8.3: Another Voronoi diagram

It is also possible for certain unbounded regions to have parallel edges.

There are a number of methods for computing Voronoi diagrams. A fairly simple (al-
though not very efficient) method is to compute each Voronoi region V (pi) by intersecting
the half-planes H(pi, pj). One way to do this is to construct successive convex polygons
that converge to the boundary of the region. At every step we intersect the current convex
polygon with the bisector line of pi and pj. There are at most two intersection points. We
also need a starting polygon, and for this we can pick a square containing all the points.
A naive implementation will run in O(n3). However, the intersection of half-planes can be
done in O(n log n), using the fact that the vertices of a convex polygon can be sorted. Thus,
the above method runs in O(n2 log n). Actually, there are faster methods (see Preparata and
Shamos [32] or O’Rourke [31]), and it is possible to design algorithms running in O(n log n).
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Figure 8.4: Delaunay triangulation associated with a Voronoi diagram

The most direct method to obtain fast algorithms is to use the “lifting method” discussed
in Section 8.4, whereby the original set of points is lifted onto a paraboloid, and to use fast
algorithms for finding a convex hull.

A very interesting (undirected) graph can be obtained from the Voronoi diagram as
follows: The vertices of this graph are the points pi (each corresponding to a unique region
of Vor(P )), and there is an edge between pi and pj iff the regions Vi and Vj share an edge.
The resulting graph is called a Delaunay triangulation of the convex hull of P , after Delaunay,
who invented this concept in 1933.5. Such triangulations have remarkable properties.

Figure 8.4 shows the Delaunay triangulation associated with the earlier Voronoi diagram
of a set of twelve points.

One has to be careful to make sure that all the Voronoi vertices have been computed
before computing a Delaunay triangulation, since otherwise, some edges could be missed. In
Figure 8.5 illustrating such a situation, if the lowest Voronoi vertex had not been computed
(not shown on the diagram!), the lowest edge of the Delaunay triangulation would be missing.

The concept of a triangulation can be generalized to dimension 3, or even to any dimension
m.
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Figure 8.5: Another Delaunay triangulation associated with a Voronoi diagram

8.2 Triangulations

The concept of a triangulation relies on the notion of pure simplicial complex defined in
Chapter 6. The reader should review Definition 6.2 and Definition 6.3.

Definition 8.2 Given a subset, S ⊆ Em (where m ≥ 1), a triangulation of S is a pure
(finite) simplicial complex, K, of dimension m such that S = |K|, that is, S is equal to the
geometric realization of K.

Given a finite set P of n points in the plane, and given a triangulation of the convex hull
of P having P as its set of vertices, observe that the boundary of P is a convex polygon.
Similarly, given a finite set P of points in 3-space, and given a triangulation of the convex hull
of P having P as its set of vertices, observe that the boundary of P is a convex polyhedron.
It is interesting to know how many triangulations exist for a set of n points (in the plane
or in 3-space), and it is also interesting to know the number of edges and faces in terms
of the number of vertices in P . These questions can be settled using the Euler–Poincaré
characteristic. We say that a polygon in the plane is a simple polygon iff it is a connected
closed polygon such that no two edges intersect (except at a common vertex).

Lemma 8.2

(1) For any triangulation of a region of the plane whose boundary is a simple polygon,
letting v be the number of vertices, e the number of edges, and f the number of triangles,
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we have the “Euler formula”
v − e+ f = 1.

(2) For any region, S, in E3 homeomorphic to a closed ball and for any triangulation of S,
letting v be the number of vertices, e the number of edges, f the number of triangles,
and t the number of tetrahedra, we have the “Euler formula”

v − e+ f − t = 1.

(3) Furthermore, for any triangulation of the combinatorial surface, B(S), that is the
boundary of S, letting v� be the number of vertices, e� the number of edges, and f � the
number of triangles, we have the “Euler formula”

v� − e� + f � = 2.

Proof . All the statements are immediate consequences of Theorem 7.6. For example, part
(1) is obtained by mapping the triangulation onto a sphere using inverse stereographic pro-
jection, say from the North pole. Then, we get a polytope on the sphere with an extra facet
corresponding to the “outside” of the triangulation. We have to deduct this facet from the
Euler characteristic of the polytope and this is why we get 1 instead of 2.

It is now easy to see that in case (1), the number of edges and faces is a linear function
of the number of vertices and boundary edges, and that in case (3), the number of edges
and faces is a linear function of the number of vertices. Indeed, in the case of a planar
triangulation, each face has 3 edges, and if there are eb edges in the boundary and ei edges
not in the boundary, each nonboundary edge is shared by two faces, and thus 3f = eb +2ei.
Since v − eb − ei + f = 1, we get

v − eb − ei + eb/3 + 2ei/3 = 1,

2eb/3 + ei/3 = v − 1,

and thus ei = 3v − 3− 2eb. Since f = eb/3 + 2ei/3, we have f = 2v − 2− eb.

Similarly, since v� − e� + f � = 2 and 3f � = 2e�, we easily get e = 3v− 6 and f = 2v− 3.5.
Thus, given a set P of n points, the number of triangles (and edges) for any triangulation
of the convex hull of P using the n points in P for its vertices is fixed.

Case (2) is trickier, but it can be shown that

v − 3 ≤ t ≤ (v − 1)(v − 2)/2.
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Thus, there can be different numbers of tetrahedra for different triangulations of the convex
hull of P .

Remark: The numbers of the form v − e + f and v − e + f − t are called Euler–Poincaré
characteristics . They are topological invariants, in the sense that they are the same for all
triangulations of a given polytope. This is a fundamental fact of algebraic topology.

We shall now investigate triangulations induced by Voronoi diagrams.

8.3 Delaunay Triangulations

Given a set P = {p1, . . . , pn} of n points in the plane and the Voronoi diagram Vor(P ) for
P , we explained in Section 8.1 how to define an (undirected) graph: The vertices of this
graph are the points pi (each corresponding to a unique region of Vor(P )), and there is an
edge between pi and pj iff the regions Vi and Vj share an edge. The resulting graph turns out
to be a triangulation of the convex hull of P having P as its set of vertices. Such a complex
can be defined in general. For any set P = {p1, . . . , pn} of n points in Em, we say that a
triangulation of the convex hull of P is associated with P if its set of vertices is the set P .

Definition 8.3 Let P = {p1, . . . , pn} be a set of n points in Em, and let Vor(P ) be the
Voronoi diagram of P . We define a complex Del(P ) as follows. The complex Del(P )
contains the k-simplex {p1, . . . , pk+1} iff V1 ∩ · · ·∩Vk+1 �= ∅, where 0 ≤ k ≤ m. The complex
Del(P ) is called the Delaunay triangulation of the convex hull of P .

Thus, {pi, pj} is an edge iff Vi ∩ Vj �= ∅, {pi, pj, ph} is a triangle iff Vi ∩ Vj ∩ Vh �= ∅,
{pi, pj, ph, pk} is a tetrahedron iff Vi ∩ Vj ∩ Vh ∩ Vk �= ∅, etc.

For simplicity, we often write Del instead of Del(P ). A Delaunay triangulation for a set
of twelve points is shown in Figure 8.6.

Actually, it is not obvious that Del(P ) is a triangulation of the convex hull of P , but
this can be shown, as well as the properties listed in the following lemma.

Lemma 8.3 Let P = {p1, . . . , pn} be a set of n points in Em, and assume that they are
in general position. Then the Delaunay triangulation of the convex hull of P is indeed a
triangulation associated with P , and it satisfies the following properties:

(1) The boundary of Del(P ) is the convex hull of P .

(2) A triangulation T associated with P is the Delaunay triangulation Del(P ) iff every
(m− 1)-sphere S(σ) circumscribed about an m-simplex σ of T contains no other point
from P (i.e., the open ball associated with S(σ) contains no point from P ).
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Figure 8.6: A Delaunay triangulation

The proof can be found in Risler [33] and O’Rourke [31]. In the case of a planar set P , it
can also be shown that the Delaunay triangulation has the property that it maximizes the
minimum angle of the triangles involved in any triangulation of P . However, this does not
characterize the Delaunay triangulation. Given a connected graph in the plane, it can also
be shown that any minimal spanning tree is contained in the Delaunay triangulation of the
convex hull of the set of vertices of the graph (O’Rourke [31]).

We will now explore briefly the connection between Delaunay triangulations and convex
hulls.

8.4 Delaunay Triangulations and Convex Hulls

In this section we show that there is an intimate relationship between convex hulls and
Delaunay triangulations. We will see that given a set P of points in the Euclidean space
Em of dimension m, we can “lift” these points onto a paraboloid living in the space Em+1 of
dimensionm+1, and that the Delaunay triangulation of P is the projection of the downward-
facing faces of the convex hull of the set of lifted points. This remarkable connection was
first discovered by Edelsbrunner and Seidel [16]. For simplicity, we consider the case of a set
P of points in the plane E2, and we assume that they are in general position.

Consider the paraboloid of revolution of equation z = x2 + y2. A point p = (x, y) in the
plane is lifted to the point l(p) = (X, Y, Z) in E3, where X = x, Y = y, and Z = x2 + y2.
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The first crucial observation is that a circle in the plane is lifted into a plane curve (an
ellipse). Indeed, if such a circle C is defined by the equation

x2 + y2 + ax+ by + c = 0,

since X = x, Y = y, and Z = x2 + y2, by eliminating x2 + y2 we get

Z = −ax− by − c,

and thus X, Y, Z satisfy the linear equation

aX + bY + Z + c = 0,

which is the equation of a plane. Thus, the intersection of the cylinder of revolution consisting
of the lines parallel to the z-axis and passing through a point of the circle C with the
paraboloid z = x2 + y2 is a planar curve (an ellipse).

We can compute the convex hull of the set of lifted points. Let us focus on the downward-
facing faces of this convex hull. Let (l(p1), l(p2), l(p3)) be such a face. The points p1, p2, p3
belong to the set P . We claim that no other point from P is inside the circle C. Indeed,
a point p inside the circle C would lift to a point l(p) on the paraboloid. Since no four
points are cocyclic, one of the four points p1, p2, p3, p is further from O than the others; say
this point is p3. Then, the face (l(p1), l(p2), l(p)) would be below the face (l(p1), l(p2), l(p3)),
contradicting the fact that (l(p1), l(p2), l(p3)) is one of the downward-facing faces of the
convex hull of P . But then, by property (2) of Lemma 8.3, the triangle (p1, p2, p3) would
belong to the Delaunay triangulation of P .

Therefore, we have shown that the projection of the part of the convex hull of the lifted
set l(P ) consisting of the downward-facing faces is the Delaunay triangulation of P . Figure
8.7 shows the lifting of the Delaunay triangulation shown earlier.

Another example of the lifting of a Delaunay triangulation is shown in Figure 8.8.

The fact that a Delaunay triangulation can be obtained by projecting a lower convex
hull can be used to find efficient algorithms for computing a Delaunay triangulation. It also
holds for higher dimensions.

The Voronoi diagram itself can also be obtained from the lifted set l(P ). However, this
time, we need to consider tangent planes to the paraboloid at the lifted points. It is fairly
obvious that the tangent plane at the lifted point (a, b, a2 + b2) is

z = 2ax+ 2by − (a2 + b2).

Given two distinct lifted points (a1, b1, a21 + b21) and (a2, b2, a22 + b22), the intersection of the
tangent planes at these points is a line belonging to the plane of equation

(b1 − a1)x+ (b2 − a2)y = (b21 + b22)/2− (a21 + a22)/2.
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Figure 8.7: A Delaunay triangulation and its lifting to a paraboloid
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Figure 8.8: Another Delaunay triangulation and its lifting to a paraboloid
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Now, if we project this plane onto the xy-plane, we see that the above is precisely the
equation of the bisector line of the two points (a1, b1) and (a2, b2). Therefore, if we look at
the paraboloid from z = +∞ (with the paraboloid transparent), the projection of the tangent
planes at the lifted points is the Voronoi diagram!

It should be noted that the “duality” between the Delaunay triangulation, which is the
projection of the convex hull of the lifted set l(P ) viewed from z = −∞, and the Voronoi
diagram, which is the projection of the tangent planes at the lifted set l(P ) viewed from
z = +∞, is reminiscent of the polar duality with respect to a quadric. This duality will be
thoroughly investigated in Section 8.6.

The reader interested in algorithms for finding Voronoi diagrams and Delaunay triangu-
lations is referred to O’Rourke [31], Preparata and Shamos [32], Boissonnat and Yvinec [8],
de Berg, Van Kreveld, Overmars, and Schwarzkopf [5], and Risler [33].

8.5 Stereographic Projection and the Space of
Generalized Spheres

Brown appears to be the first person who observed that Voronoi diagrams and convex hulls
are related via inversion with respect to a sphere [11].

In fact, more generally, it turns out that Voronoi diagrams, Delaunay Triangulations and
their properties can also be nicely explained using stereographic projection and its inverse,
although a rigorous justification of why this “works” is not as simple as it might appear.

The advantage of stereographic projection over the lifting onto a paraboloid is that the
(d-)sphere is compact. Since the stereographic projection and its inverse map (d−1)-spheres
to (d − 1)-spheres (or hyperplanes), all the crucial properties of Delaunay triangulations
are preserved. The purpose of this section is to establish the properties of stereographic
projection (and its inverse) that will be needed in Section 8.6.

Recall that the d-sphere, Sd ⊆ Ed+1, is given by

Sd = {(x1, . . . , xd+1) ∈ Ed+1 | x2
1 + · · ·+ x2

d
+ x2

d+1 = 1}.

It will be convenient to write a point, (x1, . . . , xd+1) ∈ Ed+1, as z = (x, xd+1), with
x = (x1, . . . , xd). We denote N = (0, . . . , 0, 1) (with d zeros) as (0, 1) and call it the north
pole and S = (0, . . . , 0,−1) (with d zeros) as (0,−1) and call it the south pole. We also
write �z� = (x2

1 + · · ·+ x2
d+1)

1
2 = (�x�2 + x2

d+1)
1
2 (with �x� = (x2

1 + · · ·+ x2
d
)
1
2 ). With these

notations,
Sd = {(x, xd+1) ∈ Ed+1 | �x�2 + x2

d+1 = 1}.

The stereographic projection from the north pole, σN : (Sd−{N}) → Ed, is the restriction
to Sd of the central projection from N onto the hyperplane, Hd+1(0) ∼= Ed, of equation
xd+1 = 0; that is, M �→ σN(M) where σN(M) is the intersection of the line, �N,M�, through
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N and M with Hd+1(0). Since the line through N and M = (x, xd+1) is given parametrically
by

�N,M� = {(1− λ)(0, 1) + λ(x, xd+1) | λ ∈ R},

the intersection, σN(M), of this line with the hyperplane xd+1 = 0 corresponds to the value
of λ such that

(1− λ) + λxd+1 = 0,

that is,

λ =
1

1− xd+1
.

Therefore, the coordinates of σN(M), with M = (x, xd+1), are given by

σN(x, xd+1) =

�
x

1− xd+1
, 0

�
.

Let us find the inverse, τN = σ−1
N
(P ), of any P ∈ Hd+1(0) ∼= Ed. This time, τN(P ) is the

intersection of the line, �N,P �, through P ∈ Hd+1(0) and N with the sphere, Sd. Since the
line through N and P = (x, 0) is given parametrically by

�N,P � = {(1− λ)(0, 1) + λ(x, 0) | λ ∈ R},

the intersection, τN(P ), of this line with the sphere Sd corresponds to the nonzero value of
λ such that

λ2 �x�2 + (1− λ)2 = 1,

that is
λ(λ(�x�2 + 1)− 2) = 0.

Thus, we get

λ =
2

�x�2 + 1
,

from which we get

τN(x) =

�
2x

�x�2 + 1
, 1− 2

�x�2 + 1

�

=

�
2x

�x�2 + 1
,
�x�2 − 1

�x�2 + 1

�
.

We leave it as an exercise to the reader to verify that τN ◦ σN = id and σN ◦ τN = id.
We can also define the stereographic projection from the south pole, σS : (Sd − {S}) → Ed,
and its inverse, τS. Again, the computations are left as a simple exercise to the reader. The
above computations are summarized in the following definition:
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Definition 8.4 The stereographic projection from the north pole, σN : (Sd − {N}) → Ed, is
the map given by

σN(x, xd+1) =

�
x

1− xd+1
, 0

�
(xd+1 �= 1).

The inverse of σN , denoted τN : Ed → (Sd−{N}) and called inverse stereographic projection
from the north pole is given by

τN(x) =

�
2x

�x�2 + 1
,
�x�2 − 1

�x�2 + 1

�
.

Remark: An inversion of center C and power ρ > 0 is a geometric transformation,
f : (Ed+1 − {C}) → Ed+1, defined so that for any M �= C, the points C, M and f(M) are
collinear and

�CM��Cf(M)� = ρ.

Equivalently, f(M) is given by

f(M) = C +
ρ

�CM�2 CM.

Clearly, f ◦ f = id on Ed+1 − {C}, so f is invertible and the reader will check that if we
pick the center of inversion to be the north pole and if we set ρ = 2, then the coordinates of
f(M) are given by

yi =
2xi

x2
1 + · · ·+ x2

d
+ x2

d+1 − 2xd+1 + 1
, 1 ≤ i ≤ d

yd+1 =
x2
1 + · · ·+ x2

d
+ x2

d+1 − 1

x2
1 + · · ·+ x2

d
+ x2

d+1 − 2xd+1 + 1
,

where (x1, . . . , xd+1) are the coordinates of M . In particular, if we restrict our inversion to
the unit sphere, Sd, as x2

1 + · · ·+ x2
d
+ x2

d+1 = 1, we get

yi =
xi

1− xd+1
, 1 ≤ i ≤ d

yd+1 = 0,

which means that our inversion restricted to Sd is simply the stereographic projection, σN

(and the inverse of our inversion restricted to the hyperplane, xd+1 = 0, is the inverse
stereographic projection, τN).

We will now show that the image of any (d−1)-sphere, S, on Sd not passing through the
north pole, that is, the intersection, S = Sd ∩H, of Sd with any hyperplane, H, not passing
through N is a (d− 1)-sphere. Here, we are assuming that S has positive radius, that is, H
is not tangent to Sd.
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Assume that H is given by

a1x1 + · · ·+ adxd + ad+1xd+1 + b = 0.

Since N /∈ H, we must have ad+1+b �= 0. For any (x, xd+1) ∈ Sd, write σN(x, xd+1) = (X, 0).
Since

X =
x

1− xd+1
,

we get x = X(1− xd+1) and using the fact that (x, xd+1) also belongs to H we will express
xd+1 in terms of X and then find an equation for X which will show that X belongs to a
(d− 1)-sphere. Indeed, (x, xd+1) ∈ H implies that

d�

i=1

aiXi(1− xd+1) + ad+1xd+1 + b = 0,

that is,
d�

i=1

aiXi + (ad+1 −
d�

j=1

ajXj)xd+1 + b = 0.

If
�

d

j=1 ajXj = ad+1, then ad+1 + b = 0, which is impossible. Therefore, we get

xd+1 =
−b−

�
d

i=1 aiXi

ad+1 −
�

d

i=1 aiXi

and so,

1− xd+1 =
ad+1 + b

ad+1 −
�

d

i=1 aiXi

.

Plugging x = X(1− xd+1) in the equation, �x�2 + xd

d+1 = 1, of Sd, we get

(1− xd+1)
2 �X�2 + x2

d+1 = 1,

and replacing xd+1 and 1− xd+1 by their expression in terms of X, we get

(ad+1 + b)2 �X�2 + (−b−
d�

i=1

aiXi)
2 = (ad+1 −

d�

i=1

aiXi)
2

that is,

(ad+1 + b)2 �X�2 = (ad+1 −
d�

i=1

aiXi)
2 − (b+

d�

i=1

aiXi)
2

= (ad+1 + b)(ad+1 − b− 2
d�

i=1

aiXi)
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which yields

(ad+1 + b)2 �X�2 + 2(ad+1 + b)(
d�

i=1

aiXi) = (ad+1 + b)(ad+1 − b),

that is,

�X�2 + 2
d�

i=1

ai
ad+1 + b

Xi −
ad+1 − b

ad+1 + b
= 0,

which is indeed the equation of a (d− 1)-sphere in Ed. Therefore, when N /∈ H, the image
of S = Sd ∩H by σN is a (d− 1)-sphere in Hd+1(0) = Ed.

If the hyperplane, H, contains the north pole, then ad+1 + b = 0, in which case, for every
(x, xd+1) ∈ Sd ∩H, we have

d�

i=1

aixi + ad+1xd+1 − ad+1 = 0,

that is,
d�

i=1

aixi − ad+1(1− xd+1) = 0,

and except for the north pole, we have

d�

i=1

ai
xi

1− xd+1
− ad+1 = 0,

which shows that
d�

i=1

aiXi − ad+1 = 0,

the intersection of the hyperplanes H and Hd+1(0) Therefore, the image of Sd ∩H by σN is
the hyperplane in Ed which is the intersection of H with Hd+1(0).

We will also prove that τN maps (d − 1)-spheres in Hd+1(0) to (d − 1)-spheres on Sd

not passing through the north pole. Assume that X ∈ Ed belongs to the (d − 1)-sphere of
equation

d�

i=1

X2
i
+

d�

j=1

ajXj + b = 0.

For any (X, 0) ∈ Hd+1(0), we know that (x, xd+1) = τN(X) is given by

(x, xd+1) =

�
2X

�X�2 + 1
,
�X�2 − 1

�X�2 + 1

�
.
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Using the equation of the (d− 1)-sphere, we get

x =
2X

−b+ 1−
�

d

j=1 ajXj

and

xd+1 =
−b− 1−

�
d

j=1 ajXj

−b+ 1−
�

d

j=1 ajXj

.

Then, we get
d�

i=1

aixi =
2
�

d

j=1 ajXj

−b+ 1−
�

d

j=1 ajXj

,

which yields

(−b+ 1)(
d�

i=1

aixi)− (
d�

i=1

aixi)(
d�

j=1

ajXj) = 2
d�

j=1

ajXj.

From the above, we get
d�

i=1

aiXi =
(−b+ 1)(

�
d

i=1 aixi)�
d

i=1 aixi + 2
.

Plugging this expression in the formula for xd+1 above, we get

xd+1 =
−b− 1−

�
d

i=1 aixi

−b+ 1
,

which yields
d�

i=1

aixi + (−b+ 1)xd+1 + (b+ 1) = 0,

the equation of a hyperplane, H, not passing through the north pole. Therefore, the image
of a (d − 1)-sphere in Hd+1(0) is indeed the intersection, H ∩ Sd, of Sd with a hyperplane
not passing through N , that is, a (d− 1)-sphere on Sd.

Given any hyperplane, H �, in Hd+1(0) = Ed, say of equation

d�

i=1

aiXi + b = 0,

the image of H � under τN is a (d−1)-sphere on Sd, the intersection of Sd with the hyperplane,
H, passing through N and determined as follows: For any (X, 0) ∈ Hd+1(0), if τN(X) =
(x, xd+1), then

X =
x

1− xd+1



8.5. STEREOGRAPHIC PROJECTION AND THE SPACE OF SPHERES 165

and so, (x, xd+1) satisfies the equation

d�

i=1

aixi + b(1− xd+1) = 0,

that is,
d�

i=1

aixi − bxd+1 + b = 0,

which is indeed the equation of a hyperplane, H, passing through N . We summarize all this
in the following proposition:

Proposition 8.4 The stereographic projection, σN : (Sd − {N}) → Ed, induces a bijection,
σN , between the set of (d−1)-spheres on Sd and the union of the set of (d−1)-spheres in Ed

with the set of hyperplanes in Ed; every (d− 1)-sphere on Sd not passing through the north
pole is mapped to a (d − 1)-sphere in Ed and every (d − 1)-sphere on Sd passing through
the north pole is mapped to a hyperplane in Ed. In fact, σN maps the (d − 1)-sphere on Sd

determined by the hyperplane

a1x1 + · · ·+ adxd + ad+1xd+1 + b = 0

not passing through the north pole (ad+1 + b �= 0) to the (d− 1)-sphere

d�

i=1

X2
i
+ 2

d�

i=1

ai
ad+1 + b

Xi −
ad+1 − b

ad+1 + b
= 0

and the (d− 1)-sphere on Sd determined by the hyperplane

d�

i=1

aixi + ad+1xd+1 − ad+1 = 0

through the north pole to the hyperplane

d�

i=1

aiXi − ad+1 = 0;

the map τN = σ−1
N

maps the (d− 1)-sphere

d�

i=1

X2
i
+

d�

j=1

ajXj + b = 0

to the (d− 1)-sphere on Sd determined by the hyperplane

d�

i=1

aixi + (−b+ 1)xd+1 + (b+ 1) = 0
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not passing through the north pole and the hyperplane

d�

i=1

aiXi + b = 0

to the (d− 1)-sphere on Sd determined by the hyperplane

d�

i=1

aixi − bxd+1 + b = 0

through the north pole.

Proposition 8.4 raises a natural question: What do the hyperplanes, H, in Ed+1 that do
not intersect Sd correspond to, if they correspond to anything at all?

The first thing to observe is that the geometric definition of the stereographic projection
and its inverse makes it clear that the hyperplanes corresponding to (d − 1)-spheres in Ed

(by τN) do intersect Sd. Now, when we write the equation of a (d− 1)-sphere, S, say

d�

i=1

X2
i
+

d�

i=1

aiXi + b = 0

we are implicitly assuming a condition on the ai’s and b that ensures that S is not the empty
sphere, that is, that its radius, R, is positive (or zero). By “completing the square”, the
above equation can be rewritten as

d�

i=1

�
Xi +

ai
2

�2
=

1

4

d�

i=1

a2
i
− b,

and so the radius, R, of our sphere is given by

R2 =
1

4

d�

i=1

a2
i
− b

whereas its center is the point, c = −1
2(a1, . . . , ad). Thus, our sphere is a “real” sphere of

positive radius iff
d�

i=1

a2
i
> 4b

or a single point, c = −1
2(a1, . . . , ad), iff

�
d

i=1 a
2
i
= 4b.

What happens when
d�

i=1

a2
i
< 4b?
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In this case, if we allow “complex points”, that is, if we consider solutions of our equation

d�

i=1

X2
i
+

d�

i=1

aiXi + b = 0

over Cd, then we get a “complex” sphere of (pure) imaginary radius, i

2

�
4b−

�
d

i=1 a
2
i
. The

funny thing is that our computations carry over unchanged and the image of the complex
sphere, S, is still the intersection of the complex sphere Sd with the hyperplane, H, given

d�

i=1

aixi + (−b+ 1)xd+1 + (b+ 1) = 0.

However, this time, even though H does not have any “real” intersection points with Sd, we
can show that it does intersect the “complex sphere”,

Sd = {(z1, . . . , zd+1) ∈ Cd+1 | z21 + · · ·+ z2
d+1 = 1}

in a nonempty set of points in Cd+1.

It follows from all this that σN and τN establish a bijection between the set of all hy-
perplanes in Ed+1 minus the hyperplane, Hd+1 (of equation xd+1 = 1), tangent to Sd at the
north pole, with the union of four sets:

(1) The set of all (real) (d− 1)-spheres of positive radius;

(2) The set of all (complex) (d− 1)-spheres of imaginary radius;

(3) The set of all hyperplanes in Ed;

(4) The set of all points of Ed (viewed as spheres of radius 0).

Moreover, set (1) corresponds to the hyperplanes that intersect the interior of Sd and do not
pass through the north pole; set (2) corresponds to the hyperplanes that do not intersect Sd;
set (3) corresponds to the hyperplanes that pass through the north pole minus the tangent
hyperplane at the north pole; and set (4) corresponds to the hyperplanes that are tangent
to Sd, minus the tangent hyperplane at the north pole.

It is convenient to add the “point at infinity”, ∞, to Ed, because then the above bijection
can be extended to map the tangent hyperplane at the north pole to ∞. The union of these
four sets (with ∞ added) is called the set of generalized spheres , sometimes, denoted S(Ed).
This is a fairly complicated space. For one thing, topologically, S(Ed) is homeomorphic to the
projective space Pd+1 with one point removed (the point corresponding to the “hyperplane
at infinity”), and this is not a simple space. We can get a slightly more concrete “‘picture”
of S(Ed) by looking at the polars of the hyperplanes w.r.t. Sd. Then, the “real” spheres
correspond to the points strictly outside Sd which do not belong to the tangent hyperplane
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at the norh pole; the complex spheres correspond to the points in the interior of Sd; the
points of Ed ∪ {∞} correspond to the points on Sd; the hyperplanes in Ed correspond to the
points in the tangent hyperplane at the norh pole expect for the north pole. Unfortunately,
the poles of hyperplanes through the origin are undefined. This can be fixed by embedding
Ed+1 in its projective completion, Pd+1, but we will not go into this.

There are other ways of dealing rigorously with the set of generalized spheres. One
method described by Boissonnat [8] is to use the embedding where the sphere, S, of equation

d�

i=1

X2
i
− 2

d�

i=1

aiXi + b = 0

is mapped to the point
ϕ(S) = (a1, . . . , ad, b) ∈ Ed+1.

Now, by a previous computation we know that

b =
d�

i=1

a2
i
−R2,

where c = (a1, . . . , ad) is the center of S and R is its radius. The quantity
�

d

i=1 a
2
i
− R2

is known as the power of the origin w.r.t. S. In general, the power of a point, X ∈ Ed, is
defined as ρ(X) = �cX�2 −R2, which, after a moment of thought, is just

ρ(X) =
d�

i=1

X2
i
− 2

d�

i=1

aiXi + b.

Now, since points correspond to spheres of radius 0, we see that the image of the point,
X = (X1, . . . , Xd), is

l(X) = (X1, . . . , Xd,
d�

i=1

X2
i
).

Thus, in this model, points of Ed are lifted to the hyperboloid, P ⊆ Ed+1, of equation

xd+1 =
d�

i=1

x2
i
.

Actually, this method does not deal with hyperplanes but it is possible to do so. The
trick is to consider equations of a slightly more general form that capture both spheres and
hyperplanes, namely, equations of the form

c
d�

i=1

X2
i
+

d�

i=1

aiXi + b = 0.
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Indeed, when c = 0, we do get a hyperplane! Now, to carry out this method we really
need to consider equations up to a nonzero scalars, that is, we consider the projective space,
P(�S(Ed)), associated with the vector space, �S(Ed), consisting of the above equations. Then,
it turns out that the quantity

�(a, b, c) =
1

4
(

d�

i=1

a2
i
− 4bc)

(with a = (a1, . . . , ad)) defines a quadratic form on �S(Ed) whose corresponding bilinear form,

ρ((a, b, c), (a�, b�, c�)) =
1

4
(

d�

i=1

aia
�
i
− 2bc� − 2b�c),

has a natural interpretation (with a = (a1, . . . , ad) and a� = (a�1, . . . , a
�
d
)). Indeed, orthogo-

nality with respect to ρ (that is, when ρ((a, b, c), (a�, b�, c�)) = 0) says that the corresponding
spheres defined by (a, b, c) and (a�, b�, c�) are orthogonal, that the corresponding hyperplanes
defined by (a, b, 0) and (a�, b�, 0) are orthogonal, etc. The reader who wants to read more
about this approach should consult Berger (Volume II) [6].

There is a simple relationship between the lifting onto a hyperboloid and the lifting onto
Sd using the inverse stereographic projection map because the sphere and the paraboloid are
projectively equivalent, as we showed for S2 in Section 5.1.

Recall that the hyperboloid, P , in Ed+1 is given by the equation

xd+1 =
d�

i=1

x2
i

and of course, the sphere Sd is given by

d+1�

i=1

x2
i
= 1.

Consider the “projective transformation”, Θ, of Ed+1 given by

zi =
xi

1− xd+1
, 1 ≤ i ≤ d

zd+1 =
xd+1 + 1

1− xd+1
.

Observe that Θ is undefined on the hyperplane, Hd+1, tangent to Sd at the north pole and
that its first d component are identical to those of the stereographic projection! Then, we
immediately find that

xi =
2zi

1 + zd+1
, 1 ≤ i ≤ d

xd+1 =
zd+1 − 1

1 + zd+1
.
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Consequently, Θ is a bijection between Ed+1 −Hd+1 and Ed+1 −Hd+1(−1), where Hd+1(−1)
is the hyperplane of equation xd+1 = −1.

The fact that Θ is undefined on the hyperplane, Hd+1, is not a problem as far as mapping
the sphere to the paraboloid because the north pole is the only point that does not have
an image. However, later on when we consider the Voronoi polyhedron, V(P ), of a lifted
set of points, P , we will have more serious problems because in general, such a polyhedron
intersects both hyperplanes Hd+1 and Hd+1(−1). This means that Θ will not be well-defined
on the whole of V(P ) nor will it be surjective on its image. To remedy this difficulty, we
will work with projective completions. Basically, this amounts to chasing denominators and
homogenizing equations but we also have to be careful in dealing with convexity and this is
where the projective polyhedra (studied in Section 5.2) will come handy.

So, let us consider the projective sphere, Sd ⊆ Pd+1, given by the equation

d+1�

i=1

x2
i
= x2

d+2

and the paraboloid, P ⊆ Pd+1, given by the equation

xd+1xd+2 =
d�

i=1

x2
i
.

Let θ : Pd+1 → Pd+1 be the projectivity induced by the linear map, �θ : Rd+2 → Rd+2, given
by

zi = xi, 1 ≤ i ≤ d

zd+1 = xd+1 + xd+2

zd+2 = xd+2 − xd+1,

whose inverse is given by

xi = zi, 1 ≤ i ≤ d

xd+1 =
zd+1 − zd+2

2

xd+2 =
zd+1 + zd+2

2
.

If we plug these formulae in the equation of Sd, we get

4(
d�

i=1

z2
i
) + (zd+1 − zd+2)

2 = (zd+1 + zd+2)
2,

which simplifies to

zd+1zd+2 =
d�

i=1

z2
i
.
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Therefore, θ(Sd) = P , that is, θ maps the sphere to the hyperboloid. Observe that the north
pole, N = (0: · · · : 0 : 1 : 1), is mapped to the point at infinity, (0 : · · · : 0 : 1 : 0).

The map Θ is the restriction of θ to the affine patch, Ud+1, and as such, it can be fruitfully
described as the composition of �θ with a suitable projection onto Ed+1. For this, as we have
done before, we identify Ed+1 with the hyperplane, Hd+2 ⊆ Ed+2, of equation xd+2 = 1 (using
the injection, id+2 : Ed+1 → Ed+2, where ij : Ed+1 → Ed+2 is the injection given by

(x1, . . . , xd+1) �→ (x1, . . . , xj−1, 1, xj+1, . . . , xd+1)

for any (x1, . . . , xd+1) ∈ Ed+1). For each i, with 1 ≤ i ≤ d+2, let πi : (Ed+2−Hi(0)) → Ed+1

be the projection of center 0 ∈ Ed+2 onto the hyperplane, Hi ⊆ Ed+2, of equation xi = 1
(Hi

∼= Ed+1 and Hi(0) ⊆ Ed+2 is the hyperplane of equation xi = 0) given by

πi(x1, . . . , xd+2) =

�
x1

xi

, . . . ,
xi−1

xi

,
xi+1

xi

, . . . ,
xd+2

xi

�
(xi �= 0).

Geometrically, for any x /∈ Hi(0), the image, πi(x), of x is the intersection of the line through
the origin and x with the hyperplane, Hi ⊆ Ed+2 of equation xi = 1. Observe that the map,
πi : (Ed+2 −Hd+2(0)) → Ed+1, is an “affine” version of the bijection,
ϕi : Ui → Rd+1, of Section 5.1. Then, we have

Θ = πd+2 ◦ �θ ◦ id+2.

If we identify Hd+2 and Ed+1, we may write with a slight abuse of notation, Θ = πd+2 ◦ �θ.
Besides θ, we need to define a few more maps in order to establish the connection between

the Delaunay complex on Sd and the Delaunay complex on P . We use the convention of
denoting the extension to projective spaces of a map, f , defined between Euclidean spaces,
by �f .

The Euclidean orthogonal projection, pi : Rd+1 → Rd, is given by

pi(x1, . . . , xd+1) = (x1, . . . , xi−1, xi+1, . . . , xd+1)

and �pi : Pd+1 → Pd denotes the projection from Pd+1 onto Pd given by

�pi(x1 : · · · : xd+2) = (x1 : · · · : xi−1 : xi+1 : · · · : xd+2),

which is undefined at the point (0 : · · · : 1 : 0 : · · · : 0), where the “1” is in the ith slot. The
map �πN : (Pd+1 − {N}) → Pd is the central projection from the north pole onto Pd given by

�πN(x1 : · · · : xd+1 : xd+2) = (x1 : · · · : xd : xd+2 − xd+1) .

A geometric interpretation of �πN will be needed later in certain proofs. If we identify Pd

with the hyperplane, Hd+1(0) ⊆ Pd+1, of equation xd+1 = 0, then we claim that for any,
x �= N , the point �πN(x) is the intersection of the line through N and x with the hyperplane,
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Hd+1(0). Indeed, parametrically, the line, �N, x�, through N = (0: · · · : 0 : 1 : 1) and x is
given by

�N, x� = {(µx1 : · · · : µxd : λ+ µxd+1 : λ+ µxd+2) | λ, µ ∈ R, λ �= 0 or µ �= 0}.

The line �N, x� intersects the hyperplane xd+1 = 0 iff

λ+ µxd+1 = 0,

so we can pick λ = −xd+1 and µ = 1, which yields the intersection point,

(x1 : · · · : xd : 0 : xd+2 − xd+1),

as claimed.

We also have the projective versions of σN and τN , denoted �σN : (Sd − {N}) → Pd and
�τN : Pd → Sd ⊆ Pd+1, given by:

�σN(x1 : · · · : xd+2) = (x1 : · · · : xd : xd+2 − xd+1)

and

�τN(x1 : · · · : xd+1) =

�
2x1xd+1 : · · · : 2xdxd+1 :

d�

i=1

x2
i
− x2

d+1 :
d�

i=1

x2
i
+ x2

d+1

�
.

It is an easy exercise to check that the image of Sd − {N} by �σN is Ud+1 and that �σN and
�τN � Ud+1 are mutual inverses. Observe that �σN = �πN � Sd, the restriction of the projection,
�πN , to the sphere, Sd. The lifting, �l : Ed → P ⊆ Pd+1, is given by

�l(x1, . . . , xd) =

�
x1 : · · · : xd :

d�

i=1

x2
i
: 1

�

and the embedding, ψd+1 : Ed → Pd, (the map ψd+1 defined in Section 5.1) is given by

ψd+1(x1, . . . , xd) = (x1 : · · · : xd : 1).

Then, we easily check

Proposition 8.5 The maps, θ, �πN , �τN , �pd+1,�l and ψd+1 defined before satisfy the equations

�l = θ ◦ �τN ◦ ψd+1

�πN = �pd+1 ◦ θ
�τN ◦ ψd+1 = ψd+2 ◦ τN

�l = ψd+2 ◦ l
l = Θ ◦ τN .
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Proof . Let us check the first equation leaving the others as an exercise. Recall that θ is
given by

θ(x1 : · · · : xd+2) = (x1 : · · · : xd : xd+1 + xd+2 : xd+2 − xd+1).

Then, as

�τN ◦ ψd+1(x1, . . . , xd) =

�
2x1 : · · · : 2xd :

d�

i=1

x2
i
− 1:

d�

i=1

x2
i
+ 1

�
,

we get

θ ◦ �τN ◦ ψd+1(x1, . . . , xd) =

�
2x1 : · · · : 2xd : 2

d�

i=1

x2
i
: 2

�

=

�
x1 : · · · : xd :

d�

i=1

x2
i
: 1

�
= �l(x1, . . . , xd),

as claimed.

We will also need some properties of the projection πd+2 and of Θ and for this, let

Hd

+ = {(x1, . . . , xd) ∈ Ed | xd > 0} and Hd

− = {(x1, . . . , xd) ∈ Ed | xd < 0}.

Proposition 8.6 The projection, πd+2, has the following properties:

(1) For every hyperplane, H, through the origin, πd+2(H) is a hyperplane in Hd+2.

(2) Given any set of points, {a1, . . . , an} ⊆ Ed+2, if {a1, . . . , an} is contained in the open
half-space above the hyperplane xd+2 = 0 or {a1, . . . , an} is contained in the open half-
space below the hyperplane xd+2 = 0, then the image by πd+2 of the convex hull of the
ai’s is the convex hull of the images of these points, that is,

πd+2(conv({a1, . . . , an})) = conv({πd+2(a1), . . . , πd+2(an)}).

(3) Given any set of points, {a1, . . . , an} ⊆ Ed+1, if {a1, . . . , an} is contained in the open
half-space above the hyperplane Hd+1 or {a1, . . . , an} is contained in the open half-space
below Hd+1, then

Θ(conv({a1, . . . , an})) = conv({Θ(a1), . . . ,Θ(an)}).

(4) For any set S ⊆ Ed+1, if conv(S) does not intersect Hd+1, then

Θ(conv(S)) = conv(Θ(S)).
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Proof . (1) The image, πd+2(H), of a hyperplane, H, through the origin is the intersection
of H with Hd+2, which is a hyperplane in Hd+2.

(2) This seems fairly clear geometrically but the result fails for arbitrary sets of points
so to be on the safe side we give an algebraic proof. We will prove the following two facts
by induction on n ≥ 1:

(1) For all λ1, . . . ,λn ∈ R with λ1 + · · · + λn = 1 and λi ≥ 0, for all a1, . . . , an ∈ Hd+2
+

(resp. ∈ Hd+2
− ) there exist some µ1, . . . , µn ∈ R with µ1 + · · · + µn = 1 and µi ≥ 0, so

that
πd+2(λ1a1 + · · ·+ λnan) = µ1πd+2(a1) + · · ·+ µnπd+2(an).

(2) For all µ1, . . . , µn ∈ R with µ1 + · · · + µn = 1 and µi ≥ 0, for all a1, . . . , an ∈ Hd+2
+

(resp. ∈ Hd+2
− ) there exist some λ1, . . . ,λn ∈ R with λ1 + · · · + λn = 1 and λi ≥ 0, so

that
πd+2(λ1a1 + · · ·+ λnan) = µ1πd+2(a1) + · · ·+ µnπd+2(an).

(1) The base case is clear. Let us assume for the moment that we proved (1) for n = 2
and consider the induction step for n ≥ 2. Since λ1 + · · · + λn+1 = 1 and n ≥ 2, there is
some i such that λi �= 1, and without loss of generality, say λ1 �= 1. Then, we can write

λ1a1 + · · ·+ λn+1an+1 = λ1a1 + (1− λ1)

�
λ2

1− λ1
a2 + · · ·+ λn+1

1− λ1
an+1

�

and since λ1 + λ2 + · · ·+ λn+1 = 1, we have

λ2

1− λ1
+ · · ·+ λn+1

1− λ1
= 1.

By the induction hypothesis, for n = 2, there exist α1 with 0 ≤ α1 ≤ 1, such that

πd+2(λ1a1 + · · ·+ λn+1an+1) = πd+2

�
λ1a1 + (1− λ1)

�
λ2

1− λ1
a2 + · · ·+ λn+1

1− λ1
an+1

��

= (1− α1)πd+2(a1) + α1πd+2

�
λ2

1− λ1
a2 + · · ·+ λn+1

1− λ1
an+1

�

Again, by the induction hypothesis (for n), there exist β2, . . . , βn+1 with β2 + · · ·+ βn+1 = 1
and βi ≥ 0, so that

πd+2

�
λ2

1− λ1
a2 + · · ·+ λn+1

1− λ1
an+1

�
= β2πd+2(a2) + · · ·+ βn+1πd+2(an+1),

so we get

πd+2(λ1a1 + · · ·+ λn+1an+1) = (1− α1)πd+2(a1) + α1(β2πd+2(a2) + · · ·+ βn+1πd+2(an+1))

= (1− α1)πd+2(a1) + α1β2πd+2(a2) + · · ·+ α1βn+1πd+2(an+1)
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and clearly, 1−α1+α1β2+ · · ·+α1βn+1 = 1 as β2+ · · ·+βn+1 = 1; 1−α1 ≥ 0; and α1βi ≥ 0,
as 0 ≤ α1 ≤ 1 and βi ≥ 0. This establishes the induction step and thus, all is left is to prove
the case n = 2.

(2) The base case n = 1 is also clear. As in (1), let us assume for a moment that (2) is
proved for n = 2 and consider the induction step. The proof is quite similar to that of (1)
but this time, we may assume that µ1 �= 1 and we write

µ1πd+2(a1) + · · ·+ µn+1πd+2(an+1)

= µ1πd+2(a1) + (1− µ1)

�
µ2

1− µ1
πd+2(a2) · · ·+

µn+1

1− µ1
πd+2(an+1)

�
.

By the induction hypothesis, there are some α2, . . . ,αn+1 with α2+ · · ·+αn+1 = 1 and αi ≥ 0
such that

πd+2(α2a2 + · · ·+ αn+1an+1) =
µ2

1− µ1
πd+2(a2) + · · ·+ µn+1

1− µ1
πd+2(an+1).

By the induction hypothesis for n = 2, there is some β1 with 0 ≤ β1 ≤ 1, so that

πd+2((1−β1)a1+β1(α2a2+· · ·+αn+1an+1)) = µ1πd+2(a1)+(1−µ1)πd+2(α2a2+· · ·+αn+1an+1),

which establishes the induction hypothesis. Therefore, all that remains is to prove (1) and
(2) for n = 2.

As πd+2 is given by

πd+2(x1, . . . , xd+2) =

�
x1

xd+2
, . . . ,

xd+1

xd+2

�
(xd+2 �= 0)

it is enough to treat the case when d = 0, that is,

π2(a, b) =
a

b
.

To prove (1) it is enough to show that for any λ, with 0 ≤ λ ≤ 1, if b1b2 > 0 then

a1
b1

≤ (1− λ)a1 + λa2
(1− λ)b1 + λb2

≤ a2
b2

if
a1
b1

≤ a2
b2

and
a2
b2

≤ (1− λ)a1 + λa2
(1− λ)b1 + λb2

≤ a1
b1

if
a2
b2

≤ a1
b1
,

where, of course (1−λ)b1+λb2 �= 0. For this, we compute (leaving some steps as an exercise)

(1− λ)a1 + λa2
(1− λ)b1 + λb2

− a1
b1

=
λ(a2b1 − a1b2)

((1− λ)b1 + λb2)b1
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and
(1− λ)a1 + λa2
(1− λ)b1 + λb2

− a2
b2

= −(1− λ)(a2b1 − a1b2)

((1− λ)b1 + λb2)b2
.

Now, as b1b2 > 0, that is, b1 and b2 have the same sign and as 0 ≤ λ ≤ 1, we have both
((1− λ)b1 + λb2)b1 > 0 and ((1− λ)b1 + λb2)b2 > 0. Then, if a2b1 − a1b2 ≥ 0, that is a1

b1
≤ a2

b2

(since b1b2 > 0), the first two inequalities hold and if a2b1 − a1b2 ≤ 0, that is a2
b2

≤ a1
b1

(since
b1b2 > 0), the last two inequalities hold. This proves (1).

In order to prove (2), given any µ, with 0 ≤ µ ≤ 1, if b1b2 > 0, we show that we can find
λ with 0 ≤ λ ≤ 1, so that

(1− µ)
a1
b1

+ µ
a2
b2

=
(1− λ)a1 + λa2
(1− λ)b1 + λb2

.

If we let
α = (1− µ)

a1
b1

+ µ
a2
b2
,

we find that λ is given by the equation

λ(a2 − a1 + α(b1 − b2)) = αb1 − a1.

After some (tedious) computations (check for yourself!) we find:

a2 − a1 + α(b1 − b2) =
((1− µ)b2 + µb1)(a2b1 − a1b2)

b1b2

αb1 − a1 =
µb1(a2b1 − a1b2)

b1b2
.

If a2b1 − a1b2 = 0, then a1
b1

= a2
b2

and λ = 0 works. If a2b1 − a1b2 �= 0, then

λ =
µb1

(1− µ)b2 + µb1
=

µ

(1− µ) b2
b1
+ µ

.

Since b1b2 > 0, we have b2
b1

> 0, and since 0 ≤ µ ≤ 1, we conclude that 0 ≤ λ ≤ 1, which
proves (2).

(3) Since
Θ = πd+2 ◦ �θ ◦ id+2,

as id+2 and �θ are linear, they preserve convex hulls, so by (2), we simply have to show that
either �θ ◦ id+2({a1, . . . , an}) is strictly below the hyperplane, xd+2 = 0, or strictly above it.
But,

�θ(x1, . . . , xd+2)d+2 = xd+2 − xd+1

and id+2(x1, . . . , xd+1) = (x1, . . . , xd+1, 1), so

(�θ ◦ id+2)(x1, . . . , xd+1)d+2 = 1− xd+1,
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and this quantity is positive iff xd+1 < 1, negative iff xd+1 > 1; that is, either all the points
ai are strictly below the hyperplane Hd+1 or all strictly above it.

(4) This follows immediately from (3) as conv(S) consists of all finite convex combinations
of points in S.� If a set, {a1, . . . , an} ⊆ Ed+2, contains points on both sides of the hyperplane, xd+2 = 0,

then πd+2(conv({a1, . . . , an})) is not necessarily convex (find such an example!).

8.6 Stereographic Projection, Delaunay Polytopes and
Voronoi Polyhedra

We saw in an earlier section that lifting a set of points, P ⊆ Ed, to the paraboloid, P , via
the lifting function, l, was fruitful to better understand Voronoi diagrams and Delaunay
triangulations. As far as we know, Edelsbrunner and Seidel [16] were the first to find the
relationship between Voronoi diagrams and the polar dual of the convex hull of a lifted set
of points onto a paraboloid. This connection is described in Note 3.1 of Section 3 in [16].
The connection between the Delaunay triangulation and the convex hull of the lifted set of
points is described in Note 3.2 of the same paper. Polar duality is not mentioned and seems
to enter the scene only with Boissonnat and Yvinec [8].

It turns out that instead of using a paraboloid we can use a sphere and instead of the
lifting function l we can use the composition of ψd+1 with the inverse stereographic projection,
�τN . Then, to get back down to Ed, we use the composition of the projection, �πN , with ϕd+1,
instead of the orthogonal projection, pd+1.

However, we have to be a bit careful because Θ does map all convex polyhedra to convex
polyhedra. Indeed, Θ is the composition of πd+2 with some linear maps, but πd+2 does not
behave well with respect to arbitrary convex sets. In particular, Θ is not well-defined on
any face that intersects the hyperplane Hd+1 (of equation xd+1 = 1). Fortunately, we can
circumvent these difficulties by using the concept of a projective polyhedron introduced in
Chapter 5.

As we said in the previous section, the correspondence between Voronoi diagrams and
convex hulls via inversion was first observed by Brown [11]. Brown takes a set of points, S,
for simplicity assumed to be in the plane, first lifts these points to the unit sphere S2 using
inverse stereographic projection (which is equivalent to an inversion of power 2 centered at
the north pole), getting τN(S), and then takes the convex hull, D(S) = conv(τN(S)), of
the lifted set. Now, in order to obtain the Voronoi diagram of S, apply our inversion (of
power 2 centered at the north pole) to each of the faces of conv(τN(S)), obtaining spheres
passing through the center of S2 and then intersect these spheres with the plane containing
S, obtaining circles. The centers of some of these circles are the Voronoi vertices. Finally, a
simple criterion can be used to retain the “nearest Voronoi points” and to connect up these
vertices.
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Note that Brown’s method is not the method that uses the polar dual of the polyhedron
D(S) = conv(τN(S)), as we might have expected from the lifting method using a paraboloid.
In fact, it is more natural to get the Delaunay triangulation of S from Brown’s method, by
applying the stereographic projection (from the north pole) to D(S), as we will prove below.
As D(S) is strictly below the plane z = 1, there are no problems. Now, in order to get
the Voronoi diagram, we take the polar dual, D(S)∗, of D(S) and then apply the central
projection w.r.t. the north pole. This is where problems arise, as some faces of D(S)∗ may
intersect the hyperplane Hd+1 and this is why we have recourse to projective geometry.

First, we show that θ has a good behavior with respect to tangent spaces. Recall from
Section 5.2 that for any point, a = (a1 : · · · : ad+2) ∈ Pd+1, the tangent hyperplane, TaSd, to
the sphere Sd at a is given by the equation

d+1�

i=1

aixi − ad+2xd+2 = 0.

Similarly, the tangent hyperplane, TaP , to the paraboloid P at a is given by the equation

2
d�

i=1

aixi − ad+2xd+1 − ad+1xd+2 = 0.

If we lift a point a ∈ Ed to Sd by �τN ◦ψd+1 and to P by �l, it turns out that the image of the
tangent hyperplane to Sd at �τN ◦ ψd+1(a) by θ is the tangent hyperplane to P at �l(a).

Proposition 8.7 The map θ has the following properties:

(1) For any point, a = (a1, . . . , ad) ∈ Ed, we have

θ(T�τN◦ψd+1(a)S
d) = T�l(a)P ,

that is, θ preserves tangent hyperplanes.

(2) For every (d− 1)-sphere, S ⊆ Ed, we have

θ(�τN ◦ ψd+1(S)) = �l(S),

that is, θ preserves lifted (d− 1)-spheres.

Proof . (1) By Proposition 8.5, we know that

�l = θ ◦ �τN ◦ ψd+1

and we proved in Section 5.2 that projectivities preserve tangent spaces. Thus,

θ(T�τN◦ψd+1(a)S
d) = Tθ◦�τN◦ψd+1(a)θ(S

d) = T�l(a)P ,
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as claimed.

(2) This follows immediately from the equation �l = θ ◦ �τN ◦ ψd+1.

Given any two distinct points, a = (a1, . . . , ad) and b = (b1, . . . , bd) in Ed, recall that the
bisector hyperplane, Ha,b, of a and b is given by

(b1 − a1)x1 + · · ·+ (bd − ad)xd = (b21 + · · ·+ b2
d
)/2− (a21 + · · ·+ a2

d
)/2.

We have the following useful proposition:

Proposition 8.8 Given any two distinct points, a = (a1, . . . , ad) and b = (b1, . . . , bd) in Ed,
the image under the projection, �πN , of the intersection, T�τN◦ψd+1(a)S

d ∩ T�τN◦ψd+1(b)S
d, of the

tangent hyperplanes at the lifted points �τN ◦ψd+1(a) and �τN ◦ψd+1(b) on the sphere Sd ⊆ Pd+1

is the embedding of the bisector hyperplane, Ha,b, of a and b, into Pd, that is,

�πN(T�τN◦ψd+1(a)S
d ∩ T�τN◦ψd+1(b)S

d) = ψd+1(Ha,b).

Proof . In view of the geometric interpretation of �πN given earlier, we need to find the
equation of the hyperplane, H, passing through the intersection of the tangent hyperplanes,
T�τN◦ψd+1(a) and T�τN◦ψd+1(b) and passing through the north pole and then, it is geometrically
obvious that

�πN(T�τN◦ψd+1(a)S
d ∩ T�τN◦ψd+1(b)S

d) = H ∩Hd+1(0),

where Hd+1(0) is the hyperplane (in Pd+1) of equation xd+1 = 0. Recall that T�τN◦ψd+1(a)S
d

and T�τN◦ψd+1(b)S
d are given by

E1 = 2
d�

i=1

aixi + (
d�

i=1

a2
i
− 1)xd+1 − (

d�

i=1

a2
i
+ 1)xd+2 = 0

and

E2 = 2
d�

i=1

bixi + (
d�

i=1

b2
i
− 1)xd+1 − (

d�

i=1

b2
i
+ 1)xd+2 = 0.

The hyperplanes passing through T�τN◦ψd+1(a)S
d ∩ T�τN◦ψd+1(b)S

d are given by an equation of
the form

λE1 + µE2 = 0,

with λ, µ ∈ R. Furthermore, in order to contain the north pole, this equation must vanish
for x = (0: · · · : 0 : 1 : 1). But, observe that setting λ = −1 and µ = 1 gives a solution since
the corresponding equation is

2
d�

i=1

(bi − ai)xi + (
d�

i=1

b2
i
−

d�

i=1

a2
i
)xd+1 − (

d�

i=1

b2
i
−

d�

i=1

a2
i
)xd+2 = 0
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and it vanishes on (0 : · · · : 0 : 1 : 1). But then, the intersection of H with the hyperplane
Hd+1(0) of equation xd+1 = 0 is given by

2
d�

i=1

(bi − ai)xi − (
d�

i=1

b2
i
−

d�

i=1

a2
i
)xd+2 = 0.

Since we view Pd as the hyperplane Hd+1(0) ⊆ Pd+1 and since the coordinates of points
in Hd+1(0) are of the form (x1 : · · · : xd : 0 : xd+2), the above equation is equivalent to the
equation of ψd+1(Ha,b) in Pd in which xd+1 is replaced by xd+2.

In order to define precisely Delaunay complexes as projections of objects obtained by
deleting some faces from a projective polyhedron we need to define the notion of “projective
(polyhedral) complex”. However, this is easily done by defining the notion of cell complex
where the cells are polyhedral cones. Such objects are known as fans . The definition below
is basically Definition 6.8 in which the cells are cones as opposed to polytopes.

Definition 8.5 A fan in Em is a set, K, consisting of a (finite or infinite) set of polyhedral
cones in Em satisfying the following conditions:

(1) Every face of a cone in K also belongs to K.

(2) For any two cones σ1 and σ2 in K, if σ1 ∩ σ2 �= ∅, then σ1 ∩ σ2 is a common face of
both σ1 and σ2.

Every cone, σ ∈ K, of dimension k, is called a k-face (or face) of K. A 0-face {v} is called
a vertex and a 1-face is called an edge. The dimension of the fan K is the maximum of the
dimensions of all cones in K. If dimK = d, then every face of dimension d is called a cell
and every face of dimension d− 1 is called a facet .

A projective (polyhedral) complex , K ⊆ Pd, is a set of projective polyhedra of the form,
{P(C) | C ∈ K}, where K ⊆ Rd+1 is a fan.

Given a projective complex, the notions of face, vertex, edge, cell, facet, are dedined in
the obvious way.

If K ⊆ Rd is a polyhedral complex, then it is easy to check that the set
{C(σ) | σ ∈ K} ⊆ Rd+1 is a fan and we get the projective complex

�K = {P(C(σ)) | σ ∈ K} ⊆ Pd.

The projective complex, �K, is called the projective completion of K. Also, it is easy to check
that if f : P → P � is an injective affine map between two polyhedra P and P �, then f extends
uniquely to a projectivity, �f : �P → �P �, between the projective completions of P and P �.

We now have all the facts needed to show that Delaunay triangulations and Voronoi
diagrams can be defined in terms of the lifting, �τN ◦ ψd+1, and the projection, �πN , and to
establish their duality via polar duality with respect to Sd.
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Definition 8.6 Given any set of points, P = {p1, . . . , pn} ⊆ Ed, the polytope, D(P ) ⊆ Rd+1,
called the Delaunay polytope associated with P is the convex hull of the union of the lifting
of the points of P onto the sphere Sd (via inverse stereographic projection) with the north
pole, that is, D(P ) = conv(τN(P ) ∪ {N}). The projective Delaunay polytope, �D(P ) ⊆
Pd+1, associated with P is the projective completion of D(P ). The polyhedral complex,
C(P ) ⊆ Rd+1, called the lifted Delaunay complex of P is the complex obtained from D(P )
by deleting the facets containing the north pole (and their faces) and �C(P ) ⊆ Pd+1 is the
projective completion of C(P ). The polyhedral complex, Del(P ) = ϕd+1 ◦ �πN(�C(P )) ⊆ Ed,
is the Delaunay complex of P or Delaunay triangulation of P .

The above is not the “standard” definition of the Delaunay triangulation of P but it is
equivalent to the definition, say given in Boissonnat and Yvinec [8], as we will prove shortly.
It also has certain advantages over lifting onto a paraboloid, as we will explain. Furthermore,
to be perfectly rigorous, we should define Del(P ) by

Del(P ) = ϕd+1(�πN(�C(P )) ∩ Ud+1),

but �πN(�C(P )) ⊆ Ud+1 because C(P ) is strictly below the hyperplane Hd+1.

It it possible and useful to define Del(P ) more directly in terms of C(P ). The projection,
�πN : (Pd+1 − {N}) → Pd, comes from the linear map, �πN : Rd+2 → Rd+1, given by

�πN(x1, . . . , xd+1, xd+2) = (x1, . . . , xd, xd+2 − xd+1).

Consequently, as �C(P ) = �C(P ) = P(C(C(P ))), we immediately check that

Del(P ) = ϕd+1 ◦ �πN(�C(P )) = ϕd+1 ◦ �πN(C(C(P ))) = ϕd+1 ◦ �πN(cone(�C(P ))),

where �C(P ) = {�u | u ∈ C(P )} and �u = (u, 1).

This suggests defining the map, πN : (Rd+1 −Hd+1) → Rd, by

πN = ϕd+1 ◦ �πN ◦ id+2,

which is explicity given by

πN(x1, . . . , xd, xd+1) =
1

1− xd+1
(x1, . . . , xd).

Then, as C(P ) is strictly below the hyperplane Hd+1, we have

Del(P ) = ϕd+1 ◦ �πN(�C(P )) = πN(C(P )).

First, note that Del(P ) = ϕd+1 ◦ �πN(�C(P )) is indeed a polyhedral complex whose geo-
metric realization is the convex hull, conv(P ), of P . Indeed, by Proposition 8.6, the images
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of the facets of C(P ) are polytopes and when any two such polytopes meet, they meet along
a common face. Furthermore, if dim(conv(P )) = m, then Del(P ) is pure m-dimensional.
First, Del(P ) contains at least one m-dimensional cell. If Del(P ) was not pure, as the
complex is connected there would be some cell, σ, of dimension s < m meeting some other
cell, τ , of dimension m along a common face of dimension at most s and because σ is not
contained in any face of dimension m, no facet of τ containing σ ∩ τ can be adjacent to any
cell of dimension m and so, Del(P ) would not be convex, a contradiction.

For any polytope, P ⊆ Ed, given any point, x, not in P , recall that a facet, F , of P is
visible from x iff for every point, y ∈ F , the line through x and y intersects F only in y. If
dim(P ) = d, this is equivalent to saying that x and the interior of P are strictly separated
by the supporting hyperplane of F . Note that if dim(P ) < d, it possible that every facet of
P is visible from x.

Now, assume that P ⊆ Ed is a polytope with nonempty interior. We say that a facet,
F , of P is a lower-facing facet of P iff the unit normal to the supporting hyperplane of F
pointing towards the interior of P has non-negative xd+1-coordinate. A facet, F , that is not
lower-facing is called an upper-facing facet (Note that in this case the xd+1 coordinate of the
unit normal to the supporting hyperplane of F pointing towards the interior of P is strictly
negative).

Here is a convenient way to characterize lower-facing facets.

Proposition 8.9 Given any polytope, P ⊆ Ed, with nonempty interior, for any point, c,
on the Oxd-axis, if c lies strictly above all the intersection points of the Oxd-axis with the
supporting hyperplanes of all the upper-facing facets of F , then the lower-facing facets of P
are exactly the facets not visible from c.

Proof . Note that the intersection points of the Oxd-axis with the supporting hyperplanes
of all the upper-facing facets of P are strictly above the intersection points of the Oxd-axis
with the supporting hyperplanes of all the lower-facing facets. Suppose F is visible from c.
Then, F must not be lower-facing as otherwise, for any y ∈ F , the line through c and y has
to intersect some upper-facing facet and F is not be visible from c, a contradiction.

Now, as P is the intersection of the closed half-spaces determined by the supporting
hyperplanes of its facets, by the definition of an upper-facing facet, any point, c, on the
Oxd-axis that lies strictly above the intersection points of the Oxd-axis with the supporting
hyperplanes of all the upper-facing facets of F has the property that c and the interior
of P are strictly separated by all these supporting hyperplanes. Therefore, all the upper-
facing facets of P are visible from c. It follows that the facets visible from c are exactly the
upper-facing facets, as claimed.

We will also need the following fact when dim(P ) = d.

Proposition 8.10 Given any polytope, P ⊆ Ed, if dim(P ) = d, then there is a point, c, on
the Oxd-axis, such that for all points, x, on the Oxd-axis and above c, the set of facets of
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conv(P ∪{x}) not containing x is identical. Moreover, the set of facets of P not visible from
x is the set of facets of conv(P ∪ {x}) that do not contain x.

Proof . If dim(P ) = d then pick any c on the Oxd-axis above the intersection points of the
Oxd-axis with the supporting hyperplanes of all the upper-facing facets of F . Then, c is in
general position w.r.t. P in the sense that c and any d vertices of P do not lie in a common
hyperplane. Now, our result follows by lemma 8.3.1 of Boissonnat and Yvinec [8].

Corollary 8.11 Given any polytope, P ⊆ Ed, with nonempty interior, there is a point, c,
on the Oxd-axis, so that for all x on the Oxd-axis and above c, the lower-facing facets of P
are exactly the facets of conv(P ∪ {x}) that do not contain x.

As usual, let ed+1 = (0, . . . , 0, 1) ∈ Rd+1.

Theorem 8.12 Given any set of points, P = {p1, . . . , pn} ⊆ Ed, let D�(P ) denote the
polyhedron conv(l(P )) + cone(ed+1) and let �D�(P ) be the projective completion of D�(P ).
Also, let C �(P ) be the polyhedral complex consisting of the bounded facets of the polytope
D�(P ) and let �C �(P ) be the projective completion of C �(P ). Then

θ( �D(P )) = �D�(P ) and θ(�C(P )) = �C �(P ).

Furthermore, if Del �(P ) = ϕd+1 ◦ �pd+1(�C �(P )) = pd+1(C �(P )) is the “standard” Delaunay
complex of P , that is, the orthogonal projection of C �(P ) onto Ed, then

Del(P ) = Del �(P ).

Therefore, the two notions of a Delaunay complex agree. If dim(conv(P )) = d, then the
bounded facets of conv(l(P ))+cone(ed+1) are precisely the lower-facing facets of conv(l(P )).

Proof . Recall that
D(P ) = conv(τN(P ) ∪ {N})

and �D(P ) = P(C(D(P ))) is the projective completion of D(P ). If we write �τN(P ) for

{�τN(pi) | pi ∈ P}, then
C(D(P )) = cone(�τN(P ) ∪ { �N}).

By definition, we have
θ( �D) = P(�θ(C(D))).

Now, as �θ is linear,

�θ(C(D)) = �θ(cone(�τN(P ) ∪ { �N})) = cone(�θ(�τN(P )) ∪ {�θ( �N)}).
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We claim that

cone(�θ(�τN(P )) ∪ {�θ( �N)}) = cone(�l(P ) ∪ {(0, . . . , 0, 1, 1)})
= C(D�(P )),

where
D�(P ) = conv(l(P )) + cone(ed+1).

Indeed,
�θ(x1, . . . , xd+2) = (x1, . . . , xd, xd+1 + xd+2, xd+2 − xd+1),

and for any pi = (x1, . . . , xd) ∈ P ,

�τN(pi) =

�
2x1�

d

i=1 x
2
i
+ 1
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2xd�
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so we get
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2
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�l(pi).

Also, we have
�θ( �N) = �θ(0, . . . , 0, 1, 1) = (0, . . . , 0, 2, 0) = 2�ed+1,

and by definition of cone(−) (scalar factors are irrelevant), we get

cone(�θ(�τN(P )) ∪ {�θ( �N)}) = cone(�l(P ) ∪ {(0, . . . , 0, 1, 1)}) = C(D�(P )),

with D�(P ) = conv(l(P )) + cone(ed+1), as claimed. This proves that

θ( �D(P )) = �D�(P ).

Now, it is clear that the facets of conv(τN(P )∪ {N}) that do not contain N are mapped
to the bounded facets of conv(l(P )) + cone(ed+1), since N goes the point at infinity, so

θ(�C(P )) = �C �(P ).

As �πN = �pd+1 ◦ θ by Proposition 8.5, we get

Del �(P ) = ϕd+1 ◦ �pd+1(�C �(P )) = ϕd+1 ◦ (�pd+1 ◦ θ)(�C(P )) = ϕd+1 ◦ �πN(�C(P )) = Del(P ),
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as claimed. Finally, if dim(conv(P )) = d, then, by Corollary 8.11, we can pick a point, c, on
the Oxd+1-axis, so that the facets of conv(l(P )∪ {c}) that do not contain c are precisely the
lower-facing facets of conv(l(P )). However, it is also clear that the facets of conv(l(P )∪{c})
that contain c tend to the unbounded facets of D�(P ) = conv(l(P ))+cone(ed+1) when c goes
to +∞.

We can also characterize when the Delaunay complex, Del(P ), is simplicial. Recall that
we say that a set of points, P ⊆ Ed, is in general position iff no d + 2 of the points in P
belong to a common (d− 1)-sphere.

Proposition 8.13 Given any set of points, P = {p1, . . . , pn} ⊆ Ed, if P is in general
position, then the Delaunay complex, Del(P ), is a pure simplicial complex.

Proof . Let dim(conv(P )) = r. Then, τN(P ) is contained in a (r−1)-sphere of Sd, so we may
assume that r = d. Suppose Del(P ) has some facet, F , which is not a d-simplex. If so, F is
the convex hull of at least d+2 points, p1, . . . , pk of P and since F = πN( �F ), for some facet,
�F , of C(P ), we deduce that τN(p1), . . . , τN(pk) belong to the supporting hyperplane, H, of
�F . Now, if H passes through the north pole, then we know that p1, . . . , pk belong to some
hyperplane of Ed, which is impossible since p1, . . . , pk are the vertices of a facet of dimension
d. Thus, H does not pass through N and so, p1, . . . , pk belong to some (d− 1)-sphere in Ed.
As k ≥ d + 2, this contradicts the assumption that the points in P are in general position.

Remark: Even when the points in P are in general position, the Delaunay polytope, D(P ),
may not be a simplicial polytope. For example, if d + 1 points belong to a hyperplane in
Ed, then the lifted points belong to a hyperplane passing through the north pole and these
d + 1 lifted points together with N may form a non-simplicial facet. For example, consider
the polytope obtained by lifting our original d+1 points on a hyperplane, H, plus one more
point not in the the hyperplane H.

We can also characterize the Voronoi diagram of P in terms of the polar dual of D(P ).
Unfortunately, we can’t simply take the polar dual, D(P )∗, of D(P ) and project it using πN

because some of the facets of D(P )∗ may intersect the hyperplane, Hd+1, and πN is undefined
on Hd+1. However, using projective completions, we can indeed recover the Voronoi diagram
of P .

Definition 8.7 Given any set of points, P = {p1, . . . , pn} ⊆ Ed, the Voronoi polyhedron
associated with P is the polar dual (w.r.t. Sd ⊆ Rd+1), V(P ) = (D(P ))∗ ⊆ Rd+1, of
the Delaunay polytope, D(P ) = conv(τN(P ) ∪ {N}). The projective Voronoi polytope,
�V(P ) ⊆ Pd+1, associated with P is the projective completion of V(P ). The polyhedral
complex, Vor(P ) = ϕd+1(�πN(�V(P )) ∩ Ud+1) ⊆ Ed, is the Voronoi complex of P or Voronoi
diagram of P .
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Given any set of points, P = {p1, . . . , pn} ⊆ Ed, let V �(P ) = (D�(P ))∗ be the polar dual
(w.r.t. P ⊆ Rd+1) of the “standard” Delaunay polyhedron defined in Theorem 8.12 and let
�V �(P ) = �V �(P ) ⊆ Pd be its projective completion. It is not hard to check that

pd+1(V �(P )) = ϕd+1(�pd+1(�V �(P )) ∩ Ud+1)

is the “standard” Voronoi diagram, denoted Vor �(P ).

Theorem 8.14 Given any set of points, P = {p1, . . . , pn} ⊆ Ed, we have

θ(�V(P )) = �V �(P )

and
Vor(P ) = Vor �(P ).

Therefore, the two notions of Voronoi diagrams agree.

Proof . By definition,
�V(P ) = �V(P ) = �(D(P ))∗

and by Proposition 5.12,
�(D(P ))∗ =

�
�D(P )

�∗
= ( �D(P ))∗,

so
�V(P ) = ( �D(P ))∗.

By Proposition 5.10,
θ(�V(P )) = θ(( �D(P ))∗) = (θ( �D(P )))∗

and by Theorem 8.12,
θ( �D(P )) = �D�(P ),

so we get
θ(�V(P )) = ( �D�(P ))∗.

But, by Proposition 5.12 again,

( �D�(P ))∗ =
�
�D�(P )

�∗
= �(D�(P ))∗ = �V �(P ) = �V �(P ).

Therefore,
θ(�V(P )) = �V �(P ),

as claimed.

As �πN = �pd+1 ◦ θ by Proposition 8.5, we get

Vor �(P ) = ϕd+1(�pd+1(�V �(P )) ∩ Ud+1)

= ϕd+1(�pd+1 ◦ θ(�V(P )) ∩ Ud+1)

= ϕd+1(�πN(�V(P )) ∩ Ud+1)

= Vor(P ),
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finishing the proof.

We can also prove the proposition below which shows directly that Vor(P ) is the Voronoi
diagram of P . Recall that that �V(P ) is the projective completion of V(P ). We observed in
Section 5.2 (see page 86) that in the patch Ud+1, there is a bijection between the faces of
�V(P ) and the faces of V(P ). Furthermore, the projective completion, �H, of every hyperplane,
H ⊆ Rd, is also a hyperplane and it is easy to see that if H is tangent to V(P ), then �H is
tangent to �V(P ).

Proposition 8.15 Given any set of points, P = {p1, . . . , pn} ⊆ Ed, for every p ∈ P , if F is
the facet of V(P ) that contains τN(p), if H is the tangent hyperplane at τN(p) to Sd and if
F is cut out by the hyperplanes H,H1, . . . , Hkp, in the sense that

F = (H ∩H1)− ∩ · · · ∩ (H ∩Hkp)−,

where (H ∩Hi)− denotes the closed half-space in H containing τN(p) determined by H ∩Hi,
then

V (p) = ϕd+1(�πN( �H ∩ �H1)− ∩ · · · ∩ �πN( �H ∩ �Hkp)− ∩ Ud+1)

is the Voronoi region of p (where ϕd+1(�πN( �H∩ �Hi)−∩Ud+1) is the closed half-space containing
p). If P is in general position, then V(P ) is a simple polyhedron (every vertex belongs to
d+ 1 facets).

Proof . Recall that by Proposition 8.5,

�τN ◦ ψd+1 = ψd+2 ◦ τN .

Each Hi = TτN (pi)S
d is the tangent hyperplane to Sd at τN(pi), for some pi ∈ P . Now,

by definition of the projective completion, the embedding, V(P ) −→ �V(P ), is given by
a �→ ψd+2(a). Thus, every point, p ∈ P , is mapped to the point ψd+2(τN(p)) = �τN(ψd+1(p))
and we also have �Hi = T�τN◦ψd+1(pi)S

d and �H = T�τN◦ψd+1(p)S
d. By Proposition 8.8,

�πN(T�τN◦ψd+1(p)S
d ∩ T�τN◦ψd+1(pi)S

d) = ψd+1(Hp,pi)

is the embedding of the bisector hyperplane of p and pi in Pd, so the first part holds.

Now, assume that some vertex, v ∈ V(P ) = D(P )∗, belongs to k ≥ d + 2 facets of
V(P ). By polar duality, this means that the facet, F , dual of v has k ≥ d + 2 vertices
τN(p1), . . . , τN(pk) of D(P ). We claim that τN(p1), . . . , τN(pk) must belong to some hy-
perplane passing through the north pole. Otherwise, τN(p1), . . . , τN(pk) would belong to
a hyperplane not passing through the north pole and so they would belong to a (d − 1)
sphere of Sd and thus, p1, . . . , pk would belong to a (d − 1)-sphere even though k ≥ d + 2,
contradicting that P is in general position. But then, by polar duality, v would be a point
at infinity, a contradiction.
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Note that when P is in general position, even though the polytope, D(P ), may not be
simplicial, its dual, V(P ) = D(P )∗, is a simple polyhedron. What is happening is that V(P )
has unbounded faces which have “vertices at infinity” that do not count! In fact, the faces
of D(P ) that fail to be simplicial are those that are contained in some hyperplane through
the north pole. By polar duality, these faces correspond to a vertex at infinity. Also, if
m = dim(conv(P )) < d, then V(P ) may not have any vertices!

We conclude our presentation of Voronoi diagrams and Delaunay triangulations with a
short section on applications.

8.7 Applications of Voronoi Diagrams and Delaunay
Triangulations

The examples below are taken from O’Rourke [31]. Other examples can be found in Preparata
and Shamos [32], Boissonnat and Yvinec [8], and de Berg, Van Kreveld, Overmars, and
Schwarzkopf [5].

The first example is the nearest neighbors problem. There are actually two subproblems:
Nearest neighbor queries and all nearest neighbors .

The nearest neighbor queries problem is as follows. Given a set P of points and a query
point q, find the nearest neighbor(s) of q in P . This problem can be solved by computing the
Voronoi diagram of P and determining in which Voronoi region q falls. This last problem,
called point location, has been heavily studied (see O’Rourke [31]). The all neighbors problem
is as follows: Given a set P of points, find the nearest neighbor(s) to all points in P . This
problem can be solved by building a graph, the nearest neighbor graph, for short nng . The
nodes of this undirected graph are the points in P , and there is an arc from p to q iff p is
a nearest neighbor of q or vice versa. Then it can be shown that this graph is contained in
the Delaunay triangulation of P .

The second example is the largest empty circle. Some practical applications of this
problem are to locate a new store (to avoid competition), or to locate a nuclear plant as
far as possible from a set of towns. More precisely, the problem is as follows. Given a set
P of points, find a largest empty circle whose center is in the (closed) convex hull of P ,
empty in that it contains no points from P inside it, and largest in the sense that there is no
other circle with strictly larger radius. The Voronoi diagram of P can be used to solve this
problem. It can be shown that if the center p of a largest empty circle is strictly inside the
convex hull of P , then p coincides with a Voronoi vertex. However, not every Voronoi vertex
is a good candidate. It can also be shown that if the center p of a largest empty circle lies
on the boundary of the convex hull of P , then p lies on a Voronoi edge.

The third example is the minimum spanning tree. Given a graph G, a minimum spanning
tree ofG is a subgraph ofG that is a tree, contains every vertex of the graph G, and minimizes
the sum of the lengths of the tree edges. It can be shown that a minimum spanning tree
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is a subgraph of the Delaunay triangulation of the vertices of the graph. This can be used
to improve algorithms for finding minimum spanning trees, for example Kruskal’s algorithm
(see O’Rourke [31]).

We conclude by mentioning that Voronoi diagrams have applications to motion planning .
For example, consider the problem of moving a disk on a plane while avoiding a set of
polygonal obstacles. If we “extend” the obstacles by the diameter of the disk, the problem
reduces to finding a collision–free path between two points in the extended obstacle space.
One needs to generalize the notion of a Voronoi diagram. Indeed, we need to define the
distance to an object, and medial curves (consisting of points equidistant to two objects)
may no longer be straight lines. A collision–free path with maximal clearance from the
obstacles can be found by moving along the edges of the generalized Voronoi diagram. This
is an active area of research in robotics. For more on this topic, see O’Rourke [31].
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