Notes (10/9/01)

A continuing assignment:

Part 1:
Construct a Finite State Machine for the simple noun phrases of English, i.e., phrases with a
head noun optional left modifiers with an optional determiner. Thus you will consider adjectives
(ADJ), noun (N) modifiers, gerunds (Ving), and past passive participles (Ven). ADJ can have
adverbs (ADV) as left modifiers. There can be premodifiers also.

Part 2:
Continue the previous assignment by considering right modifiers such as prepositional phrases
(PP).

Part 3:
Construct a Finite State Machine for the verb clusters of English. Verb clusters are verbal
sequences such as

eats, ate, has eaten, has been eaten, will have eaten, wants to go, was persuaded to leave, may
have been persuaded to leave, ...

Note that
wants John to leave
will not be considered as a verbal sequence. It has two verbal sequences
wants and to leave

Part 4:
Provide regular expressions corresponding to the machines in Parts 1, 2, and 3.

Part 5:
Construct a Finite State Transducer (FST) which will mark all simple noun phrases (corresponding
to Part 1) in a sentence by enclosing the phrases between [and], for example, given the input

The black cat scratched the very dirty mat.
the output will be

[The back cat] scratched [the very dirty mat].

Part 6:
Construct an FST for marking off the phrases corresponding to Part 2. Assume that phrases in
Part 1 have already been marked off by [and].

Part 7:
Construct an FST for marking off the phrases corresponding to Part 3.
Assume that phrases corresponding to Parts 1 and 2 have already been marked off.

Notes (9/10/01):
Empty at present.

Notes (9/28/98):
1. Existence of a set is not guaranteed but if it exists then it is unique, i.e., if \(y \) exists then
 \((\forall x)(xey \leftrightarrow \phi(x)) \)
 and \(y \) is unique.
 Proof: Let \(y' \) be another such set. Then
 \((\forall x)(xey' \leftrightarrow \phi(x)) \)
 Then from (2) and (1) above
 \((\forall x)(xey' \leftrightarrow xey) \)
 Then by the axiom of extensionality (i.e., two sets are equal iff they have the same members),
 we have
(4) \(y = y' \)
 i.e., \(y \) is unique.

An interesting consequence of this result is that if an empty set exists then it is unique, i.e.,
there is only one empty set.

Notes (10/7/98)

Problem 1.9 (a), p. 25.

Show that \(((A \cup C) \cap (B \cup C'))\) is a subset of \((A \cup B)\)

Hint:

Try to use the equality that distributes \(\cap\) over \(\cup\), i.e.,
write

\(((A \cup C) \cap (B \cup C'))\)

as

\(((A \cup C) \cap B) \cup ((A \cup C) \cap C')\)

then

\((A \cup C) \cap B)\)

can be written as

\((A \cap B) \cup (C \cap B)\) why?

and

\((A \cup C) \cap C')\)

can be written as

\((A \cap C') \cup (C \cap C')\) why?

etc.

Notes (10/9/98)

A continuing assignment:

Part 1:

Construct a Finite State Machine for the simple noun phrases of English, i.e., phrases with a
head noun optional left modifiers with an optional determiner. Thus you will consider adjectives
(ADJ), noun (N) modifiers, gerunds (Ving), and past passive participles (Ven). ADJ can have
adverbs (ADV) as left modifiers. There can be predeterminers also.

Part 2:

Continue the previous assignment by considering right modifiers such as prepositional phrases
(PF).

Part 3:

Construct a Finite State Machine for the verb clusters of English. Verb clusters are verbal
sequences such as

*eat, ate, has eaten, has been eaten, will have eaten, wants to go, was persuaded to leave, may
have been persuaded to leave, *

Note that

* wants John to leave

will not be considered as a verbal sequence. It has two verbal sequences

* wants and to leave

Part 4:

Provide regular expressions corresponding to the machines in Parts 1, 2, and 3.

Part 5:
Construct a Finite State Transducer (FST) which will mark all simple noun phrases (corresponding to Part 1) in a sentence by enclosing the phrases between [and], for example, given the input

The black cat scratched the very dirty mat.

the output will be

[The black cat] scratched [the very dirty mat].

Part 6:
Construct an FST for marking off the phrases corresponding to Part 2. Assume that phrases in Part 1 have already been marked off by [and].

Part 7:
Construct an FST for marking off the phrases corresponding to Part 3.

Assume that phrases corresponding to Parts 1 and 2 have already been marked off.

Notes (10/20/98):

Mid-Term Examination, Fall 98

This is a take home examination. The purpose of the examination is to give you experience with some of the material we have covered in the class as well as to get an evaluation of you for me. This will help me to give you better advice.

This is an open book examination. You may consult any resources you wish as long as they are non-human. **Do not spend more than four hours.**

Due date: October 30 1998. You may leave the exams in my office in the Moore School or at IRCS.

1. Do Parts 1 through 7 of the continuing assignment. The assignment is open ended in a sense. Do the simple versions first and then as much more as you can in the given amount of time. **(50 points)**

2. Show that in any group of people there are at least two persons that have the same number of acquaintances within the group. (Hint: Use the notion of one-to-one correspondence.) **(30 points)**

3. Construct a Finite State Automaton, M with $\Sigma = \{a, b\}$ and $L(M)$ = the set of all strings that do NOT contain aab. If M is non-deterministic then construct M' such that M' is deterministic and $L(M) = L(M')$. **(20 points)**

Test sentence for Problem 1 above:

All the very dark brown cats in the house had been scratching the carpets.

all: predeterminer
determiner
very:adverb
dark:adverb
brown:adjective
cats:noun
in:preposition
house:noun
had:auxiliary verb:VAUX
been: auxiliary verb:VAUX
scratching:gerund: VG
carpets:noun

You need not treat -had, been, scratching--necessarily as I have indicated.

Those of you who have already submitted the exam need not do anything more.