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ABSTRACT

STRUCTURED EVENT REASONING WITH LARGE LANGUAGE MODELS

Li Zhang

Chris Callison-Burch

Reasoning about real-life events is a unifying challenge in AI and NLP that has profound utility in

a variety of domains, while fallacy in high-stake applications could be catastrophic. Able to work

with diverse text in these domains, large language models (LLMs) have proven capable of answering

questions and solving problems. However, I show that end-to-end LLMs still systematically fail

to reason about complex events, and they lack interpretability due to their black-box nature. To

address these issues, I propose three general approaches to use LLMs in conjunction with a structured

representation of events. The first is a language-based representation involving relations of sub-

events that can be learned by LLMs via fine-tuning. The second is a semi-symbolic representation

involving states of entities that can be predicted and leveraged by LLMs via few-shot prompting.

The third is a fully symbolic representation that can be predicted by LLMs trained with structured

data and be executed by symbolic solvers. On a suite of event reasoning tasks spanning common-

sense inference and planning, I show that each approach greatly outperforms end-to-end LLMs

with more interpretability. These results suggest manners of synergy between LLMs and structured

representations for event reasoning and beyond.
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CHAPTER 1

INTRODUCTION

Consider this one-sentence story:

“At the start of a band practice, the violinist was tuning her instrument, while the

drummer started playing an elaborate solo.”

This minimal but eventful narrative showcases that natural language frequently involve the com-

munication of events. An event is a semantic concept that describes something that happens in the

world, in some space and time (e.g., a band practice, tuning a violin, playing a drum solo). We

humans possess a deep understanding of these events that transcends their face-value. For instance,

we can deduce much implicit information, such as the locale (practice room), participants (musi-

cians), their intents (prepare for a show), preceding events (arrival at practice), involved entities

(violin, drumsticks), and so on. While some of the above information might be obvious, obtaining

others requires reasoning. For example, if one were to ask about the outcome of the above event,

in the form of a question:

“What would the violinist likely say in this situation?”

A human who has never been asked this question before but has some background knowledge can

likely answer correctly, for example, by making the following deductions:

1. I know that drum playing is loud.

2. I know that violin tuning requires a quiet environment.

3. Based on 1 and 2, the violinist cannot effectively tune.

4. Therefore, the violinist will be annoyed.

Eventually, they may arrive at a possible answer:

1



“Could you wait until I finish tuning?”

In this process, the human is not only drawing upon their knowledge of the world, but also sys-

tematically integrating pieces of such knowledge to arrive at the correct answer. Naturally, such

an ability is highly sought after in artificial intelligence (AI), machine learning (ML) and natural

language processing (NLP) systems.

However, if the same question is posed towards ChatGPT1, its response is:

“That was an amazing solo! You really know how to rock it!”

an unlikely response from any violinist in this situation. Notwithstanding the rapid advancement

of models like ChatGPT trained on massive online data, failures like such are still common when

reasoning about events, especially those that are less commonly represented in the training data

(i.e., the long-tail problem). Apart from the toy example above, the lack of reasoning ability in

AI models can be catastrophic in high-stake applications. As technology continues to advance, it

is increasingly likely that a user will rely on AI models for legal, financial, or medical advice. In

these scenarios, each individual’s case would be significantly different from and more complex than

the available training data. If the model fails to generalize and reason correctly, it will suggest

unreasonable actions, leading to a loss of freedom, property, or even life. Less drastically, failure

to reason like humans do would result in a lack of trust, where users do not feel confident making

decisions using AI models.

For decades, the AI, ML, and NLP communities have been honing the ability of intelligent systems

to reason over events. Historically, such reasoning was performed using symbolic methods. These

are highly interpretable but require domain-specific annotations which can be hard to generalize to

new domains, especially to the long-tail problems. In contrast, modern efforts have favored data-

driven, neural methods that can effectively adapt to domains that are sufficiently represented in

the training data, but still struggle with out of domain or out of distribution situations. Moreover,
1A state-of-the-art AI model at the time of writing (chat.openai.com); the experiment was done in December

2023; response may vary due to the model’s non-deterministic nature.
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Figure 1.1: An overview of work discussed in this thesis.

neural methods provide little in the way of interpretability, nor can their output be easily verified

and improved, leading to a lack of trustworthiness.

In my work, I attempt to combine the best of both worlds by reasoning about events using a com-

bination of neural and symbolic methods. I extensively leverage large language models (LLMs),

arguably the most powerful tool for most text-based applications. Instead of using LLMs in an

end-to-end fashion, I propose a neurosymbolic synergy that combines LLMs with a structured rep-

resentation of events. I explore different forms of such representation as well as different ways to

integrate it with LLMs through a variety of downstream tasks (Figure 1.1 and Figure 1.2).

In natural language, an event is often described in relation to other events. Therefore, in Chapter 3,

I study a natural language representation by decomposing a complex event into relations of its

sub-events. For example, the event “do yoga” can be represented as a sequence of its sub-events,

“buy a mat”, “warm up”, “ learn poses”, and so on. The collection of these sub-steps is essentially

a procedure with the goal “do yoga”, while each can be seen as a step, thus forming a goal-step
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Figure 1.2: Four approaches of using LLMs for structured reasoning: (from upper to lower) end-to-
end usage (no structure), fine-tuning with structure, prompting with structure, and neurosymbolic
usage.

relation. Additionally, any pair of two steps specifies the order in which they happen, thus forming

a step-step temporal relation. These two relations constitute an event-relation schema, where

each event is still expressed with a natural language phrase, while the relations of them are modeled

in a structured fashion.

With these event relations explicitly modeled, I now explore a way to inject such a structured

representation into LLMs. In Section 3.1, I fine-tuning LLMs on a dataset targeting the two event

relations. Taking the goal-step relation as an example, a model is given a goal “do yoga” and must

infer the most reasonable step among candidates “A) buy a suitable mat”, “B) buy some weights”,

“C) deep clean a mat”, and “D) buy a house.” While for humans the answer is trivially A, such

prediction was non-trivial for LLMs at the time. To train LLMs, I construct a multiple-choice dataset

using procedural data from the web. To ensure that the dataset is both clean and challenging, I

devise a negative sampling strategy based on LLM-based word vectors to select candidates that are
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semantically similar but not identical. The resulting dataset is manually verified to have high quality

and shows that LLMs are able to learn these event relations, though there is still a performance gap

compared to humans.

To ascertain whether the event-relation schema is useful in downstream applications, I apply the

previously fine-tuned LLMs on two reasoning tasks in Section 3.2. The first is next-event prediction,

a task of commonsense inference. For example, given an event “the pianist rest her fingers on the

keys”, a model must choose the most reasonable subsequent event among “she started playing”, “she

stood up”, “she chuckled nervously”, and “she sang a marvelous tune.” The second is intent detection,

a task that dialog systems like Alexa would need to perform to select the appropriate subroutine.

For example, given an utterance “I want to make restaurant-quality fried rice”, a model must choose

the most intent among “find a recipe”, “recommend a restaurant”, and so on, before it can call

upon an API to fulfill the request. On an array of datasets on both tasks, the models fine-tuned

with goal-step and step-step temporal relations, respectively, greatly outperform end-to-end LLMs

in few-shot settings. This result demonstrates the benefit of a structured event representation in

low-data, long-tail scenarios.

After showing the utility for each individual event relation, I attempt to use both event relations in

the event-relation schema at once. In Section 3.3, I tackle the challenging task of script generation.

Given a goal such as “obtain travel documents”, the model must generate all the reasonable steps that

are not only pertinent but also correctly ordered, such as “prepare materials”, “pay fees”, “submit

application”, and so on. I modularize the task into two sequential stages in a pipeline, each tackled

by one of the LLMs fine-tuned with a relevant event relation. By both automatic and manual

evaluation of the generated scripts, I again show that structured approach is superior to the end-to-

end one on a variety of languages. These experiments collectively take advantage of the flexibility of

a natural language representation of events and the specificity of the underlying structure, namely

the event relations. Despite the improved performance, a natural language representation that

interacts with LLMs via fine-tuning lacks trustworthiness. An end-user would have little idea of

how the LLMs produce the output, nor can they effectively improve or correct the models without
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extensively modifying the data.

Previously, I have chosen to express events using natural language because of their richness and

volatility in real-life texts. In comparison, the entities involved in the events are much more finite

and grounded. Therefore, in Chapter 4, I switch to a semi-symbolic representation by decomposing

a complex event into dynamic state changes of entities. For example, the event “do yoga” can be

represented as the states of involved entities: the mat was in the store before the step “buy a mat”,

but at home afterwards. The three-dimensional matrix with the axes being the steps, entities, and

attributes and the value being the states is referred to as an event-entity schema. Although each

entity is superficially expressed with a natural language phrase, they are finite and can be grounded

in an embodied environment.

How can one equip LLMs with the knowledge of entities, just like that of event relations discussed

above? In Section 4.1, I contribute in constructing a dataset of entity state tracking in procedural

texts. I facilitate the grounding of entities by canonicalizing them into symbols. Specifically,

this entails clustering their mentions. For example, coffee maker, espresso dispenser, or simply

machine may refer to the same entity in the procedure of “make coffee with an espresso machine.”

This task is much more challenging than typical coreference resolution or paraphrase detection

because procedural texts are highly contextual. By prompting state-of-the-art LLMs with in-context

learning, I fully canonicalize an entity tracking dataset that can evaluate entity state tracking models

more fairly. These models can thus predict an event-entity schema given a procedure.

Intuitively, the states of entities causally give rise to the occurrence of events. To see if LLMs can

similarly leverage the event-entity schema to make predictions about events, in Section 4.2, I define

the task of causal reasoning task of events and entities. For example, over the course of “boiling

water ”, it will be dangerous to overturn a kettle when the kettle is filled and heated up, but not before

the kettle is heated or after the water is poured out from the kettle. The above judgement causally

hinges on whether the kettle contains hot water. Naturally, I leverage a predicted event-entity

schema by providing it to LLMs as an in-context prompt. Notwithstanding the symbolic nature

of the schema, I find that a pseudo-code form (one that expresses events and entities as Python
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functions and class objects) respectively achieves much better performance than a natural language

form (e.g., at the end of step “heat up the kettle”, the kettle is filled with hot water). In addition

to illustrating the potency of the event-entity schema, this observation leaves the open-question of

whether such a code-like form better evokes the reasoning ability of modern LLMs trained on a

mixture of code and text.

To answer this question, in Section 4.3, I design prompts, both in a typical natural language or

textual form and the previously proposed symbolic language or code-like form, on a dozen of general

NLP tasks beyond event reasoning. However, despite some contemporaneous work that argues

for the idea, I observe no conclusive trend. Nevertheless, regardless of which form to take, the

event-entity schema assumes a symbolic nature, and is proven effective when fed to LLMs as in-

context input. This mechanism of synergy between the structured representation and LLMs is

highly flexible, and provides more interpretability and user control over the fine-tuning mechanism

in the last Chapter.

In the two previous Chapters, my proposed structured representation, either in natural or symbolic

language, is eventually provided to LLMs as input. However, I have observed that as the reasoning

task becomes more complex, LLMs fall short and might not be the optimal tool. In Chapter 5, I

introduce an alternative, neurosymbolic methodology by which the structured representation and

LLMs interact. Instead of feeding the LLM-generated symbolic representation into another LLM, I

rather use an algorithmic solver that can parse and execute it. Because the solver is both determin-

istic and well-constructed, its output is guaranteed to be correct provided that the input symbolic

representation is correct. This way, LLMs are relieved of the task of problem solving, but are only

responsible for generating the correct interim representation of the context, or namely a world

model. By construction, this approach is more trustworthy than the two previous alternatives, in

that a user can verify, interpret, and correct the output by interacting with the structured world

model. Because the world model is no longer input to LLMs but rather to symbolic solvers, the

representation also must be fully symbolic. In other words, the LLM that generates the world model

must ground the involved concepts (e.g., events, entities, etc.) to some provided environment such
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that they can be consumed by the symbolic solver.

An ideal downstream task to instantiate the above idea is classical planning, explored in Section 5.2.

At any point of time, a state of the environment is symbolically defined by a collection of entity

states (e.g., in(you, kitchen), closed_door(kitchen,balcony), in(coin,balcony). Also de-

fined is a domain model of permitted actions with pre-conditions and effects. Collectively, these

two pieces of information constitute a world model. The goal of classical planning is thus to find

a sequence of such actions that drive the state of the environment in a given way. In the real life,

the environment is rarely defined symbolically, but in natural language (e.g., you are in the kitchen,

the kitchen is connected to the balcony by a closed door, a coin is on the balcony, here are a list of

actions you can perform...). Given such a description, my approach is not to have LLMs generate

a plan, but to generate a representation in planning domain definition language (PDDL) that can

be deterministically solved.

Can LLMs indeed generate a symbolic world model given textual description? In Section 5.3,

I focus on planning for procedural texts. Given a textual description as above, I use LLMs to

generate a domain model before feeding it into a PDDL solver to arrive at the plan. Even though

the LLMs’ task is reduced to just translating the environment description to a world model but not

actual planning, such generation turns out to be highly challenging and even impossible for many

LLMs given their weakened ability to generate low-resource, domain-specific languages. Using a

combination of approaches to modularize the prompting process, I end up with a model that can

generate solvable domain model more than 30% of the time.

In Section 5.4, I shift my focus to planning for interactive textual environments that emulate a

robotic application. Here, the environment itself is a symbolically defined state-transition model.

Therefore, my approach is to learn a world model through exploration and interaction with the

environment. However, unlike the previous setup where the entirety of the environment has been

described, many entity states are initially unobserved. Thus, the world model cannot be completely

learned, and a plan cannot be derived. To tackle this challenge, I decompose the end goal into

sub-goals that can be planned for via the current partial world model. Through making progress
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towards the sub-goals, more of the environments are explored, resulting in a more complete world

model, that eventually can support planning for the end goal. I show that this neurosymbolic

approach is drastically more effective than having end-to-end LLMs predicting the plan in various

interactive environments.

In summary, in this thesis, I introduce three structured event representations: a language-based

event-relation schema, a semi-symbolic event-entity schema, and a fully-symbolic world model. I

explored ways that these representations may interact with LLMs, including fine-tuning with them,

in-context learning with them, and generating them to be solved symbolically. On a variety of

downstream tasks of event reasoning, I show that my proposed approaches are superior to end-to-

end LLMs, both on performance and trustworthiness.
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1.1. Thesis Statement

I argue that using LLMs in conjunction with structured representations of events lead to improved

performance in reasoning tasks. This thesis focuses on three types of such structured representations:

(1) a language-based event-relation schema, (2) a semi-symbolic event-entity schema, and (3) a

fully-symbolic world mode. Through experiments on a variety of approaches to leverage these

representations and a diverse set of downstream tasks, I show that the benefit of structured event

reasoning using LLMs.
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These publications are licensed under Creative Commons 4.0 BY, listed below. Therefore, parts of

the relevant discussions are quoted directly from said publications, with the explicit approval of all

co-authors, my thesis committee, and the Graduate Group Chair. None of these publications have

been or will be extensively discussed in any of my collaborators’ theses. All work was completed

jointly with collaborators at the University of Pennsylvania, Carnegie Mellon University, and Allen

Institute for Artificial Intelligence. At the end of each chapter, I summarize my primary contribution

to the work.
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CHAPTER 2

RELATED WORK

Assuming basic knowledge of machine learning, this thesis pertains to three concepts:

1. Events and procedures, the task

2. Large language models, the tool

3. Machine reasoning, the framework

This chapter provides background knowledge to these concepts, focusing on empirical rather theo-

retical aspects.
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2.1. Events and Procedures

2.1.1. Events

Event is a historic and important concept in linguistics and NLP. In this thesis, an event is some-

thing that happens at some space and time. For example, “play drums”, “jazz concert”, “starts

raining”, or “glacier movement” are all natural language expressions that describe events, ubiqui-

tously in texts. Regardless of whether these are noun phrases or verb phrases, the common thread

is that all of them can happen. Some non-examples include “drummer”, “venue”, “raindrop”, or

“Eurasian Plate”. These cannot happen, and are in fact entities that participate in events, which

we will study in more details later.

In literature, the concept of event has been thoroughly studied, leading to many possible definitions.

In NLP, the closest neighboring field is semantic role labeling (SRL), the task of assigning roles to

participants (similar to entities) according to a predicate (similar to events) (Jurafsky and Martin,

2000). The definitions of events in SRL is similar to what I adopt, but I do not focus exclusively

on the arguments of events. In theoretical linguistics and formal semantics, the event semantics

have a history of decades (Tenny and Pustejovsky, 2000; Maienborn et al., 2011). One of the most

acceptable formalism of events is the Davidsonian event semantic (Davidson, 1967), defining events

as “concrete particulars with a location in space and time.” Later in this thesis, I will show some

work that targets the time-feature of events. The mainstream event formalism was later replaced

by the Neo-Davidsonian formalism (Higginbotham, 1985), which expands the definition of events on

several fronts (such as not restricting events to verb phrases. Later, this expanded definition also

encompasses processes (or procedures) and states, which I will discuss in details (Mourelatos, 1978;

Bach, 1986). In this thesis, I do not focus on any particular formalism, but intentionally take on a

loose and pragmatic definition with the purpose of solving problems and tackling tasks in NLP.

Events can be multimodal (e.g., “alarm clock ringing” can not only be described, but also be seen

and experienced), but I will only discuss them in textual terms under the context of NLP. Because

events are a semantic construct, the study of natural language events often falls under the umbrella

14



disciplines of semantics or natural language understanding. As an example of a task that is out of

my scope, part-of-speech tagging of the phrase “alarm clock ringing” is not in our scope because it

does not pertain to semantics, nor is translating this phrase to French because it does not focus on

any particular feature of an event.

My work primarily falls under the sub-field of event-centric NLP (Chen et al., 2021b), which in-

cludes efforts that span a number of fronts. To start with, information extraction or semantic

parsing (Mausam et al., 2012; Liu et al., 2018; Yang et al., 2019a; Du and Cardie, 2020), the task

of extracting relational tuples from texts, is largely concerned with events. For example, for the text

“a pirate ship was sunken by the coastal guards”, a model might need to identify an attack event with

the guard and pirate as the belligerents. Typically, systems perform information extraction with a

given ontology, specifying the information of interest. In case of event extraction, there is often a

categorization of events (e.g., material, vehicle, weapon) and parameters associated with each (e.g.,

agent, beneficiary, manner). In my work, I do not attempt to extract events from texts, but rather

assume that they are readily available either via web resources or crowdsourced datasets. Instead,

I focus on applying those available event information to downstream applications. However, the

formulation of relational tuples aligns with my notion of structured representation, especially those

described in Section 3. Notably, unlike typical information retrieval tasks, I do not assume any

given ontology with regard to said relational representation.

Similarly, much work has focused on tracking and summarizing events over time (Allan et al., 1998;

Laban and Hearst, 2017; Saravanakumar et al., 2021). For example, over the COVID pandemic

that lasted years, a line of events such as universities shut-down, stay-at-home ordinance, dispensing

sanitizers, masking, vaccination can be collectively summarized as the precautions that were adopted

over time. Similar to this line, my work also emphasizes a collection of events bound by temporal

relations instead of singular events. In contrast to referenced work that primarily studies events in

news, my work focuses on procedures (discussed later), in which events happen in a much smaller

scale, but are more intentional and tighter-knit in a more qualified environment. Similar to the

discussion on information extraction, this line of work is often concerned with extracting information
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from unstructured text, while my work is not.

Many efforts branded as commonsense inference (Mostafazadeh et al., 2016b; Zellers et al., 2018;

Zhou et al., 2020) mainly target event reasoning, the family of tasks that are core to this thesis.

These tasks are diverse in nature. For example, the next-event prediction task might provide an

event such as the host taps on the glass in a banquet hall as input, and a model needs to select

the most reasonable subsequent event from everyone goes silent, the guests start singing, the crowd

bursts into a roar of laughter, and so on. Because ‘commonsense’ encompasses additional reasoning

beyond the event reasoning that I focus on –including things like social commonsense or physical

commonsense–, I refrain from this term. While my exact notion of reasoning will be further defined

in Section 2.3, this line of work is concerned with different aspects of events described in the

beginning of Chapter 1. Many of the involved datasets are also discussed and used in following

sections.

A script is a standardized sequence of events about stereotypical activities (Feigenbaum et al., 1981).

For example, “go to a restaurant” typically involves “order food ”, “eat”, “pay the bill ”, etc. Such

script knowledge has long been proposed as a way to enhance AI systems (Schank, 1977). Most work

in script learning focuses on narrative scripts, where declarative or descriptive knowledge is distilled

from narrative texts like news or stories (Mujtaba and Mahapatra, 2019b). Such scripts are descrip-

tions of sequential events (e.g. a traffic accident involves a collision, injuries, police intervention,

etc.). Chambers and Jurafsky (2008) introduced the classic Narrative Cloze Test, where a model is

asked to fill in the blank given a script with one missing event. Following the task, a few papers

made extensions on representation (Chambers and Jurafsky, 2009; Pichotta and Mooney, 2014) or

modeling (Jans et al., 2012; Pichotta and Mooney, 2016a,b), achieving better performance on Nar-

rative Cloze. Meanwhile, other work re-formalized Narrative Cloze as language modeling (LM)

(Rudinger et al., 2015) or multiple-choice (Granroth-Wilding and Clark, 2016) tasks. Alternative

to the narrative scripts, procedural scripts are those whose events are unified under a common goal.

Those are equivalent to procedures and will be discussed in details later. In Section 3.3, I tackle

the task of generating a procedural script.
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To summarize, the event-centric NLP targets the special semantics of events, which span various con-

ventional sub-fields in NLP. Zooming into events has much practical impact financially (Ding et al.,

2015), scientifically (Berant et al., 2014), and medically (Zhang et al., 2020d). Naturally, it has

attracted much attention in the community in the recent years.

2.1.2. Procedures

Most of my thesis work focuses on procedures, a concept that may be thought of as a subset of events.

A procedure, or a process, is a compound event, (e.g., “learn about NLP”), which can be broken

down into multiple events (e.g., “read papers”, “take classes”, “attend seminars”, ...). A procedure

consists of a goal (or intent, motivation) event, and some step events to achieve this goal. Studying

procedures has many additional benefits than studying general events (Zhang, 2022), especially from

a human-centered perspective, placing an emphasis on humans’ behavior and cognition.

The earliest work on procedures in NLP dates back to Miller (1976); Momouchi (1980). At that time,

procedural understanding is closely tied to AI planning (Schank, 1977). Specifically, a substantial

body at that time focused on natural language generation from plans (Mellish and Evans, 1989;

Wahlster et al., 1993), many relying on instructional texts as data (Kosseim and Lapalme, 1994;

Paris et al., 1995), which are structured and limited in scope. However, such work did not attempt

learning from procedural texts, until later when (Paris et al., 2002) created a human-in-the-loop tool

for procedural knowledge acquisition. Note that such knowledge extracted from procedural texts can

be transformed to plans (the reverse of “natural language generation from plans” mentioned above),

which is a substantial body of subsequent research (MacMahon et al., 2006; Branavan et al., 2009;

Chen and Mooney, 2011; Artzi and Zettlemoyer, 2013; Kiddon et al., 2015). One primary use of

such procedural language generation is to answer how-to questions, the second most sought-after

type of queries on the internet at that time (de Rijke et al., 2005). To that end, there were an

array of efforts to identify instructional texts on the web (Takechi et al., 2003), automatically

generate them (Paris et al., 2005), converting them to executables (Gil et al., 2011; Fritz and Gil,

2011), study their linguistic idiosyncrasies (Kosseim and Lapalme, 2000; Bielsa and Donnell, 2002;

Aouladomar, 2005; Gil, 2015), and extract components such as titles (Delpech and Saint-Dizier,
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2008).

Much like information extraction in events discussed above, much work extracts structured knowl-

edge from procedures (Lau et al., 2009; Addis and Borrajo, 2011). Zhang et al. (2012) proposes a

standard representation of procedures that emphasizes goals, steps, pre- and post-conditions, much

like my formulation in this thesis (Section 3.1 and Section 5.2), but was much simpler and set

the basis of procedural representation in subsequent research. (Maeta et al., 2015; Kiddon et al.,

2015) took a different approach, and focused on the relations among entities, which are also a cen-

ter piece in information extraction (Doddington et al., 2004; Ellis et al., 2014). The entity-based

representation heavily inspires my work in Chatper 4.

Under the context of script learning, a line of work focuses on procedural scripts, where events

happen in a scenario, usually in order to achieve a goal. For example, to “visit a doctor”, one

should “make an appointment”, “go to the hospital”, etc. To obtain data, Event Sequence De-

scriptions (ESD) are collected usually by crowdsourcing, and are cleaned to produce procedural

scripts. Thus, most such datasets are small-scale, including OMICS (Singh et al., 2002), SMILE

(Regneri et al., 2010), the Li et al. (2012) corpus, and DeScript (Wanzare et al., 2016). The evalua-

tion tasks are diverse, ranging from event clustering, event ordering (Regneri et al., 2010), text-script

alignment (Ostermann et al., 2017) and next event prediction (Nguyen et al., 2017). There are also

efforts on domain extensions (Yagcioglu et al., 2018; Berant et al., 2014) and modeling improve-

ments (Frermann et al., 2014; Modi and Titov, 2014). All of the above are possible candidates for

the data source to study procedures.

In our work, the primary source of procedural data is wikiHow3 (previously eHow4), a website of

how-to instructions for many tasks. As the structure and writing style are consistent, wikiHow has

been leveraged by NLP researchers since its inception (Perkowitz et al., 2004; Addis and Borrajo,

2011; Pareti et al., 2014a). In recent years, wikiHow has grown massively in size (now more than

110k articles), diversity (19 languages, hundreds of categories) and quality (editorial process5).
3wikihow.com
4https://www.wikihow.com/wikiHow:History-of-wikiHow
5https://www.wikihow.com/wikiHow:Delivering-a-Trustworthy-Experience
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As a result, it has fueled much research on procedures from various aspects (Pareti, 2018), such

as linking actions (Pareti et al., 2014b; Chernov et al., 2016; Lin et al., 2020a; Donatelli et al.,

2021; Zhou et al., 2022), what-if reasoning (Tandon et al., 2019; Rajagopal et al., 2020), entity

tracking (Tandon et al., 2020), next-event prediction (Nguyen et al., 2017; Zellers et al., 2019b;

Zhang et al., 2020a), intent reasoning (Dalvi et al., 2019), goal-step reasoning (Zhou et al., 2019;

Park and Motahari Nezhad, 2018; Zhang et al., 2020c; Yang et al., 2021), procedure generation

(Sakaguchi et al., 2021a; Lyu et al., 2021), simulation (Puig et al., 2018), summarization (Koupaee and Wang,

2018; Ladhak et al., 2020) and so on.

As more work has explored procedures (Mujtaba and Mahapatra, 2019a), research agendas become

more diverse.

19



Figure 2.1: The evolution of language models (Zhao et al., 2023).

2.2. Large Language Models

2.2.1. A Brief History of Language Models

For a complete survey on LLMs and their predecessors, readers are redirected to Zhao et al. (2023).

In essence, a language model (LM) is one that assigns generative likelihood of vocabulary in a

passage. Its revolution over the past decades might be summarized as the following four phases.

Around 1990, statistical LMs, or n-gram models, based on the Markov assumption, were proven

useful in very specific tasks such as part-of-speech tagging (Thede and Harper, 1999). One typically

use these statistical LMs for probability estimation: e.g., predicting the tag with the highest

probability associated with a token. In these tasks, the probabilistic distribution of the in-domain

vocabulary was simple enough to be modeled by the limited order of these statistical LMs. In much

more complex tasks, the magnitude of the transition probability becomes intractable.

Around 2013, said limitation was addressed by neural LMs. Deep learning approaches such as

word2vec (Mikolov et al., 2013) enabled the concept of a distributed representation, condensing

information from the context. One typically use these neural LMs for feature extraction: e.g.,

concerting text into a vector representation which is then fed to a model, such as KNN or LSTM.

Due to their task-agnostic nature, these neural LMs had gained dominance in many NLP tasks.

However, supervised neural models are data-hungry, and thus it is challenging to annotate sufficient
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data for most tasks, especially the low-resource ones.

Around 2018, this pain point was alleviated by pre-trained LMs. Exemplified by ELMO (Peters et al.,

2018), BERT (Devlin et al., 2019), and GPT-2 (Radford et al., 2019), these general-purpose mod-

els were trained with large-scale unlabeled corpora and could effectively transfer to individual tasks

requiring a relatively small amount data. This is referred to as the pre-train then fine-tune

paradigm which had since become mainstream. With the new-gained power of domain adaptation,

pre-trained LMs redefined state-of-the-art for many NLP tasks. Notably, the might of these LMs

to preserve knowledge during large-scale pre-training has long been attributed to the Transformer

architecture (Vaswani et al., 2017), which has persisted for most offspring NLP models. However,

in computer vision, there has been competing arguments that scale plays a more important role

than architecture (Smith et al., 2023).

Around 2020, pre-trained LMs (e.g., BERT with 330M parameters) were scaled up to become large

language models (e.g., GPT-3 with 175B parameters, PaLM (Chowdhery et al., 2023) with 540B

parameters). The leap in model size showed emergent abilities (Wei et al., 2022a). The abilities

allow for solving complex tasks that had not been possible before (e.g., many of the reasoning tasks

will be discussed in this thesis). Also importantly, these LLMs that are pre-trained on a mixture of

code and text can generate well-formed symbolic data (e.g., Python, Javascript, JSON), an ability

that will be extensively discussed in Section 4.2.5 onward. Moreover, they enable the in-context

learning paradigm, where previously required fine-tuning data is reduced to just a handful of

few-shot learning exemplars, in some cases, zero-shot. In addition to the remarkable performance in

many mainstream NLP tasks on par with the data-heavy fine-tuning paradigm, this new paradigm

of interacting with large language models is a game-changer for many practitioners, for science and

business alike, who have very limited budget for data annotation. In 2023, when I started writing

this thesis, products like ChatGPT6 have become a term as commonplace as ‘iPhone’ for many

ordinary people, and a go-to solution provider for many businesses.

It is plain to see that in the past decade alone, LMs have evolved from a probability estimator
6https://openai.com/blog/chatgpt
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to a problem solver, drifting away from the original perception of “language modeling.” Indeed,

most task formats in NLP can be reduced to generative language modeling. For example, solving

a question answering (QA) example is equivalent to generating the answers given the question as

the context. Conversely, generating text using LMs is also equivalent to answering the question

“what would be the appropriate response to ...” Hence, the task formats often discussed in the NLP

community (e.g., QA, dialog, generation, information retrieval, etc.) is not nearly as important as

the core of the tasks (e.g., event-centric learning, logical reasoning, etc.).

This thesis includes work that spans 2018 to 2024, and thus will primarily focus on the last two

types of language models, collectively referred to as LLMs7. Due to the highly empirical nature of

work discussed in this thesis, it is sufficient to understand the usage of these LLMs (i.e., the two

paradigms) without grasping the internal details of these models.

2.2.2. LLMs are Black-Boxes

A black-box is a mechanism that takes in an input, produces an output, while the user cannot

interpret what goes on within. Regardless of performance, a black-box gives rise to multiple problems

at once:

1. Trustworthiness: a user cannot trust the black-box by knowing that its underlying mechanism

aligns with their expectation8;

2. Verifiability: a user cannot systematically examine if the output is correct;

3. Improvability: a user cannot do things differently for a better performance.

As discussed above, LLMs in the scope of this thesis are neural models, which are long known to be

known as black-boxes (Benítez et al., 1997). Notwithstanding decade-long efforts on looking inside

the black-box (i.e., understanding what neural models do under the hood) (Dayhoff and DeLeo,

2001), I instead take a more macro view and focus on the interpretability of the higher-order
7After all, 330 million (BERT’s number of parameters) is large by most people’s standards.
8Though a user might still trust a black-box that empirically performs satisfactorily (e.g., by statistical or anecdotal

evidence).
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pipeline that involves the black-box. In other words, I am interested in how to use black-box LLMs

so that a user gains more empirical insights into their decision-making process.

The most intuitive and least interpretable approach to use an LLM for most NLP tasks is end-to-

end. The two “ends” here specify the input and output, agnostic of the task format. For a QA

format, the input is the question while the output is the answer; for a dialog format, the input is

the conversation history while the output is the utterance; for a translation format, the input is a

source passage while the output is a target passage. The end-to-end usage is also agnostic to the two

paradigms, pre-train then fine-tune and in-context learning. For the former, both the training and

testing data are tuples of input and output; for the latter, both the in-context and to-infer examples

are tuples of input and output. With the advancement of large-scale pretraining, the straightforward

end-to-end usage demonstrates impressive performance and flexibility, as demonstrated in the big

tables of results in mainstream LLM papers (Devlin et al., 2019; Liu et al., 2019; Radford et al.,

2019; Raffel et al., 2020; Brown et al., 2020; Chowdhery et al., 2023; Touvron et al., 2023). It is

arguably the default way to interact LLMs for most. Naturally, the end-to-end usage falls short

on the three criteria above. On improvability, specifically, a user’s hands are frustratingly tied.

They may either increase the quantity or quality of the fine-tuning data (for the first paradigm), or

engineer a different prompt (for the second paradigm), both of which come at an obvious cost.

Later, I will discuss existing attempts to address these issues.
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2.3. Machine Reasoning

2.3.1. Reasoning Frameworks

Reasoning is an intriguing and crucial ability of human cognition (Rips, 1990). Naturally, machine

reasoning is a well sought-after ability in AI systems to demonstrate human-like intelligence. In the

communities of mathematics, AI, machine learning, and NLP, the concept of reasoning is historical

and varies greatly (McCarthy, 1959; Pearl, 1988; Duan et al., 2020). For a brief survey on the topic,

readers are referred to Duan et al. (2020). For the purpose of this thesis, it is crucial to understand

two frameworks for machine reasoning: symbolic reasoning and textual reasoning.

Symbolic reasoning works by manipulating knowledge in the form of symbolic logic using in-

ference algorithms. Such inference algorithm can either be deterministic (Good, Old-Fashioned

AI) or probabilistic (Pearl, 1988; Richardson and Domingos, 2006). Either way, the input must

be formalized as symbols, which in itself is a non-trivial process for many applications. On the

other hand, since the age of deep learning and LLMs, textual reasoning that only works with

textual input has been made possible. By 2023, hundreds of papers with ‘reasoning’ in their titles

have been published9 but very few use any symbolic reasoning technique, but primarily use LLMs

to answer reasoning questions (Dalvi Mishra et al., 2023). These include commonsense reasoning

(Davis and Marcus, 2015), numerical reasoning (Cobbe et al., 2021), and of course event-centric

reasoning that will be the focus on this thesis.

As discussed before, the default methodology is end-to-end language modeling, which, in conjunction

with various techniques, has achieved dominant performance in many of these reasoning tasks.

Comparing the two frameworks for machine reasoning, symbolic reasoning is highly interpretable

and may even guarantee correctness given a well-defined symbolic input, much unlike the finicky

black-box neural models. Conversely, symbolic reasoning is also highly rigid, requiring extensive

training or annotation within a domain, a style, and even a singular dataset, much unlike modern

LLMs which can work with rich expressions in diverse domains. Such an impasse of formal vs.
9https://aclanthology.org/
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neural methods is historical and ongoing.

Neural-symbolic reasoning attempts to combine the best of both worlds and has a long history

in literature (Hitzler and Sarker, 2022). Indeed, there are many ways in which one can simulta-

neously work with symbols and neural networks, including knowledge graphs (Bordes et al., 2013;

Teru et al., 2020), neural semantic parsing (Dong and Lapata, 2016; Finegan-Dollak et al., 2018),

etc. In this thesis, the notion of structured reasoning is a subset of neural-symbolic reasoning, specif-

ically designed to tackle event-centric reasoning. The core idea is to combine LLMs with structured

representation of events. We will explore this approach in details later.

2.3.2. Reasoning Tasks

In this thesis, I will focus on reasoning tasks in a broad and empirical sense. In NLP literature,

‘reasoning’ is a highly overloaded term: what counts as reasoning as what does not is far from clear.

What I have in mind is close to the sub-field of multi-hop reasoning, either QA from a passage

(Welbl et al., 2018; Talmor and Berant, 2018; Yang et al., 2018) or utilizing multihop information

in the form of symbolic data (De Cao et al., 2019; Ding et al., 2019; Cao et al., 2019; Fang et al.,

2020; Thayaparan et al., 2019). Here, a question has to be answered (or, a problem has to be solved)

using at least two pieces of knowledge and one algorithmic operation. However, reasoning processes

are subjective. To answer the question “does Ella Fitzgerald typically sing with swing10” probably

requires just a single hop for jazz lovers, but at least two hops in addition to acquiring missing

knowledge for the rest. In this thesis, I take an eclectic view and do not enforce what counts or does

not count as reasoning, with much overlap with tasks like inference, entailment, commonsense, and

QA.

This thesis focuses on the family of tasks called event reasoning that targets either extracting

the knowledge or answering the questions described above. In NLP, this work includes includes

extracting knowledge from instructional texts (Paris et al., 2002; Delpech and Saint-Dizier, 2008;

Zhang et al., 2012), reasoning about relations among events (Takechi et al., 2003; Tandon et al.,

2019; Rajagopal et al., 2020), event knowledge-base construction (Jung et al., 2010; Chu et al.,
10A rhythmic feel that is iconic in jazz music.
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2017; Park and Motahari Nezhad, 2018; Zhou et al., 2022), or various downstream applications

(Zhang et al., 2020a; Dalvi et al., 2019; Chen et al., 2020).

2.4. Interplay

In summary, my work discussed in this thesis can be situated in the overlap of the three concepts

above: LLMs, events, and reasoning. To tackle event reasoning tasks, I use a conjunction LLMs

and structured event representation.
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CHAPTER 3

EVENT-RELATION SCHEMA: A NATURAL LANGUAGE REPRESENTATION

Event reasoning is an umbrella term for many tasks and applications. A few event reasoning tasks

that I will discuss in this Chapter are: predicting the next event, predicting the intent of an action,

and predicting the steps to take in a procedure. In human communication, these tasks almost

always involve input and output in the form of natural language. Traditionally, for machines to

consume the data and learn the task, it has been imperative to represent events in a symbolic fashion

(discussed in Section 2.1). For example, previous work has explored event schemata (Baker et al.,

1998; Li et al., 2020) or procedure schemata (Momouchi, 1980; Zhang et al., 2012; Kiddon et al.,

2015) that identify the key components in representing events and procedures. While these schemata

are focused and effective for certain tasks, their construction is prone to errors and their ability to

generalize to unseen domains is limited. On the other hand, by the time this research project was

performed, LLMs have shown superior performance on many of the event reasoning tasks exemplified

above. Seemingly, LLMs eliminate the need for any such structured representation, because they

can take natural language as input and generate natural language texts directly. Nevertheless, I

will show that end-to-end LLMs cannot take advantage of specific knowledge that could be encoded

in the schemata, so their performance still has room for improvement.

To push the limit of automated event reasoning, I attempt to bridge the two attempts by defin-

ing a language-based structured representation that not only retains a considerable amount of the

structured knowledge of events, but also can be consumed and leveraged by LLMs (see Figure 3.1).

Previously described symbolic schemata (for example, see Figure 3.2) are not a good fit with LLMs

which are trained to exclusively work with natural language. To strike a balance between a sym-

bolic vs. natural language representation, I propose a minimal relational event schema that

includes two important event relations: hierarchical goal-step relation between an event and

its sub-events, and a step-step temporal relation among the sub-events. The idea is explored

under the DARPA KAIROS project11 and its related work (Li et al., 2021) (see Figure 3.3 for an
11https://www.darpa.mil/program/knowledge-directed-artificial-intelligence-reasoning-over-schemas
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Figure 3.1: An illustration of my proposed pipeline leveraging a natural language representation of
entities. The LLM is fine-tuned with data of that representation.

Figure 3.2: A fine-grained procedure representation (schema) proposed by Zhang et al. (2012).

illustration). Compared to existing event schemata such as Figure 3.2, the proposed one has two

advantages. First, it is lightweight but versatile, which I will demonstrate through improvements

on three downstream tasks later in this Chapter. Second, the operands of each relation (i.e., the

atomic unit) are events simply expressed as natural language phrases, which are much more higher-

level and flexible than symbolic atomic units. As these natural language event expressions can be

consumed and interpreted by LLMs, generalization among domains becomes much more likely.

Next, I describe work done by my collaborators and myself to first learn such a relational event

schema data from the web (Section 3.1). We use this data to equip LLMs with such structured
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Figure 3.3: Goals and steps (slightly paraphrased) from wikiHow articles “How to Do Yoga” and
“How to Warm Up”. The lines denote goal-step relations; the arrows denote step-step temporal
relations.

knowledge via fine-tuning and apply them to downstream tasks (Section 3.2 and Section 3.3).

3.1. Learning Event Relations

To construct a large-scale dataset of procedures, we crawl wikiHow12 which is a how-to website

containing more than 110k procedures at the time the work was done in 2020. It has been leveraged

by researchers since its inception (Perkowitz et al., 2004; Addis and Borrajo, 2011; Pareti et al.,

2014a). Procedural texts are suitable data for inducing hierarchical and temporal relations, because

the hierarchical relation exist organically between a goal and its steps (i.e., goal-step relation),

and the temporal relation can be found among the steps. Each wikiHow article represents a

procedure and contains a title, which we extract as a goal, and some step paragraphs, of which we

extract the headlines as steps (see the top part of Figure 3.3 for an example). Additionally, not

used in this work, our data includes related articles, references, Q&A, tips and warnings, links to

images, and videos aligned with texts.

wikiHow has articles from a broad range of domains, with 19 top-level categories: Arts and En-

tertainment, Cars & Other Vehicles, Computers and Electronics, Education and Communications,

Family Life, Finance and Business, Food and Entertaining, Health, Hobbies and Crafts, Holidays

and Traditions, Home and Garden, Personal Care and Style, Pets and Animals, Philosophy and Re-

ligion, Relationships, Sports and Fitness, Travel, Work World, and Youth. We plot the distribution

of the top eight categories in Figure 3.4.

Next, our goal is to learn an relational event schema including two relations: hierarchical relation
12wikihow.com
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Figure 3.4: Category distribution of wikiHow articles.

between an event and its sub-events, and temporal relation among the sub-events. In procedures,

these are equivalent to the goal-step relation, and the step-step temporal relation. Using the

wikiHow corpus, we construct a dataset of three event relation inference tasks.

3.1.1. Step Inference Task

We first introduce the Step Inference task, targeting goal-step relations between events. We

formulate this as a 4-choose-1 multiple choice format evaluated using accuracy.

In this task, a system is given a goal and 4 candidate steps and needs to choose the step that helps

achieve the goal. For example, given the goal “Prevent Coronavirus” and the candidate steps:

A. wash your hands B. wash your cat

C. clap your hands D. eat your protein

the correct step would be A.

Obtaining the goal and the positive candidate is straightforward, as we sample them iteratively

from each how-to article. However, it is challenging to sample negative candidates (Chao et al.,
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2018; Zellers et al., 2019a) which should have high semantic relatedness with the positive candidate

(or the question becomes trivial) while being incorrect answers. We first map each step in wikiHow

to a vector representation by taking the average of the BERT embeddings (Devlin et al., 2019) of

the verbs. Given the positive step, we then choose 3 steps under different wikiHow categories with

the highest cosine similarity to it as the negative candidates. The nearest-neighbors are computed

using FAISS (Johnson et al., 2017).

It has recently become clear that the latest NLP models can exploit statistical artifacts from a

dataset (Poliak et al., 2018; Si et al., 2019; Zellers et al., 2019b). To prevent the model from learning

the negative sampling strategy and relying on just the candidates, we randomly reassign one of the

candidates as positive, and the others as negative. Then, we replace the provided goal with the goal

attached to the new positive candidate. This strategy ensures that any model performs no better

than chance when given access to only the candidates and not the context.

For each step in wikiHow, we create an example by using it as the positive candidate, followed

by the negative sampling and label reassignment processes as described above. Then, we apply a

collection of hand-crafted filters to remove low-quality examples (Appendix A.1).

3.1.2. Goal Inference Task

Next, we introduce the Goal Inference task, formulated in a similar way as Step Inference.

In this task, a system is given a prompt step and 4 candidate goals and needs to choose the correct

goal which the step helps achieve. For example, given the step “choose a color of lipstick” and the

candidate goals:

A. Get Pink Lips B. Read One’s Lips

C. Lip Sync D. Draw Lips

the correct goal would be A.

For each goal in wikiHow, we create the set of 4 candidates by using it as the positive candidate,

followed by the negative sampling, label reassignment, and filtering processes as in Step Inference.
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For each positive candidate goal, we use each of its steps to create an example.

3.1.3. Step Ordering Task

Finally, we introduce the Step Ordering task, targeting step-step temporal relations between

events. This task is in a 2-choose-1 multiple choice format evaluated using accuracy.

In this task, given a prompt goal and 2 steps, a system needs to determine which step temporally

precedes the other. For example, given the goal “Clean Silver” and the steps:

A. dry the silver B. handwash the silver

the correct answer would be B precedes A.

Unfortunately, not all steps in every wikiHow article follow an underlying order. We observe that

there are 2 types of wikiHow articles. One is unordered, where the steps are parallel alternatives,

such as ways to “Stay Healthy” (“develop an exercise routine", “get enough sleep", “eat a healthy

diet”, etc.). The other is ordered, such as recipes for cooking or manuals for fixing appliances, where

most steps should be taken sequentially.

We ask 3 annotators to label 1,000 wikiHow articles as ordered or not as a coarse-grained approxi-

mation for whether their steps are ordered. We finetune a pre-trained RoBERTa model using 5-fold

cross-validation, finding an average precision of 88%. We then ask a 4th annotator to label another

40 articles as the held-out test set, where the finetuned model achieves 100% precision. Finally, we

only consider articles that the model predicts as ordered (around 40%) for the Step Ordering task.

For each goal in wikiHow, we create a set of examples by using it as the prompt and sampling every

pair of its adjacent steps as candidates. Then, we randomly shuffle the candidates, so each appears

first with 50% chance.

3.1.4. Test Set Construction and Validation

There exists some noise in our automatically generated examples, because some of them do not

have a single correct answer. Errors can be introduced when a sampled negative candidate is in
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Figure 3.5: Screenshot of the HIT design for the Step Inference task.

fact correct. For example, in the Goal Inference task, consider an example where the give step

is “practice swings”, the expected positive candidate step is “Play Golf”, and a candidate negative

example is “Play Drums”. “Play Drums” is sampled due to its high embedding similarity with “Play

Golf” and is also a reasonable goal for “practice swings (of the drumsticks)”. This is an ambiguous

example and should be excluded from the test set. Therefore, we ask crowd workers to validate a

subset of the examples.

We perform crowdsourcing on Amazon Mechanical Turk, requiring Master Qualification and a

lifetime HIT approval rate over 90%. The HIT design is shown in Figure 3.5.

For each of Step Inference and Goal Inference, we randomly sample 4,800 examples as input, and

for each example we ask 3 crowd workers to choose the most likely candidate. Every HIT includes

15 examples with a pay of $0.83, estimated to be completed in 5 minutes, equivalent to an hourly

rate of $9.96.

For Step Ordering, we randomly sample 9,300 examples, and for each example we ask 3 crowd

workers to order the events (with a “neutral” option). Every HIT includes 30 examples with a pay
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Step
Infer.

Goal
Infer.

Step
Ordering

Train size 374,278 185,231 836,128
Test size 2,250 1,703 3,100

BERT .874 .798 .819
XLNet .867 .783 .826
RoBERTa .882 .820 .835
GPT-2 .836 .686 .801

Human .965 .980 .975

Table 3.1: The accuracy of state-of-the-art models on the test sets after being finetuned on our
training sets.

of $0.83, estimated to be completed in 5 minutes, equivalent to an hourly rate of $9.96.

In the test set, we only keep examples where all 3 workers agree with the gold label as our benchmark.

We remove all examples from the automatically generated ones whose prompt or candidates appear

in the test set, and use the remaining data as the training set.

3.1.5. In-Domain Evaluation

To see if LLMs can effectively learn to predict thse two event relations, we finetune pretrained

BERT (Devlin et al., 2019), XLNet (Yang et al., 2019b), RoBERTa (Liu et al., 2019) and GPT-2

(Radford et al., 2019) models on the training set and report accuracy on the test set. To benchmark

human performance, two authors each annotate 100 random examples from the test set and report

the average accuracy. The results are shown in Table 3.1, indicating a satisfactory performance and

still a gap of 10% to 20% between human and models trained on all available in-domain data.

At the time this project was carried out, the above models represented the state-of-the-art. Later

LLMs with in-context learning abilities would demonstrate an even stronger performance (Srivastava et al.,

2022). However, as these larger models are trained on internet data with a later cut-off date than

this project, one cannot rule out the possibility that the strong performance is attributed to data

contamination (i.e., the models have already seen the test set and labels of our dataset on the web).

34



3.1.6. Open-Ended Examples

In addition to quantitatively evaluating models on our multiple-choice tasks, we perform qualitative

evaluation on some open-ended examples from wikiHow unseen during training, using RoBERTa.13

For Step Inference, we rank 100 steps with high embedding similarity for their likelihood of helping

achieve a given goal. For example, for the goal “Eat in Islam”, the top 3 ranked steps are “understand

what type of meats are permissible” (correct), “start by adding mild spices to your food,” and

“gather supplies and ingredients.” Similarly for Goal Inference, we rank 100 goals against some

steps. For example, for the steps “spend the holiday with your beloved, eat KFC, check out the

light displays,” the top 3 ranked goals are “Celebrate a Japanese Christmas” (correct)14, “Celebrate

a Czech Christmas,” and “Celebrate a British Christmas.” These examples show that the model

trained on our data can retrieve texts based on goal-step relations, beyond simply semantic

relevance.

For Step Ordering, the model can perfectly order some articles with as much as 10 steps. For

example, given the goal “Clean a Trumpet,” the first 5 predicted, ordered steps are “gather your

materials,” “disassemble your trumpet,” “fill up a bathtub,” “place a towel down in the tub,” and

“set your trumpet parts down to soak.” This shows that the model trained on our data can order

certain long sequences of events based on step-step temporal relations.

At this point, we have a suite of LLMs that can discriminate the goal-step relation and step-

step temporal relation, given two events. To achieve this, we construct a dataset of procedural

knowledge from the web, and fine-tune LLMs on examples that illustrate the above two relations,

which collectively constitute the relation event schema I proposed at the beginning of this Chapter.

Next, I will show evidence that these LLMs can effectively perform on various event-centric reasoning

tasks.

The work above was published in Zhang et al. (2020c), in which my collaborator Qing Lyu and I
13More examples are in Appendix A.2.
14KFC and light displays are Japanese Christmas traditions (Kimura and Belk, 2005).
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contributed equally in roughly all components. I have obtained approval from all collaborators to

exclusively include this work in this thesis.
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3.2. Application of Event Relation

Using the new-gained ability of LLMs to predict the edges in a graph of the relational event schema

described in the beginning of Section 3.1, we will now apply these two relations to two major NLP

tasks, intent detection (a component of dialog systems) and next event prediction (a component

of commonsense inference). For both cases, if models equipped with the knowledge of relational

event schema outperforms those which are end-to-end, we would have shown that our structured

representation of events is practically beneficial.

3.2.1. Intent Detection

Task-oriented dialog systems like Apple’s Siri, Amazon Alexa, and Google Assistant have become

pervasive in smartphones and smart speakers. To support a wide range of functions, dialog systems

must be able to map a user’s natural language instruction onto the desired skill or API. Performing

this mapping is called intent detection.

Intent detection is usually formulated as a sentence classification task. Given an utterance (e.g.

“wake me up at 8”), a system needs to predict its intent (e.g. “Set an Alarm”). Most modern

approaches use neural networks to jointly model intent detection and slot filling (Xu and Sarikaya,

2013; Liu and Lane, 2016; Goo et al., 2018; Zhang et al., 2019a). In response to a rapidly grow-

ing range of services, more attention has been given to zero-shot intent detection (Ferreira et al.,

2015a,b; Yazdani and Henderson, 2015; Chen et al., 2016; Kumar et al., 2017). While most existing

research on intent detection proposed novel model architectures, few have attempted data augmen-

tation. One such work (Hu et al., 2009) showed that models can learn much knowledge that is

important for intent detection from massive online resources such as Wikipedia.

The core idea of our proposed methodology is to transfer the knowledge of goal-step event relation

to the intent detection task, based on the observation that a goal can approximate an intent, and

each step in it can approximate an associated utterance. Hence, we reuse the finetuned models

described in Section 3.1.5 with some minor differences. To enable multilingual settings, we fine-

tune a pretrained RoBERTa model for the English datasets and a pretrained XLM-RoBERTa model
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(Conneau et al., 2020) for the multilingual datasets. In test time, we cast the instances of the intent

detection datasets into a multiple-choice format, where the utterance is the input and the full set of

intents are the possible candidates, consistent with our wikiHow pretraining task. For each model,

we append a linear classification layer with cross-entropy loss to calculate a likelihood for each

candidate, and output the candidate with the maximum likelihood.

For each intent detection dataset in any language, we consider the following settings:

+in-domain (+ID): a model is only trained on the dataset’s in-domain training data;

+wikiHow +in-domain (+WH+ID): a model is first trained on our wikiHow data in the corre-

sponding language, and then trained on the dataset’s in-domain training data;

+wikiHow zero-shot (+WH 0-shot): a model is trained only on our wikiHow data in the corre-

sponding language, and then applied directly to the dataset’s evaluation data.

For non-English languages, the corresponding wikiHow data might suffer from smaller sizes and

lower quality. Hence, we additionally consider the following cross-lingual transfer settings for non-

English datasets:

+en wikiHow +in-domain (+enWH+ID), a model is trained on wikiHow data in English, before

it is trained on the dataset’s in-domain training data;

+en wikiHow zero-shot (+enWH 0-shot), a model is trained on wikiHow data in English, before

it is directly applied to the dataset’s evaluation data.

We consider the 3 following benchmarks:

The Snips dataset (Coucke et al., 2018) is a single-turn English dataset. It is one of the most

cited dialog benchmarks in recent years, containing utterances collected from the Snips personal

voice assistant. While its full training data has 13,784 examples, we find that our models only need

its smaller training split consisting of 2,100 examples to achieve high performance. Since Snips does

not provide test sets, we use the validation set for testing and the full training set for validation.

Snips involves 7 intents, including Add to Playlist, Rate Book, Book Restaurant, Get Weather, Play

Music, Search Creative Work, and Search Screening Event. Some example utterances include “Play

the newest melody on Last Fm by Eddie Vinson,” “Find the movie schedule in the area,” etc.
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Training
Size

Valid.
Size

Test
Size

Num.
Intents

Snips 2,100 700 N/A 7
SGD 163,197 24,320 42,922 4
FB-en 30,521 4,181 8,621 12
FB-es 3,617 1,983 3,043 12
FB-th 2,156 1,235 1,692 12

Table 3.2: Statistics of the dialog benchmark datasets.

The Schema-Guided Dialogue dataset (SGD) (Rastogi et al., 2020b) is a multi-turn English

dataset. It is the largest dialog corpus to date spanning dozens of domains and services, used in the

DSTC8 challenge (Rastogi et al., 2020a) with dozens of team submissions. Schemas are provided

with at most 4 intents per dialog turn. Examples of these intents include Buy Movie Tickets for

a Particular show, Make a Reservation with the Therapist, Book an Appointment at a Hair Stylist,

Browse attractions in a given city, etc. At each turn, we use the last 3 utterances as input. An

example: “That sounds fun. What other attractions do you recommend? There is a famous place

of worship called Akshardham.”

The Facebook multilingual datasets (FB-en/es/th) (Schuster et al., 2019) is a single-turn mul-

tilingual dataset. It is the only multilingual dialog dataset to the best of our knowledge, containing

utterances annotated with intents and slots in English (en), Spanish (es), and Thai (th). It involves

12 intents, including Set Reminder, Check Sunrise, Show Alarms, Check Sunset, Cancel Reminder,

Show Reminders, Check Time Left on Alarm, Modify Alarm, Cancel Alarm, Find Weather, Set

Alarm, and Snooze Alarm. Some example utterances are “Is my alarm set for 10 am today?” “Colo-

car una alarma para mañana a las 3 am,” etc.

Statistics of the datasets are shown in Table 3.2.

We compare our models with the previous state-of-the-art results of each dataset:

• Ren and Xue (2020) proposed a Siamese neural network with triplet loss, achieving state-of-the-

art results on Snips and FB-en;

• Zhang et al. (2019) used multi-task learning to jointly learn intent detection and slot filling,
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Snips SGD FB-en

(Ren and Xue, 2020) .993 N/A .993
(Ma et al., 2019) N/A .948 N/A

+in-domain (+ID) .990 .942 .993
(ours) +WH+ID .994 .951† .995†
(ours) +WH 0-shot .713 .787 .445

Chance .143 .250 .083

Table 3.3: The accuracy of intent detection on English datasets using RoBERTa. State-of-the-art
performances are in bold; † indicates statistically significant improvement from the previous state-
of-the-art.

FB-en FB-es FB-th

(Ren and Xue, 2020) .993 N/A N/A
(Zhang et al., 2019) N/A .978 .967

+in-domain (+ID) .993 .986 .962
(ours) +WH+ID .995 .988 .971
(ours) +enWH+ID .995 .990† .976†
(ours) +WH 0-shot .416 .129 .119
(ours) +enWH 0-shot .416 .288 .124

Chance .083 .083 .083

Table 3.4: The accuracy of intent detection on multilingual datasets using XLM-RoBERTa.

achieving state-of-the-art results on FB-es and FB-th;

• Ma et al. (2019) augmented the data via back-translation to and from Chinese, achieving state-

of-the-art results on SGD.

The modeling details can be found in Appendix A.3.

The performance of RoBERTa on the English datasets (Snips, SGD, and FB-en) are shown in

Table 3.3. We repeat each experiment 20 times, report the mean accuracy, and calculate its p-

value against the previous state-of-the-art result, using a one-sample and one-tailed t-test with a

significance level of 0.05. Our models achieve state-of-the-art results using the available in-domain

training data. Moreover, our wikiHow data enables our models to demonstrate strong performances

in zero-shot settings with no in-domain training data, implying our models’ strong potential to
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Figure 3.6: Learning curves of models in low-resource settings. The vertical axis is the accuracy
of intent detection, while the horizontal axis is the number of in-domain training examples of each
task, distorted to log-scale.
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adapt to new domains.

The performance of XLM-RoBERTa on the multilingual datasets (FB-en, FB-es, and FB-th) are

shown in Table 3.4. Our models achieve state-of-the-art results on all 3 languages. While our

wikiHow data in Spanish and Thai does improve models’ performances, its effect is less salient than

the English wikiHow data.

Our experiments above focus on settings where all available in-domain training data are used.

However, modern task-oriented dialog systems must rapidly adapt to burgeoning services (e.g. Alexa

Skills) in different languages, where little training data are available. To simulate low-resource

settings, we repeat the experiments with exponentially increasing number of training examples up

to 1,000. We consider the models trained only on in-domain data (+ID), those first pretrained on

our wikiHow data in corresponding languages (+WH+ID), and those first pretrained on our English

wikiHow data (+enWH+ID) for FB-es and FB-th.

The learning curves of each dataset are shown in Figure 3.6. Though the vanilla transformers

models (+ID) achieve close to state-of-the-art performance with access to the full training data (see

Table 3.3 and 3.4), they struggle in the low-resource settings. When given up to 100 in-domain

training examples, their accuracies are less than 50% on most datasets. In contrast, our models

pretrained on our wikiHow data (+WH+ID) can reach over 75% accuracy given only 100 training

examples on all datasets.

As our model performances exceed 99% on Snips and FB-en, the concern arises that these intent

detection datasets are “solved”. We address this by performing error analysis and providing future

outlooks for intent detection.

Our model misclassifies 7 instances in the Snips test set. Among them, 6 utterances include proper

nouns on which intent classification is contingent. For example, the utterance “please open Zvooq”

assumes the knowledge that Zvooq is a streaming service, and its labelled intent is “Play Music.”

Our model misclassifies 43 instances in the FB-en test set. Among them, 10 has incorrect labels: e.g.
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the labelled intent of “have alarm go off at 5 pm” is “Show Alarms,” while our model prediction “Set

Alarm” is in fact correct. 28 are ambiguous: e.g. the labelled intent of “repeat alarm every weekday”

is “Set Alarm,” whereas that of “add an alarm for 2:45 on every Monday” is “Modify Alarm.” We

only find 1 example an interesting edge case: the gold intent of “remind me if there will be a rain

forecast tomorrow” is “Find Weather,” while our model incorrectly chooses “Set Reminder.”

By performing manual error analyses on our model predictions, we observe that most misclassified

examples involve ambiguous wordings, wrong labels, or obscure proper nouns. Our observations

imply that Snips and FB-en might be too easy to effectively evaluate future models.

State-of-the-art models now achieve greater than 99% percent accuracy on standard benchmarks

for intent detection. However, intent detection is far from being solved. The standard benchmarks

only have a dozen intents, but future dialog systems will need to support many more functions with

intents from a wide range of domains. To demonstrate that our pretrained models can adapt to

unseen, open-domain intents, we hold out 5,000 steps (as utterances) with their corresponding goals

(as intents) from our wikiHow dataset as a proxy of an intent detection dataset with more than

100,000 possible intents (all goals in wikiHow).

For each step, we sample 100 goals with the highest embedding similarity to the correct goal, as

most other goals are irrelevant. We then rank them for the likelihood that the step helps achieve

them. Our RoBERTa model achieves a mean reciprocal rank of 0.462 and a 36% accuracy of ranking

the correct goal first. As a qualitative example, given the step “find the order that you want to

cancel,” the top 3 ranked steps are “Cancel an Order on eBay”, “Cancel an Online Order”, “Cancel

an Order on Amazon.” This hints that our pretrained models’ can work with a much wider range of

intents than those in current benchmarks, and suggests that future intent detection research should

focus on open domains, especially those with little data.

In conclusion, by pretraining language models on wikiHow, we attain state-of-the-art results in 5

major intent detection datasets spanning 3 languages. The wide-ranging domains and languages

of our pretraining resource enable our models to excel with few labelled examples in multilingual
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Figure 3.7: Accuracy of RoBERTa on SWAG and Story Cloze Test with different training set sizes,
with and without being previously fine-tuned on our data of step-step temporal relation.

settings, and suggest open-domain intent detection is now feasible.

The work above was published in Zhang et al. (2020b), in which I primarily contributed to all

components. I have obtained approval from all collaborators to exclusively include this work in this

thesis.

3.2.2. Next-Event Prediction

In the previous Section, I have demonstrated that the goal-step event relation can effectively

transfer to the task of intent detection. This provides evidence that injecting structured knowledge

in LLMs leads to performance gain compared to end-to-end usage. Next, we will see how the

step-step temporal event relation can transfer to next-event prediction tasks.

We consider two datasets in different domains. SWAG (Zellers et al., 2018) is a commonsense

inference dataset constructed from video captions. Given a context, a system chooses one event

most likely to happen from four candidates. For transfer learning, we use up to 1,000 examples for

training and the standard validation set. We use the model trained on our Step Inference task to

transfer to this task.

Story Cloze Test (Mostafazadeh et al., 2016a) is a story understanding dataset in the fiction

domain, where a system chooses an ending to a 4-sentence-story from 2 candidates. We use up to
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314 examples for training and 1,571 examples for validation, from the 2016 and 2018 data releases

after removing duplicates. We use the model trained on our Step Ordering task to transfer to this

task. To mimic the “next sentence prediction” format, we convert each example in our task to a

“next step prediction” question with 4 prompt steps and 2 candidate steps, exactly one of which

happens after the prompt.

Both datasets come with a sizeable training set, which may easily lead to overfitting. Hence, we

only use a subset of their training data to simulate a low-resource scenario. Therefore, we are not

comparing to the state-of-the-art performances involving the entire in-domain training sets. For

each target task, we finetune a vanilla RoBERTa model and one pretrained on our data described

in Section 3.1.5 on increasingly larger portions of the target training set, and observe accuracy on

the validation set, as the test set labels are not publicly available.

Figure 3.7 shows the learning curves of the downstream tasks with an increasing number of their

training samples, demonstrating a clear advantage of using our training data in low-resource set-

tings. For SWAG, the model trained on our data has a zero-shot performance 24% over chance,

outperforming the vanilla model when up to 1,000 training examples are given. For Snips, the

model trained on our data boasts an impressive 78% zero-shot performance, approaching perfect

accuracy rapidly after some in-domain training. For the Story Cloze Test which has the largest

domain-mismatch with our data, the model still benefits from the knowledge learned from it con-

sistently, given any portion of in-domain training data up to the full size in our experiment. These

results show that the model learns real-world procedural knowledge from our wikiHow-based tasks,

which can be readily applied to various domains and writing styles.

In this section, I have respectively demonstrated the utility of the goal-step relation and the step-

step temporal relation on the intent detection task and the next-event prediction task. Both

applications illustrate the idea of structured event reasoning, as opposed to end-to-end, structure-

agnostic LLMs. For example, for intent detection, the key insight to success is that the utterance

and intent constitute a portion of the relational event schema. Therefore, models equipped with

that structured knowledge are on track to perform better.
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Figure 3.8: An example script constructed by our Step-Inference-Ordering pipeline in a zero-shot
manner. The input is a goal, and the output is an ordered list of steps.

3.3. Application of Event Schema

In the two previous sections, I have shown that LLMs finetuned on the two event relations, col-

lectively constituting the event schema, can outperform end-to-end usages in multiple downstream

tasks and datasets. In this section, we will attempt to combine both abilities to tackle the challeng-

ing task of procedural script generation, generating a sequence of coherent steps given a goal.

This process is also equivalent to generating an event schema tree of depth of 1, in which the nodes

are the sub-steps or events and the edges are the two relations between each pair of the nodes.

3.3.1. What is Script Learning?

In both lines, it still remains an open problem what kind of automatic task most accurately evaluates

a system’s understanding of scripts. Most prior work has designed tasks focusing on various frag-

mented pieces of such understanding. For example, Narrative Cloze assesses a model’s knowledge

for completing a close-to-finished script. A related concept, Event Sequence Descriptions (ESD),

on the other hand, evaluates script learning systems with the aforementioned variety of tasks, each

touching upon a specific piece of script knowledge nonetheless (see Section 2.1). Recent work has

also brought forth generation-based tasks, but mostly within an open-ended/specialized domain like

story or recipe generation (Fan et al., 2018; Xu et al., 2020).
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Figure 3.9: Our Step-Inference-Ordering pipeline for the GOSC Retrieval task. An example ordered
script is shown with example steps in the input and output. Those that appear in the ground-truth
script is in bold.

3.3.2. Goal-Oriented Script Construction

We propose the task of Goal-Oriented Script Construction (GOSC) to holistically evaluate a model’s

understanding of scripts.Given a goal (or the name of a script), we ask the model to construct the

sequence of steps (or events in a script) to achieve the goal. This task targets a model’s ability to

narrate an entire script, subsuming most existing evaluation tasks. Our rationale is that a model

that understands some scripts (e.g. how to “travel abroad ” and “go to college”) should be able to

produce new ones (e.g. how to “study abroad ”) using the absorbed knowledge, close to how humans

learn.

Concretely, given a goal g, a system constructs a complete script as an ordered list of steps S, with

a ground-truth reference T . As a hint of the desired level of granularity, we also provide an expected

number of steps (or length of the script), l, as input. Depending on whether the set of possible

candidate steps are given in advance, GOSC can happen in two settings: Generation or Retrieval.

While almost all prior script learning work has focused on English, we leverage our wikiHow corpus

to enable multilingual settings, just as Section 3.2.1.
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3.3.3. Models

We develop two systems based on state-of-the-art Transformers for the GOSC task.15

Generation Approach For the Generation setting, we finetune mT5 (Xue et al., 2020), a pre-

trained generation model that is not only state-of-the-art on many tasks but also the only available

massively multilingual one to date.

During fine-tuning, we provide the goal of each article in the training set as a prompt, and train

the model to generate the sequence of all the steps conditioned on the goal. Therefore, the model’s

behavior is similar to completing the task of inferring relevant steps and sorting them at once. At

inference time, the model generates a list of steps given a goal in the test set.

Retrieval Approach We then implement a Step-Inference-Ordering pipeline for the Retrieval set-

ting. Our pipeline contains a Step Inference model to first gather the set of desired steps, and a Step

Ordering model to order the steps in the set. These models are based on our previous work described

in Section 3.1.5. Under the hood, the models are pretrained XLM-RoBERTa (Conneau et al., 2020)

or mBERT (Devlin et al., 2019) for binary classification, both state-of-the-art multilingual repre-

sentations.

Our Step Inference model takes a goal and a candidate step as input, and outputs whether the

candidate is indeed a step toward the goal with a confidence score. During training, for every

script, its goal forms a positive example along with each of its steps. We then randomly sample 50

steps from other scripts within the same wikiHow category and pair them with the goal as negative

examples. The model predicts a label for each goal-step pair with a cross-entropy loss. During

evaluation, for each script in the test set, every candidate step is paired with the given goal as the

model input. We then rank all candidate steps based on the model confidence scores decreasingly.

Finally, the top l steps are retained, where l is the required length.

Our Step Ordering model takes a goal and two steps as input, and outputs which step happens first.

During training, we sample every pair of steps in each ordered script as input to the model with a
15Reproducibility details can be found in Appendix A.4.
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Figure 3.10: Detailed performance on each language from Table 3.6.

cross-entropy loss. During evaluation, we give every pair of retrieved steps as input, and count the

total number of times that a step is ranked before others. We then sort all steps by this count to

approximate their complete ordering.

An illustration of our Step-Inference-Ordering pipeline is shown in Figure 3.9. We also consider two

additional variations.

Multitask Learning (MTL): The Step Inference and the Step Ordering models share the encoder

layer, but have separate classifier layers. During training, the MTL system is then presented with

a batch of examples from each task in an alternating fashion. During evaluation, the corresponding

classifier is used.

Cross-Lingual Zero-Shot Transfer (C0): While there are abundant English training scripts, data

in some other languages are scarce. Hence, we also attempt to directly evaluate the English-trained

models on non-English data.

3.3.4. In-Domain Evaluation

To demonstrate the performance of models on the GOSC task, we evaluate them on our multilingual

wikiHow dataset using both automatic metrics and human judgments. The ultimate utility for this

task is the extent to which a human can follow the constructed steps to accomplish the given goal.
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Lang. en es pt de fr ru

Perp. 17 11 24 97 46 79
Bert. .823 .702 .682 .677 .718 .682

Lang. it id zh nl ar vn

Perp. 116 269 13,249 955 746 97
Bert. .653 .692 .667 .690 .701 .695

Lang. th jp ko cz hi tr

Perp. 29,538 73,952 2,357 1,823 2,033 36,848
Bert. .701 .679 .692 .682 .704 .665

Table 3.5: Auto evaluation results for the Generation setting (Perplexity and BERTScore F1 mea-
sure). The performance of multilingual T5 is reported.

Model English only Avg. all lang.s
Acc. Kendall’s τ Acc. Kendall’s τ

mBERT .256 .369 .286 .198
mBERT MTL .253 .371 .283 .226
XLM-R .258 .372 .317 .075
XLM-R C0 - - .291 .264

Table 3.6: Auto evaluation results for the Retrieval setting (Accuracy and Kendall’s Tau). The
performance of mBERT and XLM-RoBERTa, along with their multitask (MTL) and crosslingual
zero-shot transfer (C0) variations, are reported. Multitask XLM-R and cross-lingual zero-shot
mBERT are found to perform a lot worse and thus omitted.

As direct user studies might be costly and hard to standardize, we carefully choose measures that

adhere to this utility. By default, all models are trained and evaluated on the same language.

Auto Evaluation for Generation Setting To automatically evaluate models in the Generation

Setting, we report perplexity and BERTScore (Zhang et al., 2019b), as two frequently used

metrics for evaluating text generation.

The mean perplexity of mT5 on the test set of each language is shown in Table 3.5. The results

show a large range of variation. To see if perplexity correlates with the data size, we conduct

a Spearman’s rank correlation two-tailed test. We find a Spearman’s ρ of −0.856 and a p-value

of 1e − 5 between the perplexity and the number of articles in each language in our dataset; we

find a Spearman’s ρ of −0.669 and a p-value of 2e − 4 between the perplexity and the number of
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tokens in each language in the mC4 corpus where mT5 is pretrained on. These statistics suggest a

significant correlation between perplexity and data size, while other typological factors are open to

investigation.

Table 3.5 also shows the BERTScore F1 measure of the generated scripts compared against the

gold scripts. Except for English (.82), the performance across different languages varies within a

relatively small margin (.65 - .72). However, we notice that as a metric based on the token-level

pairwise similarity, BERTScore may not be the most suitable metric to evaluate scripts. It is best

designed for aligned texts (e.g. a machine-translated sentence and a human-translated one), whereas

in scripts, certain candidate steps might not have aligned reference steps. Moreover, BERTScore

does not measure whether the ordering among steps is correct. To address these flaws, we further

perform human evaluation later.

Auto Evaluation for Retrieval Setting To automatically evaluate models in the Retrieval Set-

ting, we first calculate accuracy, i.e. the percentage of predicted steps that exist in the ground-truth

steps. To account for the ordering of steps, we also compute Kendall’s τ between the overlapping

steps in the prediction and the ground-truth.

The performance of our Step Inference-Ordering pipeline using mBERT and XLM-RoBERTa16 on

all 18 languages are shown in Figure 3.10. Across languages, the results are generally similar with

a large room for improvement. On average, our best system constructs scripts with around 30%

accuracy and around 0.2 Kendall’s τ compared to the ground-truth. Compared to the baseline, our

multitask and cross-lingual zero-shot variations demonstrate significant improvement on ordering.

This is especially notable in low-resource languages. For example, MTL on Korean and C0 on Thai

both outperform their baseline by 0.17 on Kendall’s τ .

Human Evaluation To complement automatic evaluation, we ask 6 annotators17 to each edit

30 output scripts by the Step-Inference-Ordering pipeline and mT5 in English, French, Chinese,

Japanese, Korean and Hindi, respectively. The edit process consists of a sequence of two possible
16XLM-RoBERTa is not able to converge on the training data for Step Ordering for all but 3 languages using a

large set of hyperparameter combinations.
17The annotators are graduate students and native or proficient speakers of the language assigned.
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Retrieval: Step-Inference-Ordering pipeline

Language en fr zh jp ko hi
Correctness .70 .39 .50 .49 .45 .82
Completeness .70 .39 .50 .49 .45 .82
Orderliness .45 .38 .16 .12 .10 .75

Generation: mT5

Language en fr zh jp ko hi
Correctness .39 .51 .46 .40 .37 .49
Completeness .35 .40 .46 .30 .36 .41
Orderliness .82 .46 .60 .81 .69 .88

Table 3.7: Human judgments of correctness, completeness and orderliness of the output of the Step-
Inference-Order pipeline and the mT5 model for the same set of 30 gold scripts, in six languages.

actions: either 1) delete a generated step entirely if it is irrelevant, nonsensical or not a reasonable

step of the given goal, or 2) move a step somewhere else, if the order is incorrect. Then, the

generated script is evaluated against the edited script in 3 aspects:

Correctness, approximated by the length (number of steps) of the edited script over that of the

originally constructed script (c.f. precision);

Completeness, approximated by the length of the edited script over that of the ground-truth script

(c.f. recall);

Orderliness, approximated by Kendall’s τ between overlapping steps in the edited script and the

generated script.18

The results are shown in Table 3.7. While the constructed scripts in the Retrieval setting contain

more correct steps, their ordering is significantly worse than those in the Generation setting. This

suggests that the generation model is better at producing fluent texts, but can easily suffer from

hallucination.

Qualitative Examples To understand models’ behavior, we present two representative scripts

produced by the mBERT Retrieval model and the mT5 Generation model side by side, accompanied

by the ground-truth script, shown in Figure 3.11.
18In this formulation, the correctness and completeness of a retrieval-based model are equal, since the length of its

constructed script is equal to that of the ground truth script by definition.
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Figure 3.11: Two example scripts constructed by our Retrieval and Generation approaches.

The retrieved “Draw Santa Claus” script has a high step accuracy (85%), with a reasonable ordering

of drawing first the outline and then details. The generation output is more off-track, hallucinating

irrelevant details like “singing” and “scorpion”, despite being on the general topic of drawing. It also

generates more repetitive steps (e.g. the head is drawn twice), most of which are abridged.

As for “Make a Quotebook”, the retrieved script has a 50% step accuracy. The third step, though

not in the gold reference, is similar enough to “find some quotes”, suggesting that our exact match

evaluation isn’t perfect. In the generated script, all steps are also generally plausible, but some

essential steps are missing (e.g. find a book, find quotes). This suggests that the generation model

dwells too much on the details, ignoring the big picture.

These patterns in the two scripts are common in the model outputs, a larger sample of which is

included in the Supplementary Materials.

3.3.5. Out-Domain Evaluation

To show the potential of our model for transfer learning, we use the retrieval-based Step-Inference-

Ordering pipeline finetuned on wikiHow to construct scripts for other datasets and domains. We

quantitatively evaluate our model on 4 other script learning corpora, and qualitatively analyze some
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Corpus Corpus Stats. Results
Scenarios ESDs Acc. Kendall’s τ

SMILE 22 386 .435 .391
OMICS 175 9044 .346 .443
DeScript 40 4000 .414 .418
KAIROS 28 28 .589 .381

Table 3.8: The zero-shot GOSC Retrieval performance of XLM-RoBERTa finetuned on wikiHow on
4 target corpora.

constructed scripts in a case study.

Quantitative Evaluation Since no multilingual script data are available yet, we perform trans-

fer learning experiments on 4 other English script corpora, OMICS (Singh et al., 2002), SMILE

(Regneri et al., 2010), DeScript (Wanzare et al., 2016)19, and the KAIROS Schema Learning Cor-

pus (LDC2020E25). The first 3 pertain to human activities, while the last is in the military and

political domain. They are all in the format of different scenarios (e.g. “eat in a restaurant”, sim-

ilar to our goal) each with a number of event sequence descriptions (ESDs, similar to our steps).

Statistics for each corpus are in Table 3.8.

For each dataset, we select the ESD with the most steps for every scenario as a representative script

to avoid duplication, thus converting the dataset to a GOSC evaluation set under the Retrieval

setting. We then use the XLM-RoBERTa-based Step-Inference-Ordering pipeline trained on our

English wikiHow dataset to directly construct scripts on each target set, and report its zero-shot

performance in Table 3.8. We see that 30%− 60% steps are accurately retrieved, and around 40%

are correctly ordered. This is close to or even better than the in-domain results on our English test

set. As a comparison, a random baseline would have only 0.013 Accuracy and 0.004 τ on average.

Both facts indicate that the script knowledge learned from our dataset is clearly non-trivial.

KAIROS Case Study: The Bombing Attack Scripts To explore if the knowledge about

procedural scripts learned from our data can also facilitate the zero-shot learning of narrative scripts,

we present a case study in the context of the DARPA KAIROS program20. One objective of KAIROS

is to automatically induce scripts from large-scale narrative texts, especially in the military and
19The above 3 corpora are all obtained from http://www.coli.uni-saarland.de/projects/smile/
20www.darpa.mil/program/knowledge- directed-artificial-intelligence-reasoning -over-schemas
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political domain. We show that models trained on our data of commonplace events can effectively

transfer to vastly different domains.

With the retrieval-based script construction model finetuned on wikiHow, we construct five scripts

with different granularity levels under the Improvised Explosive Device (IED) attack scenario:

“Roadside IED attack”, “Backpack IED attack”, “Drone-brone IED attack”, “Car bombing IED at-

tack”, “IED attack”. We take the name of each script as the input goal, and a collection of related

documents retrieved from Wikipedia and Voice of America news as data sources for extracting step

candidates.

Our script construction approach has two components. First, we extract all events according to the

KAIROS Event Ontology from the documents using OneIE (Lin et al., 2020b). The ontology defines

68 event primitives, each represented by an event type and multiple argument types, e.g. a Damage-

type event has arguments including Damager, Artifact, Place, etc. OneIE extracts all event instances

of the predefined primitives from our source documents. Each event instance contains a trigger and

several arguments (e.g. Trigger: “destroy”, Damager: “a bomber”, Artifact: “the building”, ... ). All

event instances form the candidate pool of steps for our target script.

Since the events are represented as trigger-arguments tuples, a conversion to the raw textual form

is needed before inputting them into our model. This is done by automatically instantiating the

corresponding event type template in the ontology with the extracted arguments. If an argument is

present in the extracted instance, we directly fill it in the template; else, we fill in a placeholder word

(e.g.“some”, “someone”, depending on the argument type). For example, the template of Damage-

type events is “⟨arg1⟩ damaged ⟨arg2⟩ using ⟨arg3⟩ instrument”, which can be instantiated as “A

bomber damaged the building using some instrument”). Next, we run the Step Inference-Ordering

Pipeline described before on the candidate pool given the “goal”. The only modification is that since

we don’t have a gold reference script length in this case, all retrieved steps with a confidence score

higher than a threshold (default=0.95) are retained in the final script.

We manually evaluate the constructed scripts with the metrics defined in Section 3.3.4, except Com-
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Figure 3.12: An example narrative script produced by our retrieval-based pipeline trained on wiki-
How. Each event is represented by its Event Type and an example sentence.

pleteness as we don’t have gold references. The 5 constructed scripts have an average Correctness

of 0.735 and Orderliness of 0.404. Despite the drastic domain shift from wikiHow to KAIROS,

our model can still exploit its script knowledge to construct scripts decently. An example script,

“Roadside IED attack”, is shown in Figure 3.12. All the steps retrieved are sensible, and most are

ordered with a few exceptions (e.g. the ManufactureAssemble event should precede all others).21

The work above was published in Lyu et al. (2021), in which my collaborator Qing Lyu and I

contributed equally in roughly all components. I have obtained approval from all collaborators to

exclusively include this work in this thesis.

3.4. Summary

Until this point, I have defined a relational event schema using two event relations. Recall that in

the very beginning of this thesis, I outlined the two desirable metrics of any method: performance

of trustworthiness. By fine-tuning pre-trained LLMs on a natural language representation of these

relations, I have shown an increase of performance over end-to-end usage. For end-users, this

methodology also brings about an increased sense of trustworthiness. For example, to tackle an
21More details on the format of the script, all five constructed scripts, the event ontology, and a list of news

documents used can be found in the Supplementary Materials.
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intent detection task, a user using an end-to-end LLM would not know why or how the model

succeeds or fails, whereas a user using an LLM finetuned on the goal-step event relation at least

knows that the model is equipped with a particular piece of knowledge helpful to tackle the current

task. For the script generation task, our proposed pipeline is much more transparent (c.f., neural

module networks described in Section 2.3.1), as the model outputs of the two stages (step retrieval

and step ordering) are mechanically combined as the final output. Such is a case of structured

reasoning argued in this thesis. For a variety of event-centric tasks, one may represent an event as

our proposed schema, and use either its components of itself as a whole to solve various problems.

However, there are still two fundamental issues. First, the atomic unit of the current event schema

is still events (sub-events). As a result, reasoning tasks that involve more fine-grained information

cannot be tackled. This calls for a more general representation of events. Second, our approach

of fine-tuning LLMs is reliant on a sizeable amount of training data. Moreover, it is challenging

for end-users to understand how an LLM generates an output based on a large amount of training

data. Both issues lead to a lack of user-control, or the ability to improve and trust the model. In

the next chapter, I attempt to tackle both issues.
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CHAPTER 4

EVENT-ENTITY SCHEMA: A SEMI-SYMBOLIC REPRESENTATION

Imagine teaching a kid or a robot how to cook. Midway through the process, you are asked the

following question.

Is it safe to touch (the center of) the pan?

Essentially, this question calls for reasoning about the event “touch the pan” given certain circum-

stances. As discussed before, one may naively pose this question directly to an end-to-end LLM,

a baseline approach that I have shown to have many shortcomings. As before, a reasonable alter-

native may be using a structured event representation. Unfortunately, the relational event schema

described in the last chapter would not work here, because the event “touch the pan” is neither a

goal nor a step. Fundamentally, the answer to this question does not depend on the relation among

its sub-events or any other events. To answer this question, most humans would realize a connection

to an entity state:

Is it safe to touch the pan only if the pan is cool.

The above statement describes a logic statement (i.e., inference) that can be written semi-formally

as:

entity_has_attribute(pan, cool) ⇒ event_can_happen(safe to touch the pan) (4.1)

The above formula indicates two items that must be inferred: 1. whether the entity pan is hot, and

2. the causality between the state of an entity and the plausibility of an event. In this particular

instance, the former can be inferred from the context, while the latter is commonsense. In real life

involving complex scenarios, inferring either of the two items is highly challenging, and therefore

LLMs are reasonably good tools to do so. Instead of using LLMs to directly answer the question,

we have now decomposed the task and use LLMs in a modular fashion.
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Figure 4.1: An illustration of my proposed pipeline leveraging a semi-symbolic representation of
entities. The LLMs are interacted via few-shot prompting.

The thought process above demonstrates the neurosymbolic methodology. The neural part naturally

refers to the LLMs whose input is free-formed natural language. The symbolic part refers to how

we decompose the task, grounding the concepts of pan, cool, entity_has_attribute, and even the

inference operation ⇒ into symbols. Therefore, answering the question “is it safe to touch the pan? ”

becomes a two -hop reasoning problem, where each sub-problem can either be answered formally

with symbols, or using LLMs with natural language. For example, one might use LLMs to figure out

that the pan is cool, a symbolic expression, based on some textual description. At this point, if the

causality in Equation 4.1 is conveniently provided or otherwise inferred, we can deterministically

deduce the final answer “it is safe to touch the pan” (more in Chapter 5). Otherwise, we may also

express “the pan is cool ” as a half-language, half-symbolic expression and feed it to LLMs to help

them arrive at the answer. In either approach, we leverage the strong-suits of both neural and

symbolic methods, whereas in this Chapter, I will focus on a semi-symbolic representation that is

predicted by one LLM and fed into another to answer questions (see Figure 4.1).

I propose a semi-symbolic representation based on entities called an entity schema (Figure 4.2) that

builds upon the previously discussed event-relation schema which models an event as a procedure

including a goal event (e.g., defog a window using potatoes) and a sequence of ordered step events

(e.g., rub the cut side of potato on the window). For each step, the schema models an array of 4-

tuples describing an entity state change. Each 4-tuple contains an entity, an attribute, a state before

the step, and a state after the step (e.g., the window ’s texture was smooth before and sticky after).

Essentially, the entity schema is a matrix where the axes are step, entity, and attribute, while the

value is the before and after states. Unlike the previously discussed relational event schema where

59



Figure 4.2: An example from the OpenPI dataset (Tandon et al., 2020).

events are expressed as natural language, here, the entities are both textual and symbolic (i.e.,

semi-symbolic), for they can not only be consumed by LLMs (this Chapter), but also possibly be

consumed by symbolic algorithms or grounded to some environment (Chapter 5). To learn the entity

schema, I first enhance an existing dataset (Tandon et al., 2020) by canonicalizing the entities, so

that different mentions of window, glass, pane all fall under a unified symbol (Section 4.1). Using this

enhanced dataset, I tune LLMs that can predict an entity schema given a procedure. I demonstrate

their utility via a downstream task to causally reason about entities and events. There, I show that

modern LLMs trained on a mixture of code and text can effectively leverage the event schema in the

form of a Python-code (Section 4.2). Finally, I show that such a code-like form does not perform

equally well on a variety of other NLP tasks (Section 4.3).

In the Chapter 3, I have been using the pre-train then fine-tune paradigm with the BERT-family

LLMs. In contrast, the discussions in this Chapter will revolve around the in-context learning

paradigm made possible by the state-of-the-art GPT-family LLMs (see categorization described

in Section 2.2.1), where the LLMs are interfaced via few-shot prompting. This paradigm shift is

preferred as it eliminates the need of a sizeable fine-tuning dataset, offering more flexibility.
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4.1. Learning Entity States

My overarching goal is to train and evaluate LLMs to predict an entity schema given a procedure, so

that this information can be used for reasoning in later sections. To do that, my collaborators and

I start with the OpenPI dataset (Tandon et al., 2020) with crowdsourced annotations of the entity

states in procedural texts (Figure 4.2), identify its shortcomings, and and propose an improved

OpenPI2.0 dataset.

4.1.1. Background

Tracking entity states in procedural texts is closely related to many NLP reasoning tasks. To name

a few, question answering (QA) about events (e.g., why use gloves when retrieving the tray from

the oven) often require knowledge of entity states (e.g., the tray becomes very hot while in the

oven) (Tandon et al., 2019; Spiliopoulou et al., 2022); planning (Wang et al., 2022; Brohan et al.,

2023) largely involves actions upon entities resulting in state changes. Procedural entity tracking is

challenging in itself, requiring much understanding of an implicit environment as well as external

knowledge of what events affect which entities, and how.

Prior work on entity state tracking spans various disciplines of AI. For instance, object tracking,

a sub-task of entity state tracking, has led to much work in both robotics (Wang et al., 2007)

and computer vision (Comaniciu et al., 2003). In NLP, early efforts focus on synthetic, closed-

domain data (Weston et al., 2015; Long et al., 2016) and more recent ones shift attention to real-

world procedures (Bosselut et al., 2017; Dalvi et al., 2018; Gupta and Durrett, 2019; Du et al., 2019;

Mysore et al., 2019) with a closed set of entities and attributes. The only open-ended dataset to

our knowledge is still OpenPI (Tandon et al., 2020) which we build on.

A small body of work on entity salience has focused on annotating entity salience in news arti-

cles and web pages for better information retrieval, recommendation, and linking (Gamon et al.,

2013; Dunietz and Gillick, 2014; Dojchinovski et al., 2016; Trani et al., 2018; Wu et al., 2020). In

contrast, we focus on entities in procedural texts, situating our work in script learning, robotic

execution, automatic planning and reasoning, etc. Due to this mismatch of purpose, the definition,
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Figure 4.3: For each step in a procedure, OpenPI annotates the state change of attributes of
entities. Our OpenPI2.0 additionally canonicalizes the entities and attributes (red circles) and
includes their salience scores (purple circles).

annotation process, and downstream applications of our entity salience and theirs are all fundamen-

tally different.

We propose the OpenPI2.0 dataset which builds on OpenPI (Tandon et al., 2020) (Open Procedu-

ral Inference), a large-scale dataset for tracking entity states in procedural texts from wikiHow.com.

It contains annotations of entities, attributes, and state changes for each step (e.g., after the step “set

the pan in a heated oven”, the pan’s temperature was cool before and hot afterwards). OpenPI2.0

features two critical improvements (see Figure 4.3 for a demonstration of key features of OpenPI

and OpenPI2.0):

1. Canonicalization. Originally, different mentions of the same entity or attribute render evalua-

tion difficult. Here, we prompt LMs to effectively cluster the entities and attributes.

2. Entity Salience. Originally, all entities that undergo changes are listed in parallel. Here, we

provide both human and model-predicted annotations of their salience.
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Regarding canonicalization, clustering paraphrases evidently allows for fairer evaluation. Moreover,

as our task of predicting entities, attributes, and states is a generation task with imperfect and

incomplete ground-truth references, we show that expanding each entity or attribute cluster with

possible paraphrases (thus providing more references) is effective for reducing the false-negative

rate. We then comprehensively report various state-of-the-art LMs’ performance of entity tracking

on OpenPI2.0.

Regarding entity salience, we provide both manually annotated and automatically calculated labels.

We evaluate them based on correlation with ground-truth data, and show that LMs can reliably

predict entity salience with a close-to-human performance. We argue that salient entities acts as a

means of compression of the most critical information in procedural texts, similar to saliency maps

in computer vision (Simonyan et al., 2013). We proceed to qualitatively and quantitatively show

that salient entities, as chain-of-though of LM prompting, benefit downstream tasks such as QA

and classical planning, while reducing cost by excluding less important entities in the prompt.

4.1.2. Canonicalization

In the original OpenPI dataset, the entities and attributes that undergo change were written by

crowd workers. Consequently, the dataset contains different ways of expressing the same entity (e.g.,

coffee maker, coffee machine, espresso machine in a coffee-making procedure) or attribute (e.g.,

texture, smoothness, sheen of a paint). Canonicalization by clustering the entities and procedures is

thus important for two reasons: 1) it facilitates evaluation especially in a generation setting, where

a model might be wrongly penalized for predicting a paraphrase of some correct entity or attribute;

2) it facilitates further annotation of features such as salience (§4.1.3) of the entities and attributes.

Clustering Entities and Attributes While canonicalization seems straightforward, it is non-

trivial in OpenPI2.0 because clustering is highly context-dependent. For example, the entity torso

and paper chunk usually have nothing to do with each other, but in fact refer to the same thing in

a procedure of making a paper bird.
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Role Content

User
I am trying to make coffee. First, I put some coffee beans and tap water into the corresponding compartment
of the espresso machine. Then, I select the desired type of coffee to make produced. Then I put a mug under
the espresso machine and press start. Do you get it?

Assistant Yes.

User
We have the following objects: water, coffee maker, coffee machine, mug,
espresso machine. Group those that refer to the same thing. You must include all the provided entities. Do
not add any entity that is not provided in the list.

Assistant

<start of generation> The grouped objects are:
- [’water’]
- [’coffee maker’, ’coffee machine’, ’espresso machine’]
- [’mug’]

Table 4.1: Our chosen prompt for entity and attribute clustering.

Entity Attribute

Cluster Recall .425 .881
Cluster Precision .593 .906
Cluster F1 .495 .893

Table 4.2: Evaluation of entity and attribute clustering.

Clustering Due to the contextual nature of the task, we prompt one of the SoTA LMs gpt-3.5-turbo

(a.k.a. ChatGPT)22 as shown in Table 4.1. We use 3-shot prompting, meaning that the complete

prompt includes three handwritten examples and the prompt header of the example to be inferred,

only containing the “User” role. The temperature is as default (0.7) and so are other hyperparame-

ters. We aggregate output from five runs of ChatGPT as the final entity cluster and three runs for

attribute cluster, as doing so is found to be empirically superior than single-pass generation23.

To see if our model can cluster entities and attributes effectively, we evaluate the results using

precision, recall, and F1 scores with exact match against a set of manually-labeled clusters from 20

procedures in the development set.

We see that ChatGPT scores better in clustering attributes compared to entities. Error analysis

shows that two factors contribute to this performance discrepancy. First, most attributes describe

the physical properties of an entity. Therefore, attribute clusters are less context-dependent com-
22platform.openai.com/docs/models/gpt-3-5
23With results from the 5 runs, individual Entity clusters are added to the final cluster based on their number of

occurrences. For instance, if (pan, pot) occurred 5 times, then it will be added to the final cluster first.
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schemata (global) schemata (local) states

F1 F1+exp BS BS+exp F1 F1+exp BS BS+exp acc. BS

gpt-3.5-turbo .151 .249 .843 .869 .025 .039 .798 .804 .074 .600
text-davinci-003 .362 .450 .891 .920 .130 .155 .798 .810 .225 .682
LLaMA 65B .129 .174 .799 .820 .045 .060 .801 .800 .102 .577

Table 4.3: Exact match F1 or accuracy and BERTScore on the schemata and states prediction
sub-tasks, with and without cluster expansion. The schemata sub-task is evaluated both globally
(per-procedure) and locally (per-step).

complete

F1 F1+exp BS BS+exp

gpt-3.5-turbo .016 .016 .772 .790
text-davinci-003 .034 .034 .807 .821
LLaMA 65B .117 .117 .429 .440

Table 4.4: Exact match F1 and BERTScore of complete sentences including an entity, an attribute,
a pre-state, and a post-state, following the original OpenPI paper. Canonicalization and expansion
lead to little help for exact match as it is only done on entity and attribute clusters, while the state
names can still be expressed in many ways, causing false negatives.

pared to entity clusters. Second, many attributes are shared amongst entities. For instance, out of

1,145 attribute annotations in the development set, 204 of them are "location".

Cluster expansion Though the existing entities and attributes are now clustered in OpenPI2.0,

there may still be other paraphrases that a model might rightfully predict and wrongfully penalized

for. Thus, we again prompt ChatGPT to expand the clusters by generating paraphrases given a

cluster of entities or attributes (prompt omitted).

To evaluate the quality of entities and attributes generated from the expansion, we manually rate

20 procedures and find that 83.3% of the generated, paraphrased entities and 59.4% attributes

are correct. This is largely because entity names are oftentimes self-explanatory and less context-

dependent whereas the attribute names and their meanings are highly dependant on the context.

Utility: Evaluation of Entity Tracking Just as the original OpenPI, OpenPI2.0 is meant to

be used to benchmark (or train) models on entity tracking – given a step in a procedure, predicting

the state changes that entities and their attributes undergo. With the entities and attributes in

OpenPI2.0 now fully canonicalized, evaluation can be done more fairly. To start with, we follow
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Correct No change Nonsense Missing

003 585 (82.3%) 106 (15.0%) 14 (2.0%) 383 (20.3%)
3.5 303 (59.4%) 173 (33.9%) 34 (6.7%) 218 (42.7%)

Table 4.5: Error analysis on the schemata prediction task using two SoTA LLMs.

Role Content

User

Here are some instructions on making coffee.
- Buy fresh coffee beans.
- Grind the coffee beans.
- ...
Now, I will provide you with a series of objects, and you will assign scores on a scale of 1-5 to them based on
their importance in the instruction. Your answer should strictly be a numerical score followed by a one-
sentence explanation.

Assistant Sure, I can help you with that. Please provide the objects.
User Coffee bean
Assistant <generation> 5 - the coffee beans are the most important ingredient in making coffee.

Table 4.6: Our chosen prompt for predicting global or procedure-wide entity salience. For local
salience, the wording is similar with only one step provided.

Tandon et al. (2020) and predict one complete sentence: “attribute of entity is pre-state before

and post-state afterwards”, which is then compared to such sentences in the ground-truth data

(Table 4.4). We further make the evaluation more fine-grained by formulating two sub-tasks: i.

predicting schemata, namely the entities and their corresponding attributes given a step (e.g., given

“turn on the oven”, the “temperature” of the “rack” undergo state changes), and ii. predicting the

change of states given a step, an entity and an attribute (e.g., given the previous information, the

state change is from “cool” to “hot”). This evaluation of first predicting a skeleton tensor of entities

and attributes is highly practical, and stands in stark contrast with most previous work (§4.1.1) in

closed-domain entity tracking, where states are predicted using given entities and attributes.

On the development set, we run three SoTA LMs: gpt-3.5-turbo, text-davinci-00324 (Brown et al.,

2020), and the open-source LLaMA 65B (Touvron et al., 2023). For each model, we start by sep-

arately tackling each of the two sub-tasks25; namely, a model first predicts attributes of entities

(schemata) given a step, and then predicts a pre-state and a post state (states) given the gold

entity-attribute pair. All experiments are via 1-shot prompting.
24platform.openai.com/docs/models/gpt-3-5
25To avoid error propagation, for states prediction, the ground-truth entities and attributes are provided.

66

platform.openai.com/docs/models/gpt-3-5


For all settings, we consider both exact match (F1 for schemata and complete sentence prediction and

accuracy for states prediction) and BERTScore (Zhang et al., 2019b) based on deberta-xlarge-mnli

(He et al., 2021).

For the schemata prediction sub-task (Table 4.3), the atomic unit to be evaluated is an entity-

attribute pair. We consider both a global evaluation, where predictions are made per-procedure (e.g.,

what attributes of entities undergo state changes in the procedure), and a local evaluation, where

predictions are made per-step. This categorization will reappear in §4.1.3. Schemata prediction is

naturally influenced by our entity and attribute clusters. Hence, for exact match we report F1 scores

based on exact matches where any entity-attribute prediction that falls under an cluster, obtained by

taking a Cartesian product of an entity cluster and an attribute cluster, is considered a true positive.

For BERTScore, we calculate the maximum score of a prediction against all entity-attribute strings

within all ground-truth clusters. Then, we report the mean score among all predictions as a macro

average.

The states prediction sub-task (Table 4.3) is much more straightforward as the entity-attribute pairs

are provided and a model only needs to predict a pre-state and a post-state for each. Thus, we

simply report the exact match accuracy and BERTScore for each state.

Discussion and Error Analysis We observe that the predicting attributes of entities that un-

dergo state changes is a highly challenging task even for SoTA LMs. Although evidently, expansion

of clusters improves performance (fairly, as we have shown that the generated paraphrases are mostly

correct), false-negatives that result in underestimation of models cannot be eliminated entirely. One

interesting observation is that text-davinci-003 greatly outperforms the supposedly more superior

gpt-3.5-turbo. To gain even more insights into models’ behavior, we analyze the model output

for the schemata prediction sub-task. For each step, we annotate each entity-attribute prediction

based on three labels:

• Correct, where the entity-attribute indeed go through some changes;

• Incorrect, because the entity-attribute actually does not go through any changes;
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Annotations Predictions
Human (A2) LM

Global .759 .719
Local .578 .400

Table 4.7: Pearson’ r with human annotations (A1).

• Incorrect, because the entity-attribute is non-sensical.

In addition, we add any entity-attribute pairs that should have been predicted as going through

some change, to measure models’ recall. We randomly sample 20 procedures to perform this error

analysis and the results are shown in Table 4.5.

Regarding precision, we find that while the majority of the predicted entities are correct, many of

the predicted associated attributes are generic ones that do not undergo any change either locally

or globally. For example, for the step “Purchase a blackboard eraser”, the attributes predicted by

text-davinci-003 for the entity eraser are location (correct), cleanness (static locally), shape, and

size (static globally). The issue is much more pronounced with gpt-3.5-turbo, with predictions

such as location of seller, name of brand, etc, despite that the prompt clearly explains the desired

output with an example. We attribute such performance discrepancy to gpt-3.5-turbo’s decreased

ability to follow examples and its inability to understand nuanced instructions. Regarding recall,

both models fail to predict many attributes that the human annotator deems changing. Upon

qualitative inspection, most of these missing attributes are no less salient than the predicted ones,

suggesting that this issue cannot be explained away with only missing secondary attributes which

may be plenty.

We leave to future work the resolution of these issues, which can be mitigated by re-prompting

the models by validating if the predicted attributes indeed undergo changes, or simply have them

predict the state changes altogether in the first place.
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Figure 4.4: Per-procedure correlation of global entity salience between each set of annotations and
the ground-truth human annotations.

4.1.3. Salience

The original OpenPI is annotated with many parallel entities in each procedure. Often, they vary

greatly by importance in accomplishing the task. For example, in a procedure of cooking a steak,

entities fish, oven, gloves, and spice rack might all be involved, while some are more indispensable

than the rest. In OpenPI2.0, we define two types of entity salience: the global salience refers to

the importance of an entity in accomplishing the goal of the procedure, whereas the local salience

refers to that in a step.

Human Labeling To first procure ground-truth salience labels, two authors (referred to as A1

and A2) annotated entity salience in the first 20 procedures in the development set as the gold

standard of entity salience. We devise and follow these annotation criteria in a Likert scale:

5: without or without mentioning this entity, the procedure or step cannot be done at all (e.g.,

lemon in “Wash faucet with lemon”)

4: without this entity, another entity of the same type can be used as a replacement, perhaps

with worse outcome or more efforts (e.g., pan in “Sear a salmon” - can also use grill)

3: without this entity, the procedure or step can be done in principal, though with slightly worse

outcome or more efforts (e.g., glove in “Cut off tough branches of a bonsai plant”)

2: without this entity, the procedure or step can be done, though with negligibly worse outcome

or more efforts (e.g., vacuum cleaner in “Drill holes in the wall”)

1: the entity appears in the procedure or step rather gratuitously, and the lack thereof makes no

difference
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0: the entity is irrelevant to the procedure or step

Subjectivity is inevitable even though we strive to minimize subjectivity using this fine-grained scale

to capture nuanced situations (e.g., an entity that frequently appears that can be easily replaced

versus one that appears only once but is irreplaceable). In later sections, we will see how this scale

leads to reasonable inter-annotator agreement and favorable performance on downstream tasks.

LM Prediction We prompt gpt-3.5-turbo, as before, to automatically predict salience. Ta-

ble 4.6 shows an example prompt for predicting global salience. As before, we use the default

hyperparameters with a temperature of 0.7. We parse the result by extracting the first digit from

the generation as the score, and default to 1 whenever impossible.

Evaluation To first holistically evaluate the modelling of salience, we report pairwise Pearson’s

correlation coefficients between each set of labels above and the annotations of human A1. In

Table 4.7, we report a “macro correlation”, namely the mean of correlation of salience scores in

each procedure.26 First, the correlation between the two annotators is high but imperfect, implying

subjectivity in the annotation of entity salience. In comparison, the LM predictions come close with

especially impressive predictions for global salience.

To understand when and how entity salience can be subjective among humans, in Figure 4.4 we

show salience correlation for the first 20 procedures. Some with low inter-human correlation such as

“Defeat a Thug” expose a document-frequency problem: one human labels the entity “you (actor)”

with a salience of 5, believing that without the actor the procedure cannot be undertaken at all,

while the other labels 1, believing that the actor occurs in every procedure and thus the mention

of it makes no difference. Other procedures such as “Make Taco Filling” expose a cluster-individual

problem: all individual ingredients are grouped under one cluster, for which annotators are divergent

on the salience. While such issues can be mitigated by better defining entity salience in a potential

future annotation process, it is much more practical to consider downstream applications.

Using our methods above and adding the model predictions for canonicalization and salience to the
26To avoid NaN due to constant input array, a 0 is appended to each array as smoothing.
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Role Content

User A person walks into a dark room in a freezing windy night. In the very beginning before anything is done,
how likely is it that she can see what’s in the room? Answer on a scale of 1-5, with a 1-sentence explanation.

Assistant 1 - it is highly unlikely for the person to see anything in a dark room without any source of light.

User Next, she lights up a torch and hangs it near a window. At this point, how likely (same question)...

Assistant 5 - hanging the torch near a window maximizes the distribution of light in the room, greatly enhancing the
visibility and increasing the likelihood of seeing what’s inside.

1User Next, she opens the window. At this point, how likely (same question)...

1Assistant 5 - opening the window allows natural light to enter the room, combining with the torchlight to provide
ample illumination, greatly increasing the likelihood of seeing what’s in the room.

2User Next, she opens the window. The most salient entities for this step are the window, the wind, and the flames.
How does each of these entities change?

2Assistant

When she opens the window, the following changes occur:
Window: The window is now open, allowing for air and potentially some outside light to enter the room.
Wind: The wind becomes more noticeable and enters the room through the open window, causing a draft
and potentially affecting the flames of the torch.
Flames: The flames of the torch may flicker or change direction due to the entry of wind through the open
window, altering their shape and intensity.

2User With such information, at this point, how likely is it that she can see what’s in the room?

2Assistant 3 - opening the window allows some outside light to enter, the presence of wind and potential disruption to
the flames may still impede visibility to some extent.

Table 4.8: gpt-3.5-turbo’s performance on a CREPE-like example. The interactions with and
without using entity salience are both shown. Critical information is illustrated in bold.

OpenPI dataset, we now fully present OpenPI2.0. As the procedures and entity state annotations

have not changed, OpenPI2.0 still has 55 procedures with 5.0 steps on average. These procedures

are collected from wikiHow and their topics are everyday activities. OpenPI2.0 also inherits the

original entity-attribute-state changes annotated by crowd workers. After canonicalization, there

are 356 canon entities each with 7.6 unique mentions and 5.5 expanded mentions on average, 3240

canon attributes, each with 3.0 unique mentions and 3.3 expanded mentions on average, and 1193

before-after states in the development set. The quality of clustering and expansion and be evidenced

in §4.1.2. Regarding salience, the global salience of entities has a mean of 3.5 and standard deviation

of 1.4; the local salience of entities has a mean of 3.4 and standard deviation of 1.5.

Regarding the training set, OpenPI2.0 is no different than OpenPI, for one may either fine-tune an

LLM to predict entity states (i.e., produce the entity schema, my proposed structured representation

of a procedure) for LLMs with the pre-train then fine-tune paradigm. However, to take advantage

of the powerful LLMs with the in-context learning paradigm, OpenPI2.0 allows for effective model

selection, which entails not only selecting an LLM and its hyperparameters, but also prompt tuning.
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In other words, OpenPI2.0 leads to LLMs that can best predict the entity schema of events. I will

continue to discuss how that entity schema can effectively work with LLMs to outperform end-to-end

usage in some challenging event reasoning tasks.

The work above was published in Zhang et al. (2023b), in which I primarily contributed to all

components except the canonicalization part to which Hainiu Xu primarily contributed. I have

obtained approval from all collaborators to exclusively include this work in this thesis.

4.2. Application of Entity Schema

We now have LLMs, evaluated on OpenPI2.0, that can effectively predict entity states. Namely,

an entity schema can be derived from procedural texts. We are now ready to tackle the task of

causal event reasoning, exemplified in the beginning of this Chapter. We will see how a structured

representation of said entity schema contributes to model performance.

Before diving into the application, I will first clarify how exactly the entity schema can interface with

or be fed into LLMs. Recall that in Chapter 3, the event-relation schema interfaces with LLMs via

fine-tuning. This is possible because all the events are natural language sentences and the relations

among events are learned via labeled data. Regarding the entity schema, one can similarly fine-tune

LLMs to predict some part of the schema, such as the pairwise relation between an event and an

entity. However, I try to be more ambitious and attempt to feed the entire entity schema as input

to LLMs to facilitate their reasoning. In this past, this would not have been possible because LLMs

were pre-trained only on natural language, unable to work with a structured representation such

as a matrix, graph, or some data structure. Fortunately, at the time that work described in this

Chapter took place, latest LLMs are also trained on structured data such as code, in addition to

text. Therefore, these LLMs can not only take structured representations as input but also predict

them. Along with this advance is the in-context learning paradigm with many advantages over the

pre-train then fine-tune paradigm (Section 2.2.1). Most noticeably, it reduces the need for manually

labeled data for LLMs to make predictions. In summary, it is now possible for the the cutting-edge

LLMs to not only predict by consume an entire entity schema. Even so, how exactly one should

represent the schema (i.e., the form; e.g., as a matrix, graph, or Python code) is still a key design
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choice.

Unlike the form discussed above, the term structure (e.g., structured reasoning, event structure,

etc.) has a much deeper semantic meaning, referring to the underlying representation of an event.

In summary, an unstructured representation of an event is necessarily in the form of natural lan-

guage, whereas a structured representation can either take the form of natural language or symbolic

language.

4.2.1. Motivation

The earlier example of whether “one can safely touch the pan” is different from typical QA examples

like “how many states are there in the US ” in that the former question is grounded to a particular

environment. In other words, the answer depends on the exact configuration the environment,

which in turn is decided by the events that have previous taken place. While the environment can

be specified in many possible ways, procedural text, as we have extensively discussed in Chapter 3, is

a common descriptor of an environment that changes dynamically through a sequence of steps. Even

so, the exact environment configuration is often implicit (e.g., we know that “we boil the water ”, but

we are not explicitly told that “the water is hot.” Such a QA task is an instance of event reasoning -

or, specifically, procedure reasoning - that this thesis focuses on. With these interesting challenges

coupled with the added benefit of application to robotics (Brohan et al., 2023) and household smart

assistants such as Alexa (Panagopoulou et al., 2022), reasoning about procedures attracts great

attention from the NLP community.

Most work on reasoning about procedural texts has focused solely on either predicting the proper-

ties of events (e.g., which event is more likely to happen) (Zhang et al., 2020c; Yang et al., 2021;

Tandon et al., 2019) or tracking entity states (e.g., what is some property of an entity after some

step) (Dalvi et al., 2018; Tandon et al., 2020), while the causal relation between events and entities

is largely underexplored – for example, whether “there is a sizzling sound ” is determined by the state

of “water ” and “oil.” Therefore, we claim that many event prediction tasks are multihop reasoning

tasks that require the knowledge of intermediate entity states. Causal reasoning about events and

entities differs from existing multihop reasoning tasks, such as Yang et al. (2018); Dua et al. (2019)
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Figure 4.5: Example of our task CREPE. A procedure including a goal and some steps are provided.
A model needs to predict the change in the likelihood of an event throughout the procedure. We
show that predicting entity states as an intermediate step improves performance.

whose reasoning process is explicitly formulated by a direct question (e.g., how old is the previous

US president); and Geva et al. (2021) whose supporting evidence is factual and static. In contrast,

causal reasoning in procedures requires models to first figure out the relevant entity attributes, then

infer their states based on the current context, and finally predict the event.

To this end, we propose the task of Causal Reasoning of Entities and Events in Procedural Texts

(CREPE), with an overview in Figure 4.5. Given a procedure consisting of a goal (“stir fry vegeta-

bles”) and some steps (“rinse vegetable”...), a model is to predict the likelihood of some unobserved

events (“there is a sizzling sound ”) after the execution of each step. This kind of hypothetical,

counterfactual event reasoning is a high-level cognitive ability beyond pattern recognition and a

manifestation of complex reasoning ability (Pearl and Mackenzie, 2018; Pearl, 2019). Counterfac-

tual reasoning has a long history with formal methods (Forbus, 1984; Lewis, 2013). Less modern

work exists in commonsense (Feng et al., 2021), procedural texts (Tandon et al., 2019), and even

computer vision (Yue et al., 2021).
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4.2.2. Task and Hypothesis

I will first formally describe the task of CREPE. A procedure P of length n consists of a goal G

and some steps s1 . . . sn ∈ S, each represented as a short sentence. Each procedure is associated

with a set of hypothetical events e1 . . . em ∈ E whose likelihood of happening changes throughout

the procedure. The task is to predict the change of likelihood of a hypothetical event ej from step

si−1 (the previous step) to step si (the current step):

δi = p (ej |si, . . . , s1, G)− p (ej |si−1, . . . , s1, G)

The likelihood change δi is positive if the label is “more likely”, negative if “less likely”, or zero if

“equally likely”.

In our work, we hypothesize that the causal relation between entity changes and events can

be leveraged by LLMs to better perform counterfactual reasoning. In other words, any change of the

likelihood of a hypothetical event is given rise to by changes of some entity attributes a1 . . . am ∈ A.

δi = p(aj |si, . . . , s1, G)− p(aj |si−1, . . . , s1, G)

4.2.3. Dataset

Our CREPE benchmark dataset has two portions. The first is handcrafted and cross-validated

by six authors of this paper. The annotation happens in 3 phases: (1) we first write down or

acquire a procedure from the web; (2) we then annotate some hypothetical events whose likelihood

of happening changes throughout the procedure, and how their likelihood change after each step; (3)

for each event, we annotate a tuple of entity, attribute, and change that causes the event likelihood

change. To obtain interesting and challenging data, we require annotators to write procedures

covering a diverse range of topics and to prioritize events that undergo multiple likelihood changes,

and those that involve information implicit from the steps. In our work, we strictly use this portion

as the development set to inform all our experimental designs.
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Data Statistics

Dev Test Total

Num. procedures 42 141 183
Num. steps 295 924 1219
Num. event changes 144 180 324
Avg. step per procedure 7.0 6.6 6.7
Avg. token per step 6.8 6.8 6.8

Procedure Topics

Dev Test Total

Recipe 10 33 43
Household 12 40 52
Craft 4 17 21
Technology 5 19 24
Travel 4 4 8
Sports 2 13 15
Others 5 15 20

Table 4.9: Statistics of the CREPE dataset.

The second portion, designed to be drawn from a different distribution to minimize bias, was

annotated by students in an Artificial Intelligence class at the University of Pennsylvania who

participated in an extra-credit assignment. The students were given an overview of the project

and some guidelines to annotate data with the aforementioned criteria. We carefully validated all

resulting annotations by discarding or editing erroneous and inappropriate examples. In our work,

we strictly use this portion as the test set to evaluate the generalization ability of our final models.

The complete dataset and annotation instructions can be found in our public repository containing

no personally identifiable information of any annotator.

The statistics of CREPE are in Table 4.9. In this work, we consciously focus on few-shot and

in-context settings because our data annotation inevitably contains bias and limitation, and thus

cannot be truly representative of counterfactual reasoning in every scenario. In such cases, we

believe having a sizeable training set aggravates such biases and induces spurious artifacts.

The task of CREPE is essentially ternary classification, where the likelihood change of each event

after each step is labeled as one of “more likely”, “less likely”, or “equally likely”. Here, all models
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Goal: Wash sneakers
Context: I remove shoelaces. I rinse.
Question: What is the likelihood that my feet get wet by wearing the sneakers?
Answer: likely

Figure 4.6: Our GPT-3 prompt, which is typical for a QA task. Each likelihood label is compared
with the previous one to get the label for the change.

have no access to the annotated entity state changes until later sections.

4.2.4. Text Form

To show the challenge CREPE brings to existing models, we first introduce some naive baselines.

• The chance baseline assigns random labels.

• The majority baseline always assigns the majority label “equally likely”.

Next, we consider the following state-of-the-art LLMs as strong baselines, where all models are given

exactly three examples in their prompt:

• T5 (Raffel et al., 2020) is one of the state-of-the-art LLMs. Given the goal, steps, and question

formatted by a prompt template, we compare the probability of generating “the answer is no|yes.”

We use T0-3B27 with 3 billion parameters.

• T0 (Sanh et al., 2022a) is a variant of T5, fine-tuned on a large set of downstream tasks with

natural language prompts. We adopt the same inference process as T5 described above. We use

T0pp28 with 11 billion parameters.

• GPT-3 (Brown et al., 2020) is a series of LLMs that excels at few-shot learning using the prompt-

ing mechanism. We consider text-curie-001 (7B parameters), text-davinci-002, text-davinci-003,

and ChatGPT (all 175B parameters). We use default parameters with a temperature of 0 for de-

terministic predictions. An example of the prompt is shown in Figure 4.6.
27https://huggingface.co/t5-3b
28https://huggingface.co/bigscience/T0pp
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Naive Large Language Models Human

Cha. Maj. T5 T0 GPT3C GPT3C+S GPT3D2 GPT3D3 ChatGPT Codex
(ours)

Params - - 3B 11B 13B 13B 175B 175B 175B 175B -

Dev .262 .297 .343 .336 .346 .341 .350 .424 .470 .585 .868
Test .251 .296 .343 .337 .356 .346 .533 .423 .462 .591 -

Table 4.10: Macro F1 of baseline models on the CREPE dataset. Human performance is not
benchmarked on the test set as we strictly hold out its labels during all experiments. GPT3C
represents the text-curie-001 model. GPT3D2 represents the text-davinci-002 model with
an abnormal performance on the test set that we have confirmed but regrettably cannot explain.
GPT3D3 represents the text-davinci-003 model. GPT3C+S represents the GPT-3 curie model
finetuned on StrategyQA. All of the above models work with textual prompts. Codex represents
the code-davinci-002 model and works with our proposed code-like prompts.

• GPT-3 finetuned on StrategyQA is a GPT-3 curie model finetuned with StrategyQA

(Geva et al., 2021), a dataset of factual multihop questions and their decomposition. StrategyQA

is similar to our task in that estimating the change of event likelihood can also be decomposed

into sub-tasks of estimating the change of state of related entities (Section 4.2.6).

Table 4.10 shows that all state-of-the-art LLMs we have attempted achieve close-to-chance perfor-

mance on CREPE around 0.350 F1, whereas text-davinci-003 and ChatGPT which are known to

be stronger at reasoning perform only slightly better. These results showcase that the CREPE task

is clearly challenging for even the strongest LLMs when used in an end-to-end manner. Previously,

we have established that LLMs can now work with both a natural language form and a symbolic

language form of the data. While the above representation is of course an ordinary text form, we

will next explore a symbolic form of the examples in CREPE that will later be essential for the

application of the entity schema.

4.2.5. Code Form

Codex (Chen et al., 2021a) is a variation of GPT-3 that was designed to be prompted with and to

generate code, in addition to natural language texts. Shortly before the publication of this work,

Madaan et al. (2022) found that prompting Codex with some structured representation such as

Python code. Inspired by this observation, we propose novel code representations of procedures

and hypothetical events. Among many possibilities we experimented with, the representation with
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class Wash_Sneakers:
# Init
# Remove shoelaces
# Rinse
def __init__(self, event0):
self.event0 = event0 # My feet get wet by wearing the sneakers.

def remove_shoelaces(self):
self.event0.change = "equally likely" # My feet get wet by wearing the sneakers.

def rinse(self):
self.event0.change = "more likely" # My feet get wet by wearing the sneakers.

Figure 4.7: Our best-performing Python code representation of a procedure and hypothetical events,
for Codex.

the best empirical performance is described below, later shown to greatly outperform all baseline

models. The representation is exemplified in Figure 4.7.

The procedure is represented as a class where the goal G is the class name, followed by the steps

si as comments. Then, each step is defined as a member function, in which the hypothetical events

ej are represented as objects with comments. Each event object has an attribute “change” whose

value describes the change of the likelihood. During inference, Codex is provided with the prompt

including three in-context examples and the current procedure up to the definition of the “init”

function and predicts the definition of all step functions. Finally, we extract the assigned value of

the “change” attribute as the event likelihood change δi.

This prompt design effectively leverages the semantic similarity between procedures with entity

states and functions with variables, by representing texts as function identifiers and comments. We

use code-davinci-00229 with 175B parameters and default hyperparameters with a temperature

of 0.

Results As CREPE is a ternary classification task, we report the macro F1 score across the three

classes. As shown in Table 4.10, T5 and T0 perform only slightly better (.343 and .336 F1) than

chance (.297 F1). GPT-3, one of the most dominant models across a variety of NLP tasks, is no
29While OpenAI announced that text-davinci-002 is based on code-davinci-002 (https://platform.openai.co

m/docs/model-index-for-researchers), we empirically find the former to perform worse with our code prompt and
thus only consider the latter with code prompt.
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Dev Test

Codex .585 .591
no step comments .377 .352
no event comments .576 .555
nested function .568 .572
flat variables .338 .341

Table 4.11: Macro F1 of the ablations of our Codex prompt.

better (.336 F1), whereas finetuning it on another multihop reasoning dataset StrategyQA does

not bring about any improvement (.341 F1). The latest GPT-3 models, text-davinci-003 (.424

F1) and ChatGPT (.470 F1) which were released contemporarily with this paper, greatly outperform

their predecessors.

On the other hand, our code-representation of events as the prompt to Codex greatly outperforms

all other models with .585 F1. As Codex is trained on public Github code in addition to the internet

texts that GPT-3 is trained on, it is noteworthy that Codex can effectively reason about texts with

code-like structures, for a procedure has many analogies to a class in object-oriented programming.

Ablation Studies To understand why the representation in our Codex prompt is effective, we

perform an ablation study with various changes of the format to the representation, including:

• Remove steps comments in the beginning

• Remove event comments in step functions

• Use nested functions instead of a class

• Use flat variables to encode goals, steps, and events (no hierarchical class functions)

As seen in Table 4.11, the hierarchical representation of procedures, steps, and events as classes or

nested functions is critical. Besides, listing all the steps as comments helps, mimicking a program-

mer’s textual explanation of a class or a function.
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4.2.6. Injecting Entities

When a human tries to predict whether the event “one would get burnt by touching a pan” is likely,

their reasoning process would first focus on some entities in the question (e.g., “the pan”), then

attend to some attributes and states of that entity (e.g., the temperature of the pan is hot), and

finally draw a logical conclusion (e.g., “the pan being hot means one would get burnt by touching it.”)

CREPE is constructed precisely with this thought process in mind. An entity-attribute-change tuple

is annotated along with each event likelihood change. In this section, we study how to explicitly

leverage the intermediate information to assist the prediction of event likelihood prediction.

In CREPE, the task of predicting event likelihood change can be seen as a case of multihop reasoning,

where a model first decomposes the question into some open-ended sub-questions, answer these sub-

questions, and aggregate them as a final answer. LLMs can be prompted to perform chain-of-thought

(CoT) style reasoning (Nye et al., 2021; Wei et al., 2022b). Thus, we ask the question:

Q1. Can LLMs benefit from first predicting entity state changes, as a CoT, before

predicting event likelihood changes?

Text Form First, we prompt GPT-3 with Wei et al. (2022b)’s CoT paradigm and Press et al.

(2023)’s self-ask paradigm, both of which are shown in Figure 4.8. While self-ask relies on search

engines for fact retrieval, we use LM generation instead as most of our entity state tracking questions

are heavily context-dependent and unanswerable by any search engine. When writing demonstra-

tions for few-shot learning, we impose the following logic progression for the follow-up questions:

(1) initial followups shall ask questions on the state of entities that are directly related to the event;

(2) followups following the entity state questions shall ask for the logical relationship between the

entity states and the original event.

Code Form We modify our Codex prompt in Figure 4.7, so that a sub-event is represented as a

string variable whose declaration and value assignments are right before those of the hypothetical

event. We refer to this as a soft representation of entities (Figure 4.9). During inference, Codex is

provided with the code up to the step function header and predicts the entity and event changes for
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Goal: Wash sneakers
Context: I remove shoelaces. I rinse.
Question: What is the likelihood that my feet get wet by wearing the sneakers?
Answer: To get feet wet by wearing the sneakers, the sneakers must be wet. In the given
context, the sneakers are wet. Therefore, comparing to the previous step, the likelihood
change is "more likely".

Goal: Wash sneakers
Context: I remove shoelaces. I rinse.
Question: What is the likelihood that my feet get wet by wearing the sneakers?
Follow up: Are the sneakers wet?
Intermediate answer: Yes
Follow up: Will my feet get wet by wearing wet sneakers?
Intermediate answer: Yes
Answer: likely

Figure 4.8: Our GPT-3 prompt with intermediate questions, mimicking the CoT prompt (top) and
the Self-Ask prompt (bottom).

Naive LLMs CoT Large Language Models Human

Majority GPT-3 Codex GPT-3+CoT GPT-3+self-ask Codex soft
(ours)

Codex hard
(ours)

Dev .297 .346 .585 0.359 .342 .624 .667 .868
Test .296 .356 .591 0.379 .345 .626 .609 -

Table 4.12: Macro F1 of chain-of-thought models on the CREPE dataset. GPT-3 + CoT|self-ask
represents the text-davinci-002 model prompted with the CoT or self-ask style prompt.

every step function. Our Codex model achieves the new best performance of .624 F1, outperforming

the same model without predicted entities as CoT by .039 F1.
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class Wash_Sneakers():

# Init

# Remove shoelaces

# Rinse

def init(self, event0, subevent0):

self.event0 = event0 # My feet get wet by wearing the sneakers.

self.event0.subevent = subevent0 # The sneakers are wet

def remove_shoelaces(self):

self.event0.subevent.change =

"equally likely" # The sneakers are wet

self.event0.change = "equally likely" # My feet get wet by wearing the sneakers.

def rinse(self):

self.event0.subevent.change =

"more likely" # The sneakers are wet

self.event0.change = "more likely" # My feet get wet by wearing the sneakers.

Figure 4.9: Our Codex prompt with a soft representation of entity state changes as strings.

The two approaches above both softly represent the intermediate entity state changes as texts,

either questions or statements. Here, LLMs are not enforced to generate intermediate reasoning

steps that contain entities and attributes. To answer Q1 more precisely, we experiment with a hard

entity representation where the entity-attribute-change tuple is explicitly baked into the Codex

prompt as shown in Figure 4.10. Here, each entity is represented as an object with an attribute

and assigned value. The hard entity representation leads to a far superior performance of .667 F1

on the development set but generalizes worse on the test set with .609 F1.

To recap, we have shown that LLMs can be prompted to exhibit a CoT that first predicts entity

state changes and then event likelihood changes. Hence, our answer to Q1 raised at the beginning

of this subsection is ‘yes.’
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class Wash_Sneakers():
# Init
# Remove shoelaces
# Rinse
def init(self, event0):
self.sneakers = Sneakers()
self.event0 = event0 # My feet get wet by wearing the sneakers.

def remove_shoelaces(self):
self.event0.change = "equally likely" # My feet get wet by wearing the sneakers.

def rinse(self):
self.sneakers.wet = True
self.event0.change = "more likely" # My feet get wet by wearing the sneakers.

Figure 4.10: Our Codex prompt with a hard representation of entity states as variables, attributes,
and values.

Dev Test

Majority .297 .296

GPT-3 CoT .342 .345
w/ gold entity changes .351 .380
Codex CoT .667 .609
w/ gold entity changes .715 .722

Human .868 -

Table 4.13: Macro F1 of GPT-3 and Codex with chain-of-thought provided with gold entity state
changes.

Annotated Entity States In the above section, we have shown how event likelihood prediction

can be improved by first having the LLMs predict entity states as a CoT. These experiments mimic

a realistic setting where information about entities is unavailable. However, in some scenarios, the

entity states may be provided. For example, an embodied agent or a robot might have a reliable

component that tracks entities; some practitioners might care about a small set of procedures

in a narrow domain with annotated entity changes; or, some event schemata containing entity

information could be used to predict unseen events. Here, we try to answer the following question:

Q2. Can LLMs effectively leverage annotated entity state changes to better predict

event likelihood changes?
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Instead of having LLMs predict entity state changes, we provide the annotated entity state changes

in the CREPE dataset to GPT-3 and Codex. Doing so has the additional benefit of verifying that

entity state changes indeed causally benefit LLMs in predicting events.

As shown in Table 4.13, our Codex representation with access to gold entity changes leads to

improved performance of .715 F1 on the development set. In contrast, GPT-3 does not see any

gain. Hence, the answer to Q2 is ‘yes’ for the code-trained LLMs but ‘no’ for standard LLMs.

Predicted Entity States As we will discuss further in Section 4.1.1, entity state tracking is an

established task in NLP with existing datasets and models. We have now predicted entity state

changes using LLMs in a few-shot learning setting. It is then natural to pose the question:

Q3. Do existing entity state tracking models make predictions that lead to better

performance on CREPE?

Our definition of causal reasoning of events is directional since we consider entity state changes as

the cause of the change in event likelihoods. To this extent, we incorporate OpenPI (Tandon et al.,

2020), the only open-domain entity state tracking dataset in procedural texts, as a part of the

pipeline. In OpenPI, the input is a goal, a step, and the output is tuples of an entity, a feature,

and two attributes before and after the execution of the step. For example, after “heat the pan

[step]”, “the temperature [feature] of the pan [entity] is cool [attribute] before and hot [attribute]

afterward.” While the original paper proposed a GPT2 model (Radford et al., 2019), we opt to

finetune the superior GPT-3 Curie model on its data. After the model makes a prediction, we

post-process it into the format of CREPE by discarding the feature and producing two entity-

attribute-change pairs (e.g., pan-hot-“more likely” and pan-cold-“less likely”). We provide Codex

with only the entity changes when the entity is mentioned in the event. Further, to fit our prompt

in the context window of Codex, we provide Codex with 5 entity state changes uniformly drawn

from a pool of candidate choices at every step. The resulting OpenPI-prompted Codex gives a

degraded macro F1 score of 0.553 on the development set and 0.496 on the testing set. Hence, our

answer to Q3 is ‘no,’ suggesting that existing entity state tracking datasets may be insufficient for
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our causal reasoning task.

4.2.7. Analysis

In this section, we analyze potential factors that play a role in our Codex model’s performance.

We investigate three factors: (1) the number of steps in a procedure; (2) explicit mentions of

event-related entity-of-interest (EoI) in a given step; and (3) the logical relation (entailment or

contradiction) between the event likelihood change and its related entity state change. To study

factor (1), we dichotomize procedures from the development set by the average length of the proce-

dure. To investigate factors (2) and (3), we manually labeled the ground truth EoI mentioning and

logical relation for the development dataset. Intuitively, estimating event likelihood in lengthy pro-

cedures and in steps where EoI is not explicitly mentioned would be difficult. Rather surprisingly,

Codex shows no significant performance discrepancy under factors (2) and (3), and only a slight

performance difference in factor (1).

Further, the task of CREPE can be divided into two sub-tasks, first to identify whether an event

likelihood change occurred at all, and then to classify the change as either more or less likely.

We observe that CoT Codex outperforms Codex on both sub-tasks. For the classification task, in

particular, CoT Codex obtained a .149 increase in macro F1 score from .805 to .954. This shows not

only that CoT Codex is effective, but also that its bottleneck is identifying event likelihood change.

In summary, we present CREPE, a benchmark for causal reasoning about events and entities in

procedural texts. After establishing that end-to-end LLMs such as GPT-3 perform close to chance,

we discussed two means of improvement, both critical to this thesis. First, we show that a code-like

representation of the data can be fed as input to LLMs and greatly improves the performance.

Hinging on this exciting finding, Section 4.3 explores whether this symbolic form works across other

NLP tasks. Second, we show that the entity schema contributes to the success in CREPE, for the

information about entities clearly helps reason about the counterfactual events.

The work above was published in Zhang et al. (2023c), in which I primarily contributed to all

components. I have obtained approval from all collaborators to exclusively include this work in this
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You are trying to draw a simple teddy
bear. You need to do two things:
(a) erase unnecessary lines
(b) draw a shirt for the bear
The first thing to do is 

instructions = "Given a goal and
two steps, predict the order to do
the steps to achieve the goal"
goal = "Draw a Simple Teddy Bear"
step0 = "erase unnecessary lines"
step1 = "draw a shirt for the bear"
order_of_execution = 

Code Prompt

Text Prompt

code-davinci-002

text-davinci-002

(b) draw a shirt
for the bear

[step1, step0]

Figure 4.11: For certain tasks, prompting program-trained language models with code-like repre-
sentations works better than prompting with text.

thesis.

4.3. The Versatility of the Code Form

4.3.1. Motivation

Any work that attempts to have LLMs work with a structured representation must decide the form

that the representation takes (e.g., plain text, matrix, graph, Python code, etc.). Apart from our

work above (Zhang et al., 2023c), several concurrent work has found that prompting such LLMs

with a code form (e.g., Python, JSON, PDDL) instead of text leads to performance improvements on

structured common sense reasoning (Madaan et al., 2022), event argument extraction (Wang et al.,

2023), knowledge graph construction (Bi et al., 2023), and story understanding (Dong et al., 2022).

Such results naturally lead us to ask whether prompting with the code form is the preferred way

of interacting with code-trained LLMs in general. While previous work is limited to reasoning

tasks, in this work we analyze a broad selection of tasks (e.g., QA, sentiment, summarization) and

systematically compare the performance of prompting LLMs with code vs. prompting with text30.

We find that:

• With the exception of some reasoning tasks, code prompts do not outperform text prompts
30The code, prompts, and outputs for our experiments are public at github.com/zharry29/curious_code_prompts
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• The style of code prompt has a large effect on performance for some but not all tasks.

• Fine-tuning on text instructions leads to relative improvements when using code prompts.

4.3.2. Experimental Design

Model Selection For our text-based LM we use the original 175 billion parameter davinci

model introduced by Brown et al. (2020). For our LLM we use the newer code-davinci-002 model

which was explicitly trained on text and code. Neither model underwent any supervised instruction

fine-tuning. In addition, we analyze performance on text-davinci-002, which is a variant of

code-davinci-002 trained explicitly on human demonstrations using supervised fine-tuning31. We

include this model to help us determine whether or not fine-tuning LLMs on text instructions affects

their ability to interpret code prompts. All three models were queried through the OpenAI API32

and our experiments cost approximately $2700 in total.

Dataset Task Category Num. Eval Examples Metric Origin

HellaSwag Commonsense Reasoning 1000 / 10042 Accuracy Zellers et al. (2019b)
wikiHow Goal-Step Commonsense Reasoning 1000 / 1073 Accuracy Zhang et al. (2020c)
wikiHow Temporal Commonsense Reasoning 1000 / 3100 Accuracy Zhang et al. (2020c)
WinoGrande Commonsense Reasoning 1000 / 1767 Accuracy Sakaguchi et al. (2021b)
OpenPI Commonsense Reasoning 111 / 111 ROUGE-F1 Tandon et al. (2020)
ANLI Natural Language Inference 1000 / 3000 Accuracy Nie et al. (2020)
Yelp Sentiment Analysis 1000 / 10000 Pearson’s r Ali (2018)
IMDb Sentiment Analysis 1000 / 25000 Accuracy Maas et al. (2011)
HotpotQA Question Answering 1000 / 7405 Macro-F1 Yang et al. (2018)
SQuAD Question Answering 1000 / 11873 Macro-F1 Rajpurkar et al. (2018)
CNN/Daily Mail Summarization 1000 / 13368 ROUGE-2 Nallapati et al. (2016)
XSUM Summarization 1000 / 11332 ROUGE-2 Narayan et al. (2018)

Table 4.14: The 12 evaluation tasks. Macro F1 is based on Rajpurkar et al. (2016). For each task,
we randomly sample a fixed set of 1000 examples from its validation or test set for evaluation. For
OpenPI we are limited to 111 examples.

Task Selection Following the methodology of Sanh et al. (2022b) we select tasks in a top-down

fashion by first choosing the categories of interest (e.g. Question Answering, Sentiment Analysis,

Summarization) and then selecting datasets from within those categories. We pay special atten-

tion to common sense and causal reasoning tasks as LLMs prompted with code have been shown

to perform well on such tasks. The resulting 12 tasks are listed in Table 4.14 and include Com-

monsense Reasoning, Natural Language Inference, Sentiment Analysis, Question Answering, and
31https://platform.openai.com/docs/model-index-for-researchers
32https://openai.com/blog/openai-api
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You are trying to {goal}. You
need to do two things:
(a) {step0}
(b) {step1}
The first thing to do
is {first}

input0 = "Given a goal and two steps,
predict the correct order to do the
steps to achieve the goal"
input1 = "{goal}"
step0 = "{step0}"
step1 = "{step1}"
label = [{first},{second}]

Code Prompt (vanilla)Text Prompt
instructions = "Given a goal and two
steps, predict the correct order to do
the steps to achieve the goal"
goal = "{goal}"
step0 = "{step0}"
step1 = "{step1}"
order_of_exec = [{first},{second}]

Code Prompt (VI - var identifier)

"""Given a goal and two steps, predict the correct
order to do the steps to achieve the goal"""

# The goal that someone is trying to achieve
goal = "{goal}"

# One of the steps that needs to be taken
step0 = "{step0}"

# Another one of the steps that need be taken
step1 = "{step1}"

# The list of correct order of those two steps
order_of_exec = [{first},{second}]

Code Prompt (VIC - var identifier + comments)

import order_steps
class Event:
  """Given a goal and two steps, predict the correct 
  order to do the steps to achieve the goal"""
  def __init__(self, goal, step0, step1):
    self.goal = goal # The goal someone is trying to accomplish
    self.step0 = step0 # One of the steps that need be taken
    self.step1 = step1 # Another step that need be taken
  def get_order_of_steps(self):
    # Output a list of correct order of the two steps to be taken
    return order_steps(self.goal, self.step0, self.step1)

event = Event(goal="{goal}", step0="{step0}", step1="{step1}")
assert(event.get_order_of_steps == [{first},{second}])

Code Prompt (CVIC - class + var identifier + comments)

Figure 4.12: An example of the four styles of manually written code prompts used in our analysis
(Vanilla, VI, VIC, and CVIC) for the wikiHow temporal ordering task. At test time, variables in
braces are replaced with information from the dataset item (as shown in Figure 4.11). For this
task, {goal}, {step0}, {step1} refer to the article title and the steps to order while {first} and
{second} refer to the true ordering of the steps.

Summarization.

Prompt Formulation We collect text prompts for each task using the PromptSource dataset

(Bach et al., 2022), a publicly available collection of crowd-sourced prompt templates. For tasks

with many prompts, we randomly select one from those provided in the dataset. For a few tasks

absent on PromptSource, we write the prompts ourselves.

For our code prompts, we manually write four custom code prompts per task. The code prompt

types are as follows, from least to most Pythonic.

(i). Vanilla (Vanilla): instructions and inputs are given as variables with generic names;

(ii). Var Identifier (VI): instructions and inputs are given as variables with meaningful names;

(iii). Var Identifier + Comments (VIC): instructions and inputs are given as variables with

meaningful names along with comments explaining their purpose;

(iv). Class + Var Identifier + Comments (CVIC): instructions and inputs are given as a task-

specific class. Functionality is “implemented” as member functions.
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Dataset Performance σ

Hellaswag 0.65, 0.67, 0.69, 0.67, 0.67 ±0.01
wikiHow-GS 0.51, 0.51, 0.51, 0.50, 0.51 ±0.00
wikiHow-T 0.62, 0.65, 0.63, 0.63, 0.62 ±0.01
Yelp 0.92, 0.92, 0.92, 0.92, 0.92 ±0.00
IMDb 0.94, 0.94, 0.94, 0.94, 0.94 ±0.00
WinoGrande 0.62, 0.64, 0.61, 0.62, 0.62 ±0.01
HotpotQA 0.35, 0.33, 0.35, 0.35, 0.35 ±0.01
ANLI 0.59, 0.58, 0.57, 0.60, 0.61 ±0.01
OpenPI 36.3, 38.1, 38.3, 37.7, 39.9 ±1.16
SQuAD 0.60, 0.62, 0.61, 0.60, 0.63 ±0.01
CNN/DM 11.7, 12.0, 12.4, 12.3, 12.0 ±0.25
XSUM 14.5, 14.9, 15.5, 15.2, 15.4 ±0.36

Table 4.15: Comparison across 5 repeated runs of the code-davinci-002 model with text prompts
using different random seeds for sampling in-context examples. We see minimal standard deviation
(σ) between the runs.

Figure 4.12 shows an example of the different styles of code prompts for the wikiHow temporal

ordering task. Note that we attempt to write our code prompts such that we match the wording of

the text-based PromptSource prompt as closely as possible.

At inference time, for each test example, we randomly sample in-context examples from the training

set and add them to the context window until the maximum context length is reached. This process

circumvents the bias caused by static in-context examples. We conduct an ablation study where we

vary the random seed and show that this process produces consistent results. To see whether the

findings in our Results section could be attributed to variance in the random sampling of in-context

training examples per test example, we conduct five repeated runs using code-davinci-002 with

different random seeds each time and calculated the standard deviation across the five runs. We

report our results in Table 4.15 and find that the choice of in-context examples accounts for very

little of the observed variance across prompt type and context length. This finding is surprising as

previous work has shown that the selection and ordering of in-context examples has a very large

effect on the performance of models Liu et al. (2021). However, it seems that our approach of

random sampling in-context examples per test item helps to lessen this inherent variance.
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Vanilla VI VIC CVIC

HellaSwag 3 2 1 4
wikiHow Goal-Step 4 2 1 3
wikiHow Temporal 4 3 2 1

Yelp 4 2 1 4
IMDb 1 3 1 4

WinoGrande 4 1 2 3
HotpotQA 4 3 2 1

ANLI 1 2 4 3
OpenPI 1 2 3 4
SQuAD 1 3 4 2

CNN/Daily Mail 4 2 3 1
XSUM 2 4 3 1

Mean 2.75 2.42 2.25 2.58
Standard Deviation 1.36 0.76 1.09 1.26

Table 4.16: Relative performance rank of the four code prompt types from Section 4.3.2 across
the 12 tasks. Ranks are calculated based on the results reported in Figure 4.13. We see that the
“Variable Identifier + Comments” (VIC) style prompt performs the best out of all code prompt types
on average.

4.3.3. Results

What is the best type of code prompt? We compare performance across the four code

prompt types from Section 4.3.2 on all 12 tasks using code-davinci-002 and report our results

in Figure 4.13. We find that no single type of code prompt performs significantly better than the

others across all tasks and that the relative difference in performance between code prompts also

varies significantly across tasks. For example, on IMDb and SQuAD all code prompts have roughly

even performance while for tasks such as wikiHow-Temporal and WinoGrande we see a near 14%

accuracy difference between the worst and best prompt.

In Table 4.16 we report the rank-based statistics of the four code prompt types from Section 4.3.2

on our 12 tasks. Ranks are calculated based on the results reported in Figure 4.13 of the main

paper. The numbers in a row reflect the relative standing of each code prompt on the corresponding

task. While we note that all code prompts perform within ±0.5 ranks of each other on average,

we see that on average the VIC prompt performs the best across all tasks and the Vanilla prompt

performs the worst. Looking to the standard deviation section, we see that the VI prompt performs
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Figure 4.13: Comparison of code-davinci-002 across the four types of code prompts. Figures are
split to allow for different y-axis scales. We see that different prompts do better on different tasks
and while some tasks have high variance over prompt types, others do not.

the most consistently across all tasks and that once again the Vanilla prompt performs the least

consistently.

How many in-context examples should we include in our code prompt? We would like

to also investigate how the number of in-context examples in the prompt affects models’ ability to

perform the task. We therefore conducted an experiment where we filled the context window of

code-davinci-002 with in-context examples up to 2000 tokens, 4000 tokens, and 8000 tokens and

plotted the validation accuracy of the model with respect to the number of examples in Figure 4.14.

Contrary to expectations, we find that the number of in-context examples has little effect on model

performance for most tasks and actually has a negative effect on some tasks. This is especially inter-

esting given that previous work on in-context learning with text prompts finds roughly monotonic

improvement from adding more in-context examples (Liu et al., 2022). While further research is

necessary, it seems that code prompts may have different scaling behavior than text prompts when

used in in-context learning.

Which is better: code or text prompts? In our main experiment we compare the performance

of the three GPT models on code prompts (VIC style) and text prompts across the 12 datasets. Given

the results from Figure 4.14, we fill the context window of all models with in-context examples up

to 4000 tokens to serve as a middle ground for comparing code and text prompts. We report the

92



1 10 100
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Wikihow-GS
Wikihow-T
HotpotQA
WinoGrande
HellaSwag
CNN/DM

OpenPI
SQuAD
XSUM
ANLI
IMDb
Yelp

Figure 4.14: Performance score (y-axis) vs number of in-context examples (x-axis, in log scale) using
code prompts (VIC) with code-davinci-002. We see that increasing number of examples does not
always increase performance and in some cases makes it worse.

results of our main experiment in Table 4.17 and see several surprising trends.

First, we find that prompting LLMs with code leads to substantial increases in performance for

certain few reasoning tasks but that this trend does not hold across all tasks—or even all reasoning

tasks. For example, when using code prompts with code-davinci-002, we see a 10.5% accuracy

increase on wikiHow temporal ordering but a 2.6% accuracy decrease on wikiHow goal-step inference

despite both being commonsense reasoning tasks and having identical source material.

Second, we find that supervised instruction fine-tuning on natural language demonstrations does not

hurt model performance on code. Rather, we observe that code prompts outperform text prompts

on more tasks when using text-davinci-002 than when using code-davinci-002 despite the fact

that text-davinci-002 received no additional fine-tuning on code instructions.

Finally, we find that LMs not explicitly trained on code can also benefit from code prompting on

certain reasoning tasks. In particular, code prompts outperform text prompts on davinci for 3

out of our 12 tasks—the same proportion as code-davinci-002. The tasks that benefit from code

prompts also seem to be largely consistent across the three types of models tested, suggesting some

underlying trend as to which tasks systematically benefit from structured input.
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Dataset Metric davinci code-002 text-002
+Text +Code ∆ +Text +Code ∆ +Text +Code ∆

Hellaswag Accuracy 0.321 0.307 -0.014 0.652 0.606 -0.046 0.717 0.773 +0.046
wikiHow goal-step Accuracy 0.347 0.302 -0.045 0.924 0.898 -0.026 0.919 0.915 -0.004
wikiHow temporal Accuracy 0.495 0.532 +0.037 0.622 0.727 +0.105 0.688 0.761 +0.073
Yelp Pearson ρ 0.913 0.896 -0.017 0.924 0.907 -0.017 0.919 0.904 -0.015
IMDb Accuracy 0.872 0.935 +0.063 0.945 0.951 +0.006 0.940 0.952 +0.012
WinoGrande Accuracy 0.513 0.500 -0.013 0.607 0.716 +0.109 0.628 0.726 +0.098
ANLI Accuracy 0.333 0.360 +0.027 0.562 0.551 -0.011 0.504 0.557 +0.053
HotpotQA Macro-F1 - - - 0.470 0.449 -0.021 0.490 0.350 -0.140
SQuAD Macro-F1 0.482 0.466 -0.016 0.604 0.579 -0.025 0.670 0.656 -0.014
OpenPI ROUGE-F1 - - - 37.33 36.36 -0.970 35.60 31.30 -4.300
CNN/Daily Mail ROUGE-2 9.28 9.13 -0.150 11.74 11.67 -0.070 13.63 13.55 -0.080
XSUM ROUGE-2 9.38 6.83 -2.550 14.51 11.03 -3.580 14.48 13.26 -1.220

Table 4.17: Performance of the three LMs when using code prompts (+Code) vs. using text prompts
(+Text). Blank cells indicate tasks for which single test examples could not fit in the context
window. Color indicates how code prompts compare to text prompts. We see that while code
prompts outperform text prompts for certain tasks (such as wikiHow temporal and WinoGrande)
text prompts are better on average. We also find that instruction fine-tuning (text-002) allows for
better code prompt utilization.

Our rather anti-climatic findings above suggest that a symbolic form of data does not consistent

benefit modern LLMs pre-trained with a mixture of text and code,33 despite previously reported

success of symbolic form on some event reasoning tasks.

The work above was published in Zhang et al. (2023a), in which I formulated the task and primarily

contributed to a third of the tasks, with the efforts of data collection, model setup, and evaluation.

I also performed the majority of the analysis. I have obtained approval from all collaborators to

exclusively include this work in this thesis.

4.4. Summary

In this chapter, I introduced the entity schema, which is a semi-symbolic structured representation

of events. I start by motivating the need of involving entities in the process of causal reasoning

about events. Then, I propose the OpenPI2.0 that can be used to evaluate LLMs that can predict

the entity schema. Using it, I show an improvement in the downstream task of event reasoning, and

also drawing attention to the form that a structured representation should take to interface with

LLMs. Finally, I show that LLMs can take advantage of pre-training on code and work better with
33Our findings directly contradict a contemporaneous work (Mishra et al., 2023), which experimented with a set of

much smaller LLMs.
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a code form of the entity schema. However, such a code form does not consistently benefit general

NLP tasks.

At this point, my quest with “structured reasoning” has become more structured thanks to the

semi-symbolic representation. However, the reliance on LLMs to make the final prediction lacks

faithfulness. In other words, even were the representation to be completely correct, the LLM that

takes it as input might still make a mistake. In the opening example of this chapter, even the

knowledge of “the pan is hot” were to be given, the final answer that “one should not touch the pan”

might not be reached, due to the non-deterministic nature of LLMs. To address this, in the next

Chapter, I propose a fully symbolic representation that is no longer fed to LLMs, but deterministic

algorithms.
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CHAPTER 5

WORLD MODEL: A SYMBOLIC LANGUAGE REPRESENTATION

In all previous sections, we have focused on defining and predicting a structured event representation

that can be leveraged by LLMs in different ways. As LLMs are the only type of models in each

pipeline, the performance is limited by their power given any task. Despite success in previously

discussed reasoning tasks, there exist tasks that are more challenging. One example is text-based

symbolic planning, where the conditions and the goal are described using natural language, and

a model must pick a sequence of actions to achieve the task. For example, the following are the

instructions of a simple block-moving task:

On a table, I have five blocks stacked on top of each other. From the bottom to the top,

we have blue, white, yellow, and brown. Your goal is to rearrange them into red, white,

blue, yellow, and brown from top to bottom. You may only move a block with nothing

on top of it, and you can put such a block on a table. What should you do?

While even a human child is likely to find the task trivial by some trials, a state-of-the-art LLM like

ChatGPT is completely incapacitated34 (Valmeekam et al., 2023). Note that this is a symbolic rea-

soning task because even though the input is natural language, it describes a symbolic configuration,

operating under a rule-based transition function, and the output space is also discrete and finite.

Despite recent LLMs’ emergent ability (see Section 2.2.1) to perform some symbolic reasoning tasks

to some extent, this failure still stands in contrast with LLMs’ success in generating non-symbolic,

unstructured plans, perhaps in response to a query like “how to cook eggs.”

Let us also examine a second example, a grade-school math question:

I have 5 apples. You have 4. How many do we have in total?

Solving the problem requires the natural language ability to understand that ‘in total ’ means addi-

tion as well as the symbolic reasoning ability to mathematically perform the addition. While LLMs
34Experiment is performed in January 2024 with OpenAI ChatGPT4.
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Figure 5.1: An example of a math question involving symbolic reasoning.

Figure 5.2: An illustration of my proposed pipeline leveraging a symbolic representation of the world
pertaining to the problem. The representation is inferred by an LLM and fed to a computational
tool such as an algorithm.

can often extract the numerals and even come up with the correct formula, it systematically fails

at arithmetic calculation35 (Lyu et al., 2023). To improve, one may attempt to work on LLMs that

can better perform arithmetic calculations, or simply use a calculator to reliably reach the final

answer (Figure 5.1), as long as the upstream LLM can provide a well-formed input.

In this thesis, I have demonstrated many ways to use LLMs to solve a problem (Figure 1.2), in-

cluding an end-to-end usage (baseline), fine-tuning an LLM with structured data (Chapter 3), and

prompting an LLM with structured data (Chapter 4). Following the idea above, I will now introduce

a neurosymbolic usage, where an LLM no longer predict the final answer. Instead, its job ends
35Closed-source, commercial tools like OpenAI ChatGPT in 2024 is likely a pipeline including but not limited to

one or more LLMs. It has been able to correct answer this type of math questions by translating it to Python code,
similar to the ideas in my own, my collaborators’, and other work that I will discuss next. In the paper, we continue
to refer to LLMs as the end-to-end models themselves, not pipelines that involve them.
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at predicting the structured representation, with which some external computation is responsible

for reaching the final answer. This approach is akin to program synthesis (Austin et al., 2021)

in the programming language community, using a generative model (e.g., LLM) to produce exe-

cutable code. However, my work is practically scoped within problem solving and event reasoning,

considering only specific representations for each downstream task.

5.1. Preliminary Experiments: Neurosymbolic Usage with LLMs

As introduced in Section 2.2.1, the ability to generate well-formed code is an emergent ability

of LLMs (Feng et al., 2020; Chen et al., 2021a; Roziere et al., 2023). However, the neurosymbolic

usage of LLMs, namely, using the generated code a means to perform reasoning tasks, is a new

concept proposed by Lyu et al. (2023), a work that I secondarily contributed to, along with several

contemporaneous work (Chen et al., 2022; Gao et al., 2023). I will fleetingly discuss this work.

In Lyu et al. (2023), I tackle the task of kinship deduction. Concretely, given a problem written in

natural language, the answer is as a string-valued variable. I consider the CLUTRR (Sinha et al.,

2019) dataset that involves inferring the family relationship (e.g., “grandson”) between two people

from a short story (e.g., “[Gabrielle] drove her daughter [Dorothy] to the hospital. [Dorothy]’s son

[Vincent] showed up shortly after. How is [Vincent] related to [Gabrielle]?”, Figure 5.3). This is

a symbolic reasoning task where the performance of end-to-end LLMs drastically degrades as the

complexity of the problem increases (i.e., more people are involved). In our neurosymbolic usage, we

prompt the LM to generate Python code that essentially breaks down the question into sub-questions

(“How is [Vincent] related to [Dorothy]” and “How is [Dorothy] related to [Gabrielle]”), as well as pro-

vide input extracts as rationales to support the answer (“[Dorothy]’s son [Vincent] showed up shortly

after”, etc.) as comments. The code for each sub-question is a relational expression representing the

relation between the mentioned entities, for example, relation(Vincent, Dorothy)=son denotes

that Vincent is Dorothy’s son. Once we have the code, a fully defined symbolic representation of

the problem, the LLM’s job is finished. We then use a simple relational inference engine that relies

on a set of transitivity rules provided by Zhang et al. (2022) among possible family relationships,

e.g., son@daughter=grandson (the son of one’s daughter is one’s grandson). Our solver recursively
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Figure 5.3: An example from the CLUTRR dataset.

applies these rules on CSL to derive A, and determine that Vincent is Gabrielle’s grandson.

On the benchmark, I construct the prompt using 8 exemplars with K ∈ {2, 3}, where K is the

number of intermediate steps, and test the models on the remaining examples with K up to 10.

For code-davinci-002, I observe a 45.7% to 71.9% performance leap compared to the end-to-end

usage when using the neurosymbolic usage. We can interpret this result from two angles. Regarding

performance, the external solver relieves the burden of problem solving from the LLMs, without

which the accuracy degrades by 19.4%. Regarding trustworthiness, due to the deterministic nature

of the external solver, the answer is correct if and only if the interim representation (pairwise

relationships) provided by the LLM is correct. Thus, a verifying agent (either human or automatic)

may simply and locally check if each pairwise relationship is correctly extracted from the text. They

may also trivially fix any error in the process. Such ability for a human user to interpret, verify,

and correct the LLM output is a result of the neurosymbolic usage, not offered by the end-to-end

usage.

At this point, I have introduced the neurosymbolic usage of LLMs and shown its preliminary success.
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In the next section, I will show that the neurosymbolic usage is an indispensable tool to push the

limit of structured reasoning of events, by attempting a historically challenging task: planning.

The work above was published in Lyu et al. (2023), in which I contributed to all experiments on

kinship deduction.

Now that I have demonstrated the feasibility and appeal of the neurosymbolic usage of LLMs, I

will return to the context of event-centric reasoning. In the next Section, I will explore the task

of classical planning which instantiates said methodology. My proposal is to have LLMs generate

not the solution, but a symbolic representation of the environment, namely a world model that

can be executed by some external computation like a symbolic planner. I will next outline this

methodology.

5.2. Planning

In this chapter, I will tackle the challenging task of planning that comes in two flavors: formal and

informal.

5.2.1. Formal Planning

In the AI community, planning is the task of finding a sequence of actions to achieve a goal in a given

environment (Fikes and Nilsson, 1971; LaValle, 2006). Over more than five decades of development,

the task of planning has taken on many flavors. I will particular focus on the formulation of classical

planning, where an initial and a goal configuration are defined as a collection of entity states. Each

action gives rise to an event during which the states change in certain way. Therefore, the aim is

to perform certain actions to drive the entity states in the environment to the goal configuration.

Classical planning is both symbolic and formal, as all the involved concepts including entities, states,

and actions are fully grounded to symbols (instead of natural language that we discussed in previous

sections). Given a domain definition (including tuple of initial configuration, goal configuration, and

actions), a plan can be found deterministically, if there is one. In other words, it does not require

any inference or guesswork to find a plan.

The Planning Domain Definition Language (PDDL) (Aeronautiques et al., 1998) is a programming
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Domain File

types
- person, item,
locale

predicates 
- have, at

actions
- go, get
- parameters
- preconditions
- effects

Problem File

Entities
- you is-a person
- cookie is-a item
- room is-a locale

Initial States
- at(cookie, room) ...

Goal States
- have(you, cookie) ...

Plan

get(you, cookie)

go(you, room)

PDDL
solver

Figure 5.4: A PDDL solver produces a plan based on a minimal domain file and problem file.
Previous work assumes the domain file as given, while we predict the action definitions in the
domain file.

language designed for classical planning. A PDDL instance contains a domain file DF and a problem

file PF (Figure 5.4.

A DF defines the following elements:

• a header H, which consists of

– types of entities (e.g., object, location, player)

– predicates (e.g., if object is at a location)

– names of possible actions (e.g., boil water)

• definitions of actions A, which consist of

– parameters (e.g., water, pot) as a list of typed variables

– preconditions (e.g., water and pot belongs to player; water is not treated) as a conjunctive

normal form of predicates

– effect (e.g., water is treated) as a conjunctive normal form of predicates

A PF defines the following elements:

• objects (e.g., rainwater)

• initial states (e.g., bucket is empty)

• goal states (e.g., bucket is filled with rainwater; rainwater is treated)

We say that a DF can solve a PF if there exists a sequence of actions A1, . . . , An that results in a

transition from the initial state to the goal state.
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Figure 5.5: The proposed world-building planning methodology that learns a formal representation
of an informal description of the environment.

5.2.2. Informal Planning

However, there rarely exist formally defined, fully symbolic environments in the real life. Real-life

environments are defined in many modalities; in the scope of NLP, we will focus on those defined

using natural language texts. In Section 3.3, the task of script generation can also be thought of

as planning, since a user would like to perform the steps and reach the goal. To make an analogy

to PDDL, the DF is equivalent to a textual description or model’s parametric knowledge of the

environment, and the PF is equivalent to the goal and the inferred stats-quo. Because natural

language is implicit and under-specified, such planning is informal as there are myriad undefined

variables with regard to entities, states, and actions. The task of informal planning using natural

language requires event reasoning to fill in these blanks. Ultimately, I believe this is also the most

practical task to solve in the real world.

5.2.3. Neurosymbolic Method

For the task of planning with natural language, Section 3.3 has already shown the insufficiency

of LLMs with both the end-to-usage and fine-tuning with relational structure. I now turn to

a neurosymbolic methodology, where the setup of formal planning becomes a means to an end,

introducing structure into the methodology. Concretely, my task is to learn a structured domain

definition (i.e., DF and PF) from unstructured natural language texts using LLMs. Once this is

done correctly, a search-based planner can trivially find a plan, that may be presented to user after
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being converted to natural language or other modalities (Figure 5.5). In this methodology, an LLM’s

task is limited to world-building, coming up with a ‘mental representation’ (that is structured

and formal) while interacting with a textual environment (that is unstructured and informal). The

actual task of finding the plan is delegated to an external solver, much like Section 5.1.

As the output of planning is a sequence of actions, the task planning can be seen as an instance

of event-centric reasoning. In my proposed framework of structured reasoning, the structured rep-

resentation here, expressed by PDDL, is precisely an entity schema much like Section 4.1 and 4.2.

Each action event is defined with preconditions and effects, both of which revolve around entities,

or more precisely, their state changes. The process of modeling the actions is almost like the reverse

of predicting entity states in a given procedure. The aim of the former is to infer an entity schema

in order to find a plan. The aim of the latter is to reconstruct an entity schema from an existing

plan in a post-hoc manner.

From a high level, the approach I will take for planning is a neurosymbolic usage of LLMs that

generate a structured representation, or entity schema, or world model, given textual context. I will

show that this approach is superior to end-to-end usage of LLMs when it comes to both performance

and trustworthiness.

5.2.4. DF and PF

Following the two-part design of PDDL, the structured domain definition or world model discussed

above consist of two components: DF and PF. The PF, which specifies the initial and goal entities

states, is much easier to learn from text (Lyu et al., 2023; Xie et al., 2023; Liu et al., 2023). For

example, the text:

Block A is on top of Block B, which is on the table.

needs to be translated into the following partial PF:

on(A,B)

on_table(B)
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On the other hand, learning the DF is much more challenging. The crux of the challenge lies in

action modeling, in which much information must be inferred from the text. For example, the text:

You pick the lock.

may correspond to the following partial DF:

(:action pick-lock

:parameters (?lock ?door ?room1 ?room2)

:precondition (and

(not (picked ?lock))

(locked ?door)

(not (accessible ?room1 ?room2))

)

:effect (and

(picked ?lock)

(not (locked ?door))

(accessible ?room1 ?room2)

)

)

Evidently, the action models in the DF are challenging to automatically generate, and require

extensive manual effort to annotate for every domain. Much previous work tackles action modeling

via plan traces (Yang et al., 2007; Cresswell et al., 2013; Lamanna et al., 2021), which is not our

focus here. Few work that learns the DF from text (Yordanova and Kirste, 2016; Lindsay et al.,

2017; Hayton et al., 2017, 2020; Jin et al., 2022; Li et al., 2023). These efforts have two issues.

First, they involves complex pipeline approaches, many heavily templated and rule-based, and thus

can unlikely generalize to diverse domains. Second, they have only targeted a static environment,

performing a one-off translation or extraction from text to PDDL, much unlike the real world where

an agent can interact with the environment. To overcome the first issue, LLMs with the newly

gained ability to generate structured code seem like the tool of choice. However, it is known that

LLMs struggle at generating low-resource domain specific languages (Jain et al., 2023) like PDDL.
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In Section 5.3, I will discuss efforts to have LLMs generate correct and executable PDDL DF given

complex text descriptions of an environment. To overcome the second issue, in Section 5.4, I target

interactive textual environments where an agent not only learns their structured representation, but

also continue to grow and refine said representation.

5.3. Planning for Procedural Text

A DF contains types, predicates, and actions (Figure 5.4). Like previous work, we specifically focus

on action modeling of a DF. Given types, predicate, and names of actions of an arbitrary domain

and some textual description, we predict the preconditions and effects of each action to complete the

domain definition. As a real-life motivating example, a kitchen robot may have access to cookwares

and ingredients as well as the actions it can perform like “swinging a knife”, but it still needs to

predict the precondition that it is only safe to do so in front of a cutting board and the effect that

the ingredients will become diced. Once the domain is completely defined, along with the problem

definition PF, an off-the-shelf solver can deterministically find a plan given a query.

Next, we provide some first attempts towards the action modeling task. As PDDL for any domain

is extremely costly to annotate, there is hardly any data for training a model. Therefore, we

demonstrate how our task can be tackled by zero-shot prompting state-of-the-art LMs.

Methodology To predict action definitions in DF based on the header and some text T, we

prompt an LM in a zero-shot manner Brown et al. (2020) by describing the task and providing the

input. Note that few-shot prompting is prohibitively costly due to the excessive length of a resulting

DF.

We also incorporate the chain-of-thought (CoT) technique Wei et al. (2022b) that explicitly prompts

an LM to perform three essential sub-tasks:

• Summarization: describe each action, including the expected preconditions and effects;

• Extraction: list the involved entities and their states before and after;

• Translation: based on the information above, convert T to PDDL.

We experiment with two large LMs, gpt-3.5-turbo-16k and gpt-4 dated June 2023 with max
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Domain File (header)

types
- person, item

predicates 
- have, at

names of actions
- go
- get

LLM

Domain File (complete)

types, predicates, names of actions

actions definitions 
- go

- parameters: person, loc1, loc2
- preconditions: at(person, loc1), ...
- effects: at(person, loc2), ...

- get
- parameters: person, item, loc
- preconditions: at(person, loc), at(item,

loc), not have(person, item)
- effects: have(person, item)

Gold Domain File

types, predicates,
names of actions

actions definitions 

VS.

Problem Files

Problem #1

Problem #2

Inference

Intrinsic Evaluation

Extrinsic Evaluation

PDDL
Solver

Evaluation

NL text

Figure 5.6: Our formulation of the DF-action prediction task. Given the domain file header that
specifies the ontology, a model predicts action definitions including parameters, preconditions, and
effects based on textual descriptions. During evaluation, the predicted DF is both compared to a
reference and used to solve corresponding PFs.

tokens of 8192, temperature of 0.5, and default hyperparameters otherwise.

Dataset We introduce the Proc2Pddl dataset of 27 different T-DF-PFs tuples, drawing proce-

dural texts from wikiHow articles of various topics. A class of graduate students in a U.S. university

with prior knowledge of PDDL are each given a wikiHow article and annotate a DF and multiple

corresponding PFs from the article, each with a gold plan to solve it. On average, there are 13.33

defined actions in a DF and 8.07 instantiated actions in a gold plan. During prediction, we treat T

as an annotated one-line summary of all annotated actions.

On average, it takes several hours to train each human annotator, and another several hours to

produce a T-DF-PFs tuple. Upon post-inspection, we notice that about 15% are problematic and

have to discard or fix them. This finding re-emphasize the great difficulty of annotating domain

definitions and motivates our automatic prediction of DF.

We partition the 27 examples into a 5:6:16 train-development-test splits. In this work, the train

split is unused as all our methods are zero-shot; only the development set is used for error analysis;

the test set is strictly held out for evaluation.

Evaluation Now that a model generates the parameters, preconditions, and effects for each action,

we have a complete DF. We evaluate it in two ways (Figure 5.6). Intrinsically, we semantically

compare the predicted A with the ground-truth provided by our OpenPI2.0 and report an action-
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Intrinsic Extrinsic
Model % action acc. PF solve exact plan

gpt-3.5 0.2 1.0 1.0
gpt-4 15.9 33.7 4.2
gpt-4 + CoT 18.1 35.8 6.3
gold 100.0 100.0 100.0

Table 5.1: Performance of the DF-action prediction on the concatenation of the development and test
set of OpenPI2.0. Metrics include action-wide accuracy, average edit distance of action definitions,
the proportion of PFs that can be solved, and the proportion of generated plans that exactly match
the gold plans.

wide accuracy. Equivalence of two action definitions does not depend on the naming of variables nor

on the order within conjunctions. Extrinsically, to measure actions’ coherence, we use a BFS-based

PDDL solver36 to attempt to solve ground-truth PFs with the predicted DF and report a success

rate. An unsolved PF is caused by (1.) no plan can be found, or (2.) the solver runs for more than

30 seconds, or (3.) the solver returns an error (usually a syntax error in generated PDDL).

The intrinsic and extrinsic results are shown in Table 5.1. gpt-3.5-turbo, also known as ChatGPT

which achieves impressive performance on many tasks, has a close-to-zero performance. In contrast,

its predecessor gpt-4 performs significantly better with 18% action prediction accuracy and 36%

solve rate of PFs based on the predicted DF. Still, the performance far worse than ideal, showing

that even a simplified open-domain planning formulation is challenging to state-of-the-art LMs.

CoT is helpful overall since it explicitly spells out many implicit entities and state changes in the

extraction stage which are critical to predicting preconditions and effects. In most situations, the

model summarizes the action and extracts the entity states correctly, though sometimes missing a

few implicit entities. However, CoT’s bottleneck lies in the translation stage, during which there

are mainly three types of errors.

(i). mismatched predicates: the model uses (at ?loc ?item) instead of (inventory ?item);

(ii). hallucinating predicates: the model creates a new predicate (soaked ?item) while neglect-

ing the existing (submerged ?item);
36https://github.com/pucrs-automated-planning/pddl-parser
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Model % Parameter Precondition Effect

gpt-4 36.7 31.1 53.0
gpt-4 + CoT 42.2 29.7 48.1

Table 5.2: Marginalized intrinsic performance of parameter, precondition, and effect.

Unsolved Solved

Syntax
Error

Bad
Action

Good
Action

Bad
Plan

Good
Plan

gpt-4 3 7 2 0 3

Table 5.3: Statistics of error types on the development set.

(iii). complicating predicates: the model adds unnecessary predicates (inventory ?submerged_item

- item) when already has (inventory ?item).

To address these, we leave to future work to demonstrate and standardize the translation process by

clearly describing when an entity change or stage change is and is not needed, while also encouraging

the model to strictly match the given predicates.

Finer-grained evaluation results are shown in Table 5.2 to tease out the performance regarding such

component within an action. It is clear that the LM is worse at predicting preconditions than at

predicting effects. This is understandable as procedural texts like wikiHow tend to be less explicit

about predictions than about effects (e.g., from bake for 10 minutes it is obvious that the food will

be baked, but it is unclear what state it had been in).

To provide deeper insights into model performance, we manually inspect the model output of gpt-4

on all 6 examples (15 PFs) in the development set. We consider the following scenarios.

Syntax Error : Model output may contain illegal expressions that cannot be parsed. For example,

(inventory ?player (clean ?strips)) is unacceptable because the arguments to a predicate

must be atomic types, not another predicate.

Unsolved : Whenever the predicted DF cannot solve a PF, we identify the first problematic action

that differs with the ground-truth. For example, if the action cut_plant misses a critical effect
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of (inventory ?player ?stalk), then other actions such as graft_stalk requiring it cannot be

executed. At times, there could be false negatives where the predicted action definitions are in fact

reasonable but still cannot lead to a solution.

Solved : The predicted DF may solve a PF, but the plan may be different from the gold plan. It is

naturally possible that the predicted plan is a fluke made possible by under-specified preconditions

or over-exaggerated effects, as well as loopholes in the PF leading to unreasonable shortcuts. For

the example in Figure 5.4, a model could cheat by defining the action get by not requiring the

person and object to be in the same location; thus, the predicted plan would unreasonably omit the

action go. However, at times, the predicted plan could also be a reasonable alternative.

The statistics of these errors on the development set is shown in Table 5.3. When no solution can

be found, true negative is highly likely as the model indeed makes aforementioned mistakes during

action prediction. When some solution is found, false positive is still possible as the predicted plan

may be unreasonable. See attached materials for a complete error analysis of these examples. Our

aforementioned future pipeline that separates summarization and translation would likely mitigate

these errors.

Through our experiments, it is clear that LLMs are capable of generating PDDL, specifically DF,

and specifically action models, given noisy procedural texts. This is already a leap from previous

work devising specialized tools for each domain, mostly narrative texts. However, the problem

remains that the current text-to-PDDL world building process is one-off and will not work if the

environment dynamically develops. In the next section, I will focus on interactive environments

where world building happens during exploration.

The work above was published in Zhang et al. (2024b), in which I formulated the task and primarily

contributed to the code to clean the dataset, run a PDDL planner, and perform evaluation. I also

performed the majority of the analysis. I have obtained approval from all collaborators to exclusively

include this work in this thesis.
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Figure 5.7: A fully-observed environment like BlocksWorld (upper, to rearrange objects from and to
a given configuration) can be tackled by generating a PDDL problem file, while a partially observed
one like Coin Collector (lower, to look for an object in an unknown location) cannot until sufficient
exploration.

5.4. Planning for Interactive Environments

Motivation In Section 4.1 and Section 4.2, I have proposed and discussed event reasoning tasks

that deal with a dynamically changing environment. I have shown that these tasks put forward

unique challenges, unlike other tasks we have seen, for event state-of-the-art LLMs. I will now

explore the same idea for planning, where it is not possible to derive a plan once-and-for-all. Instead,

an agent must iteratively interact with the environment, gain new sights, make plans, adjust them,

and eventually reach the goal.

All previous work on LLM generating PDDL has only experimented on fully-observed environ-

ments where all entity states are initially known. Take BlocksWorld as an example (Figure 5.7,

upper), both the initial and goal positions of the blocks are spelled out, in which case existing work

use LLMs to translate or parse the NL description of the world state into a PDDL PF (Lyu et al.,

2023; Xie et al., 2023; Liu et al., 2023). With such a complete problem file, a full plan can be found
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and executed to reach the goal. In contrast, most real-world environments are partially-observed

(Figure 5.7, lower), where the entity states dynamically get uncovered during exploration. Moreover,

since the necessary initial and goal states might also be unknown (e.g., looking for an item without

knowing where it is), the previous approach falls apart due to the impossibility to specify a complete

problem file. This causes a chicken-and-egg problem where a plan is required for exploration, while

exploration is required to build PDDL that results in a plan. Given this challenge, past work on

partially-observed environments has only used LLMs to directly generate plans Shinn et al. (2023);

Majumder et al. (2023) but not PDDL.

We propose pddlego, a methodology to incrementally grow the PDDL by using LLMs to translate

the NL observations from the environment into entity states expressed as a PDDL problem file.

pddlego solves the above stalemate of under-defined goal states by recursively falling back to a well-

defined sub-goal. This way, a plan can be found to reach the sub-goal, leading to new observations

obtained by exploring the environment. In this process, the problem file is incrementally built until

a plan can be found for the final goal.

Methodology We operate in a partially-observed simulated environment which functions as a

multi-turn interaction between the environment and the agent (e.g., a game to find an item). Specif-

ically, the environment provides an NL observation (objects in a room) along with a list of permitted

actions (move, pick up), then the agent selects on of these actions, and repeats. The environment

can be seen as a finite state machine where each state consists of the conjunction of all entity states

and determines the permitted actions. The agent succeeds when a goal state is reached (the sought

item is in hand); it fails when it cannot possibly reach goal state.

Like prior work in LLM generating PDDL, we assume that a domain file that defines the available

actions is provided; this domain file can solve a problem file that defines the initial and goal entity

states (where the agent is, where the item is, how are these two locations connected) when possible

to result in a plan (go west, pick up item). Unlike prior work, it is impossible to initially construct

a complete problem file that is necessary for reaching the goal until the agent has explored enough

to have uncovered all necessary entity states (we don’t know where the item is until we find it).
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Figure 5.8: The pipeline of pddlego. A PDDL problem file (PF) is incrementally built during
exploration.

Therefore, our pddlego assumes a plannable sub-goal for which partial plans can be found to

make progress and iteratively build a problem file based on the new observations. Eventually, the

problem is sufficiently defined and the final-goal can be planned for (Figure 5.8).

Formally, the agent is initially in state s1 and presented with the first observation o1. The agent

then construct an initial problem file PF1 to plan for the final-goal G.

PF1 = {LLM(o1), G} (5.1)

If this problem file can be solved by the provided domain file with a solver, a plan containing one

or more actions is found.

Plan1 := (a11, a
2
1, . . . ) = solver(DF,PF1) (5.2)

If a plan cannot be found due to a lack of information in the problem file, the goal G is swapped out
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by an immediate sub-goal G′, and the solver retries. The actions in the plan are then sequentially

executed, resulting in a list of new observations.

(o12, o
2
2, . . . ) = exec(s1, a

1
1, a

2
1, . . . ) (5.3)

Thus begins the second iteration. Using the new observations, the previous problem file is regener-

ated (referred to as PDDL-gen).

PF2 = {LLM(PF1, o2), G} (5.4)

The process goes on until one observation fulfills the termination condition.

Unlike prior work that generates the problem file once, pddlego’s having LLMs iteratively gener-

ating the problem file often result in inconsistencies and errors (e.g., missing a connectivity relation

between two rooms, using the name a room in a relation without declaring the room, missing a

parenthesis, etc.). To tackle this, we have the LLMs only predict the change in the problem file

(i.e., the change of entity states), which we deterministically applied to the previous problem file

(referred to as PDDL-edit).

∆2 = LLM(PF1, o2), PF2 = PF1 +∆2 (4’)

We will compare our two approaches above with the baseline where LLMs directly generate an

action (referred to as Action-gen).

Plani = LLM(oi) (2’)

Environments We experiment with two goal-oriented, partially-observed simulated environments,

or text games, that span a variety of difficulty and flavor.

Coin Collector Yuan et al. (2019) focuses on navigation, which is an indispensable element of
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random GPT 3.5 Turbo GPT 4 Turbo

Action-gen PDDL-gen† PDDL-edit† Action-gen PDDL-gen† PDDL-edit†
Coin 4% 68% 26% 28% 94% 58% 78%
Cooking (easy) 0% 0% 70% 68% 4% 94% 98%
Cooking (hard) 0% 0% 4% 6% 0% 16% 46%

Table 5.4: The percentage where the agent succeeds by taking no more than the maximum steps
on the test set. The † sign specifies methods under our proposed pddlego methodology.

most simulations. The agent’s task is to explore rooms, some connected by locked doors, and find

a coin, similar to the running example above. Just as previously discussed, the previous approach

on generating a PDDL problem file cannot be applied to Coin Collector because the location of the

coin is unknown until the agent enters the same room as the coin. Therefore, the sub-goal structure

for this tasks is defined as:

(i). pick up coin (requires the location of the coin)

(ii). go to a room that has not been visited (reveals location of the coin)

The sub-goal of “going to an unvisited room” results in monotonously increasing progress to the

final-goal of “finding the coin”. In similar search-related tasks, this singular sub-goal or strategy

suffices, though it may not work for all situations.

Cooking World Madotto et al. (2020) subsumes Coin Collector with more complex tasks. The

agent’ task is to first explore rooms to find ingredients required by a recipe, much like Coin Collector.

Next, it should cook the ingredient in some specified location using some specified appliance. Finally,

when all ingredients are cooked correctly, a meal can be successfully prepared. Therefore, the sub-

goal structure for this tasks is defined as:

(i). prepare meal (requires having obtained each ingredient and located relevant appliances)

(ii). pick up each ingredient (requires the location of each ingredient; obtains ingredients)

(iii). go to a room that has not been visited (reveals location of ingredients and appliances)

To better understand these simulations, an example trajectory for Cooking World is shown in

Figure 5.9.
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< examine cookbook
> Gather a l l f o l l ow i ng i n g r e d i e n t s and f o l l ow the d i r e c t i o n s to prepare t h i s

ta s ty meal .
I n g r ed i en t s :

b lack pepper , b lock o f cheese , s a l t , red apple , ye l low potato
D i r e c t i on s :

s l i c e the block o f cheese , d i c e the red apple , chop the ye l low potato , g r i l l
the ye l low potato , prepare meal

< look around
> You are in the k i t chen . In one part o f the room you see a s tove . There i s

a l s o an oven . You a l s o s ee a f r i d g e that i s c l o s ed . In another part o f the
room you see a counter that has a kn i f e , a red apple , a raw ye l low potato

, and a cookbook on i t . In one part o f the room you see a k i t chen cupboard
that i s c l o s ed . There i s a l s o a cu t l e r y drawer that i s c l o s ed . You a l s o

see a t ra sh can that i s c l o s ed . In another part o f the room you see a
dishwasher that i s c l o s ed . In one part o f the room you see a d in ing cha i r ,
that has nothing on i t .

To the South you see a c l o s ed p l a i n door . To the West you see the c o r r i d o r .
< open f r i d g e
> You open the f r i d g e . The f r i d g e conta in s a block o f cheese .
< take block o f cheese
> You take the block o f cheese .
< take kn i f e
> You take the kn i f e .
< take red apple
> You take the red apple .
< take ye l low potato
> You take the ye l low potato .
< open k i t chen cupboard
> You open the k i t chen cupboard . It ’ s empty i n s i d e .
< move west
> You are in the c o r r i d o r . In one part o f the room you see a key holder , that

has nothing on i t . There i s a l s o a shoe cab ine t that i s c l o s ed . You a l s o
see a umbrel la stand , that has nothing on i t . In another part o f the room
you see a hat rack , that has nothing on i t . In one part o f the room you
see a coat hanger , that has nothing on i t .

To the North you see a c l o s ed wood door . To the East you see the k i t chen . To
the West you see a c l o s ed s l i d i n g pat io door .

< open shoe cab ine t
> You open the shoe cab ine t . I t ’ s empty i n s i d e .
< open door to north
> You open the wood door , r e v e a l i n g the bedroom .
< move north
> You are in the bedroom . In one part o f the room you see a d r e s s i n g tab le ,

that has nothing on i t . There i s a l s o a desk cha i r , that has nothing on i t
. You a l s o see a desk , that has nothing on i t . In another part o f the room
you see a ches t o f drawers that i s c l o s ed . In one part o f the room you

see a wardrobe that i s c l o s ed . There i s a l s o a n ight stand , that has
nothing on i t . You a l s o see a bed , that has nothing on i t .

Through an open wood door , to the South you see the c o r r i d o r .
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< open ches t o f drawers
> You open the ches t o f drawers . I t ’ s empty i n s i d e .
< open wardrobe
> You open the wardrobe . It ’ s empty i n s i d e .
< move south
> You are in the c o r r i d o r . ( d e s c r i p t i o n omitted )
< open door to west
> You open the s l i d i n g pat i o door , r e v e a l i n g the backyard .
< move west
> You are in the backyard . In one part o f the room you see a barbeque . There

i s a l s o a workbench , that has nothing on i t . You a l s o see a pat i o cha i r ,
that has nothing on i t . In another part o f the room you see a pat i o tab le ,
that has nothing on i t . In one part o f the room you see a c l o t h e s l i n e ,

that has nothing on i t . There i s a l s o a garden , that has nothing on i t .
Through an open s l i d i n g pat io door , to the East you see the c o r r i d o r .
< move ea s t < move ea s t
> You are in the k i t chen . ( d e s c r i p t i o n omitted )
< open door to south
> You open the p l a i n door , r e v e a l i n g the pantry .
< move south
> You are in the pantry . In one part o f the room you see a f o l d i n g cha i r , that

has nothing on i t . There i s a l s o a s h e l f that has some black pepper , and
some s a l t on i t .

Through an open p l a i n door , to the North you see the k i t chen .
< take black pepper
> You take the black pepper .
< take s a l t
> You take the s a l t .
< d i c e red apple
> You d i c e the red apple .
< s l i c e b lock o f cheese
> You s l i c e the block o f cheese .
< chop ye l low potato
> You chop the ye l low potato .
< move north
> You are in the k i t chen . ( d e s c r i p t i o n omitted )
Through an open p l a i n door , to the South you see the pantry . To the West you

see the c o r r i d o r .
< move west < move west
> You are in the backyard . ( d e s c r i p t i o n omitted )
< cook ye l low potato in barbeque
> You g r i l l the ye l low potato with the barbeque .
< move ea s t < move ea s t
> You are in the k i t chen . ( d e s c r i p t i o n omitted )
< prepare meal
> Adding the meal to your inventory .
< eat meal
> You eat the meal . I t i s d e l i c i o u s .

Figure 5.9: An example trajectory performed by GPT 4 Turbo and PDDL-edit on Cooking World
(hard).
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Evaluation For both simulations, we use the implementation from Jansen and Côté (2022). For

Coin Collector, we use the most complex setting; for Cooking World, we consider an easy and a

hard setting with varying number of locations and ingredients. For the choice of LLM, we consider

gpt-3.5-turbo-1106 (GPT 3.5 Turbo) and gpt-4-1106-preview (GPT 4 Turbo) across baseline

methods (i.e., Action-gen, PDDL-gen, and PDDL-edit). For Action-gen, we prompt the LLM

with a full description of the simulation, and for PDDL methods, with a hand-annotated domain

file containing well-defined actions. For the PDDL-edit setting, we prompt the LLM to generate

templated edits (add, replace, and delete lines in the problem file). The prompt of each method

include a 1-shot demonstration of the output format.

Regarding performance, Table 5.4 shows a drastic performance degradation of Action-gen moving

from Coin Collector (only 2 valid actions: move, open door each with 4 direction arguments) to

the much more complex Cooking World (with 8 more actions with infinite possible arguments, like

processing an ingredient). Moreover, in Cooking World, an agent would fail if an ingredient is pro-

cessed incorrectly (e.g., fried instead of grilled, was not chopped before roasted). Therefore, LLMs

generating actions on the fly are more likely to make irrevocable mistakes and fail the task. In

contrast, our two-stage PDDL generation approaches ensure the correctness of the plan to process

the ingredients (in the second stage) assuming that the ingredients are gathered and that the appli-

ances are identified (in the first stage). Logically, the failures of pddlego indicates an inconsistency

between the environmental observation and the problem file. For example, the connectivity of the

rooms may not be updated correctly upon entrance to a new room, causing no plan or invalid plans

to be found. By lessen the burden on LLMs, PDDL-edit notably ameliorates but cannot eliminate

this issue. On Coin Collector, issues frequently arise in a loop, where opening a new door leads

to a visited room. Notably, GPT3.5 is far worse than GPT4 in generating PDDL, in line with the

observations by Zhang et al. (2024b) and Silver et al. (2023).

Regarding efficiency, Figure 5.11 shows that on Coin Collector, PDDL-edit is no less efficient than

Action-gen on 7 out 8 examples (red crosses are often lower than the blue circles) in the development

set where PDDL-edit terminates successfully. Scaling up to the entire test set, with GPT4, PDDL-
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edit has an average step to success of 7.8 compared to Action-gen’s 13.6 among successful attempts,

a 43% improvement on efficiency. Among these steps, 3.3 of Action-gen are invalid (e.g., moving

through a closed door) compared to merely 0.2 of pddlego, a significant difference when trials and

errors are expensive. pddlego also shows better stability. In Figure 5.11, PDDL-edit exhibits

a much smaller variance across runs than Action-gen. For example, if the coin happens to be

immediately to the west of the initial room, deciding to go west initially would result in a prompt

success, while exploring the east portion initially would result in a notable detour. Our approach

of PDDL generation leaves only the task of parsing environmental configuration to the LLM, while

the planning task is done deterministically by the solver, leading to more consistent plans across

runs.

Regarding interpretability and correctability, the black-box nature of LLMs results in no faithful

interpretation behind the decisions (c.f., thought-process). In Coin Collector, for example, if the coin

has not be found at the maximum permitted steps, a problematic Action-gen trajectory is almost

impossible to manually correct unless a human is to plot a map and keep track of the exploration.

On the other hand, both PDDL-gen and PDDL-edit guarantees the correctness of the plan assuming

that the generated or edited problem file is correct. Hence, upon failure, a human only needs to

inspect and correct the most recent observation and the PDDL. For PDDL-edit, the job is even

easier as only the change in the problem needs to be considered. An example learned problem file

can be found in Figure 5.10.

In conclusion, we propose pddlego, the first approach to use LLMs to generate PDDL instead of

actions while exploring partially-observed environments. We quantitatively show the improvement

of performance, efficiency and stability, while qualitatively argue the benefit of interpretability

and correctability by construction of this method. Future work should improve its flexibility by

automatically predicting, instead of annotating, the domain file and the sub-goal hierarchy of each

task, and show such flexibility on more involved simulations.

The work above was published in Zhang et al. (2024a), in which I formulated the task and primarily

contributed to all components. I have obtained approval from all collaborators to exclusively include
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Figure 5.10: An example PDDL problem file learned throughout exploration in Coin Collector.

this work in this thesis.

5.5. Summary

In this chapter, I introduced a neurosymbolic approach to use LLMs to generate a structured rep-

resentation, before that representation is executed by a symbolic solver. In the context of planning,

LLMs are only in charge of world modeling but not deciding upon the actions. Compared to the

semi-symbolic event-entity schema discussed in Chapter 4, this pipeline promises more determin-

ism and interpretability by having the symbolic tools play a bigger role. For tasks where symbolic
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Figure 5.11: On Coin Collector, the mean and standard deviation of number of steps to success
(less is better) for each development example, each over 5 trials with different random seeds of
gpt-4-1106-preview, comparing Action-gen and PDDL-edit. The error bar represents the sample
standard deviation. On example 0 and 6, PDDL-edit fails and thus not shown.

deduction plays a significant role, such as kinship deduction and classical planning discussed in

this chapter, I have demonstrated how the synergy of LLMs and symbolic solvers lead to improved

performance.

The ability of LLMs to generate executable structured representations (e.g., PDDL, Python) offers

an exciting outlook for neurosymbolic methods as a whole that can tackle many tasks that include

but are not limited to event reasoning. However, I have also shown significant challenges regarding

the struggle of generating low-resource domain-specific languages (syntactically correct) as well as

maintaining the consistency of the world representation during iterative generation (semantically

correct). Furthermore, it awaits to be tested how well LLMs can generate such representation in a

variety of domains.
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CHAPTER 6

Conclusion

This thesis has focused on automatically reasoning about events, a line of work that spans many

fronts of efforts in NLP including question answering, commonsense inference, symbolic reasoning,

etc. I start by establishing that LLMs are suitable tools for event reasoning due to their strong ability

of cross-domain adaptation. I then systematically explore LLMs’ failure on a variety of tasks and

datasets. To address this, I propose the general methodology to combine LLMs with some structured

event representation. I introduce three types of such representation depending on various factors

such as the task, the capability of the LLMs, and the need for flexibility versus determinism. Each

of these representations is used as a component of a pipeline with models including but not limited

to LLMs. Across a variety of tasks, I have demonstrated the benefit of the synergy between LLMs

and structured representations. Notably are the following takeaways.

Event reasoning is semi-symbolic in nature. The choice to study the task of event reasoning

in this thesis is practically motivated. However, event reasoning is representative of a superset of

semi-language, semi-symbolic tasks (examples: the math question and relational inference tasks

described in Section 5.1; non-examples: creative writing, summarization, emotion detection) that

are ubiquitous and challenging in real-life scenarios. When using generative models (e.g., LLMs)

for these tasks, we practitioners must decide the trade-off between language-modeling and symbol-

modeling. This trade-off usually depends on the resources provided and the metric to optimize for.

For example, to answer the question “Is it safe to touch the pan? ” in Chapter 4, one may fully rely

on an unstructured data representation and end-to-end LLMs if the LLMs are capable, the example

is well-represented in the their training data, and stochasticity is acceptable. However, one may be

better off decomposing the question into symbols as a multi-hop reasoning problem if the LLMs

cannot directly answer the question, the example is out-of-distribution of the training data, and

determinism must be guaranteed.

The long-tail problem thwarts fast-advancing models. The work discussed in this thesis was
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done over a span of five years (2019 to 2024) where models like LLMs have witnessed extraordinary

growth in capability. Despite their improvement, the strength and weakness of these data-driven

models have roughly remained constant: they become increasingly capable with problems that are

well-represented in the training (or pre-training) data, but remain challenged by those that are not.

This is known as the long-tail problem. In event reasoning and similar tasks, the long-tail problem

can emerge in two ways. The first is the context-wise complexity. In Chapter 3, the questions

are relatively short, generic (e.g., should one first use the washer or user the dryer)), and heavily

represented in the training data, so that they are more likely to be solved by larger-scale LLMs. In

Chapter 4, the questions become more specific (e.g., Is it safe to touch the pan after doing step A,

B, and C), while in Chapter 5 even more so (e.g., find a plan to retrieve a coin given a configuration

of a maze). For AI technology to be more useful for a variety of users and circumstances (especially

those who are underrepresented), the long-tail problem should remain in focus. In this thesis, in the

context of using LLMs, I have explored both the in-context end-to-end approach and the structured

approach, empirically arguing the latter is superior in many scenarios.

Neurosymbolic methods are empowered by code-trained LLMs. My work described in

Chapter 4 and 5 are novel and special cases of neurosymbolic methods because it leverages LLMs

to consider and predict the symbols. As discussed in those chapters and related work, this has not

been possible until approximately 2021 when LLMs are trained to work with structured data such

as code. Historically, the advantage of neurosymbolic methods is their precision and determinism

while the disadvantage is their brittleness across domains. Similarly, historically, the advantage

of data-driven neural methods is their flexibility and the disadvantage is their inability to work

with structured data. In the present day, neurosymbolic methods do not just compete with, but

are empowered by code-trained LLMs as symbol generators and validators. In Chapter 5), the

preliminary results show that this line of working is promising despite challenges.

The three methodologies introduced in this thesis each call for future work that includes examining

more domains, integrating future LLMs, and so on. However, perhaps a even more crucial direction

is to develop a “hierarchical organizer” that can reduce the amount of hard-coding when designing
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these pipelines. For example, a high-level switch may decide to use the neurosymbolic usage for a

task where symbolic reasoning plays a significant role. Then, a mid-level switch may decide what

to symbolically model and what to rely on end-to-end generation. Finally, a low-level switch may

decide on implementation details, such as whether to include techniques like chain-of-thought or

self-refine. Though ambitious, the prospect of hierarchical planning and problem solving will surely

lead to AI systems’ ability and versatility.

123



APPENDIX A

APPENDIX FOR CHAPTER 3

A.1. Quality Control Filters

As described in Section 3.1.1 and Section 3.1.2, we apply a collection of hand-crafted filters to

the automatically generated examples to remove low-quality ones. The details of each filter are as

follows:

Category filter: We remove examples involving articles under certain wikiHow categories. The

categories we leave out are either too obscure (e.g. Astrology Relationships) or require expert

domain knowledge to reason about (e.g. Car Engine Repairs), with the hope that the remaining

categories contain more what we would call “common sense" knowledge that an average human has.

Lexical-Overlap filter: We remove examples where there is a lexical overlap between the prompt

and each candidate. We exclude stopwords and lemmatize each word using spaCy before computing

the overlap.

TF-IDF filter: We remove examples with overly uninformative prompts or candidates. We exploit

TF-IDF as a proxy for how indicative a certain step is of the article it comes from. The motivation is

that in Step Inference, for example, given a prompt step, the task is to choose its corresponding goal;

then a prompt step like “gather your materials” is almost not informative at all for humans/models

to tell which goal it serves, as a large number of articles may include a step like this. Thus, we treat

each wikiHow article as a document and calculate the TF-IDF of each token, and only retain steps

that have at least one token whose TF-IDF value surpasses a certain threshold.

Length filter: We remove examples with overly short prompts or candidates. The motivation is

similar to that of the TF-IDF filter, i.e. too short goals/steps may not be informative enough to

make a clean example. For example, steps like “Finished!” or “Serve!” are hard to tell apart if

one of them is the positive candidate while the other is negative. To reduce such kind of noise

in the automatically generated examples, we filter out steps/goals that are shorter than a specific

threshold.

Similarity filter: We use similarity-based filters to remove examples where some negative candidate
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is also likely to be a plausible answer. The similarity scores are calculated using cosine similarity

between BERT embeddings described in Section 3.1.1. In Step Inference, we set an upper threshold

on the similarity between any negative step and any step from the prompt goal, with the motivation

that negative steps should not serve the prompt goal. For Goal Inference, likewise, we ensure that

the similarity between the prompt step and all steps from any negative goal is lower than a threshold,

thus trying to minimize the cases where the prompt step also helps achieve negative goals.

A.2. More Open-Ended Examples

In addition to the examples in Section 3.1.6, we provide more open-ended examples for each task

here.

A.2.1. Step Inference

For these open ended examples, our Step Inference model is trained in a 100-choose-1 format with

99 negative samples, instead of 4-choose-1, given 3 steps instead of 1. During evaluation, we use

the softmax value in the final layer as the probability for each candidate. We rank the probabilities

and report the top 3. Here are some more examples:

Input goal: Choose a Role Model

Predicted steps: learn about their successes and failures (correct), show interest in their lives,

ask about their life

Input goal: End a Letter of Apology

Predicted steps: use a signature that conveys your emotions (correct), try to personalize the

letter as much as possible, focus on the facts of the situation

A.2.2. Goal Inference

For Goal Inference, we follow the same procedure as above. Here are some more examples:

Input steps: buy or rent a good hammer drill, drill a pilot hole, insert a high quality masonry

drill bit
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Predicted goals: Drill Into Concrete (correct), Drill Holes Through Glass, Dig a Hole

Input steps: cultivate a memorable persona, keep an equal balance between your vlogging and

your work life. review your channel

Predicted goals: Become a YouTube Guru (correct), Become a Film Buff, Become a Videographer

A.2.3. Step Ordering

For Step Ordering, the model can perfectly order the steps in many wikiHow articles unseen during

training. To perfectly order an article, the model needs to correctly order all possible pairs of steps

in an article. Here are 2 example articles with 10 steps:

Change Your Name of a Minor in Colorado: (1) make sure the child is eligible for a name

change, (2) choose the right court, (3) download and review your forms, (4) get a fingerprint-based

criminal background check, (5) complete the necessary forms, (6) get consent from the non-custodial

parent, (7) file your petition with the appropriate court, (8) serve the non-custodial parent, (9) pub-

lish the proposed name change, (10) attend the hearing on your petition.

Draw a Simple Teddy Bear: (1) draw a circle for the teddy bear’s head and an oblong for

its body, (2) add two curved lines on each side of the oblong for the bear’s arms, (3) draw two small

circles below the oblong for the bear’s feet, (4) add the ears using two small circles on each side of

the head, (5) draw details of the face, (6) add details on the bear’s pads using three small circles

and a bean shape below it, (7) draw a shirt for the bear, (8) make the bear look furry by using

small strokes in drawing its body, (9) erase unnecessary lines, (10) color the drawing.

A.3. Modeling Details of Intent Detection

After experimenting with base and large models, we use RoBERTa-large for the English datasets

and XLM-RoBERTa-base for the multilingual dataset for best performances. All our models are

implemented using the HuggingFace Transformer library37.
37https://github.com/huggingface/transformers
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We tune our model hyperparameters on the validation sets of the datasets we experiment with.

However, in all cases, we use a unified setting which empirically performs well, using the Adam

optimizer (Kingma and Ba, 2014) with an epsilon of 1e−8, a learning rate of 5e−6, maximum se-

quence length of 80 and 3 epochs. We variate the batch size from 2 to 16 according to the number

of candidates in the multiple-choice task, to avoid running out of memory. We save the model every

1,000 training steps, and choose the model with the highest validation performance to be evaluated

on the test set.

We run our experiments on an NVIDIA GeForce RTX 2080 Ti GPU, with half-precision floating

point format (FP16) with O1 optimization. Each epoch takes up to 90 minutes in the most resource

intensive setting, i.e. running a RoBERTa-large on around 100,000 training examples of our wikiHow

pretraining dataset.

A.4. Modeling Details of Script Learning

All our models are implemented using the HuggingFace Transformer service38. For all experiments,

we hold out 5% of the training data for development.

The pretrained models we use include: the bert-base-multilingual-uncased checkpoint (168M

parameters) for mBERT, the xlm-roberta-base checkpoint (270M parameters) for XLM-RoBERTa,

the roberta-base checkpoint (125M parameters) for RoBERTa39, and the mT5-Large checkpoint (1B

parameters) for mT540.

For mBERT, XLM-RoBERTa and RoBERTa, we finetune the pretrained models on our dataset

using the standard SequenceClassification pipeline on HuggingFace41. For mT5, we refer to the

official fine-tuning scripts42 from the project’s Github repository. We will release the fine-tuning

source code for reproducing the results upon publication.
38https://github.com/huggingface/transformers
39The above 3 models are available at https://huggingface.co/transformers/pretrained_models.html
40https://github.com/google-research/multilingual-t5
41https://huggingface.co/transformers/model_doc/auto.html?highlight=sequence%20classification#transformers

.AutoModelForSequenceClassification
42https://colab.research.google.com/github/google-research/text-to-text-transfer-transformer/blob/master/noteb

ooks/t5-trivia.ipynb

127

https://github.com/huggingface/transformers
https://huggingface.co/transformers/pretrained_models.html
https://github.com/google-research/multilingual-t5
https://huggingface.co/transformers/model_doc/auto.html?highlight=sequence%20classification#transformers.AutoModelForSequenceClassification
https://huggingface.co/transformers/model_doc/auto.html?highlight=sequence%20classification#transformers.AutoModelForSequenceClassification
https://colab.research.google.com/github/google-research/text-to-text-transfer-transformer/blob/master/notebooks/t5-trivia.ipynb
https://colab.research.google.com/github/google-research/text-to-text-transfer-transformer/blob/master/notebooks/t5-trivia.ipynb


For each in-domain evaluation experiment, we perform grid search on learning rate from 1e − 5

to 5e − 8, batch size from 16 to 128 whenever possible, and the number of epochs from 3 to 10.

As mBERT and XLM-RoBERTa have a large number of hyperparameters, most of which remain

default, we do not list them here. Instead, the hyperparameter values and pretrained models will be

available publicly via HuggingFace model sharing. We choose the model with the highest validation

performance to be evaluated on the test set. For the Retrieval setting, we consider the accuracy of

contracted scripts; for the Generation setting, we consider perplexity.

We run our experiments on an NVIDIA GeForce RTX 2080 Ti GPU, with half-precision floating

point format (FP16) with O1 optimization. The experiments in the Retrieval setting take 3 hours

to 5 days in the worst case for all languages. The experiments in the Generation setting take 2

hours to 1 day in the worst case for all languages.

A.5. Crowdsourcing Details of Recursive Schema Construction

As discussed previously, we use Amazon Mechanical Turk (mTurk) to collect human judgements of

linked wikiHow articles. Our mTurk task design HTML is attached in the supplementary materials.

Each task includes an overview, examples of ratings, and 11 questions including 1 control question.

Each question has the following prompt:

Imagine you’re reading an article about the goal c_goal, which includes a step step.

Then, you’re presented with a new article r_goal. Does this new article help explain

how to do the step step?

where c_goal is the original corresponding goal of the step, and r_goal is the retrieved goal by

the model. Both c_goal and r_goal have hyperlinks to the wikiHow article. The options of rating

are:

1. The article explains exactly how to do the step.

2. The article is helpful, but it either doesn’t have enough information or has too much unrelated

information.
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3. The article explains something related, but I don’t think I can do the step with the instructions.

4. The article is unhelpful/unrelated.

5. I don’t know which option to choose, because: [text entry box]

The control question contains either a step and r_goal with the exact same texts once lower-cased

(in which case the expected answer is always #1), or a step and a randomly selected unrelated

r_goal (in which case the expected answer is always #4). We estimate that answering each question

would take 30 seconds, with a pay of $0.83 per task which equates to an hourly rate of $9.05. We

require workers to be English-speaking, with the mTurk Master qualification and a lifetime approval

rate of over 90%.

To sample examples to annotate, we first obtain all the steps corresponding to the same 1000 goals as

previously discussed. To evaluate the DeBERTa-ul’s ability to predict unlinkable, we randomly

sample 500 steps predicted as unlinkable and another 500 predicted as otherwise. Then, for these

1000 steps, we obtain linked goal predictions of our three models: DeBERTa-ul, DeBERTa, and

the SP model. If DeBERTa-ul predicts a step to be unlinkable by ranking the placeholder token

first, the second ranked goal is instead considered. After removing duplicates of predicted step-goal

pairs, we are left with 1448 examples.

When performing analyses, we only consider the responses from crowdworkers that pass more control

questions than they fail.
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