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Abstract

XTATIC is a lightweight extension of C! offering native support for statically typed XML processing. XML
trees are built-in values in XTATIC, and static analysis of the trees created and manipulated by programs
is part of the ordinary job of the typechecker. “Tree grep” pattern matching is used to investigate and
transform XML trees.

XTATIC’s surface syntax and type system are tightly integrated with those of C*. Beneath the hood,
however, an implementation of XTATIC must address a number of issues common to any language sup-
porting a declarative style of XML processing (e.g., XQUERY, XSLT, XDucge, CDUCE, XACT, XEN,
etc.). In particular, it must provide representations for XML tags, trees, and textual data that use
memory efficiently, support efficient pattern matching, allow maximal sharing of common substructures,
and permit separate compilation. We analyze these representation choices in detail and describe the
solutions used by the XTATIC compiler.



1 Introduction

XTATIC inherits its key features from XDUCE [14, 15, 16], a domain-specific language for statically typed
XML processing. These features include XML trees as built-in values, a type system based on regular types
(closely related to popular schema languages such as DTD and XML-Schema) for statically typechecking
computations involving XML, and a powerful form of pattern matching called regular patterns. The goals
of the XTATIC project are, first, to bring these technologies to a wide audience by integrating them with a
mainstream object-oriented language and, second, to demonstrate an implementation with good performance.
We use C* as the host language, but our results should also be applicable in a Java setting.

At the source level, the integration of XML trees with the object-oriented data model of C* is accomplished
by two steps. First, the subtype hierarchy of tree types from XDUCE is grafted into the C* class hierarchy
by making all regular types be subtypes of a special class Seq. This allows XML trees to be passed to generic
library facilities such as collection classes, stored in fields of objects, etc. Conversely, the roles of tree labels
and their types from XDUCE are played by objects and classes in XTATIC; XML trees are represented using
objects from a special Tag class as labels.

Subtyping in XTATIC subsumes both the object-oriented subclass relation and the richer subtype relation
of regular types. XDUCE’s simple “semantic” definition of subtyping (sans inference rules) extends naturally
to XTATIC’s object-labeled trees and classes. The combined data model and type system, dubbed regular
object types, have been formalized in [9]. Algorithms for checking subtyping and inferring types for variables
bound in patterns can be adapted straightforwardly from those of XDUCE ([16] and [14]).

XTATIC’s tree construction and pattern matching primitives eschew all forms of destructive update—
instead, the language promotes a declarative style of tree processing, in which values and subtrees are
extracted from existing trees and used to construct entirely new trees. This style is attractive from many
points of view: it is easy to reason about (no need to worry about aliasing), it integrates smoothly with
other language features such as threads, and it allows rich forms of subtyping that would be unsound in the
presence of update. Many other high-level XML processing languages, including XSLT [37], XQUERY [39],
CDUCE [1], and XAcCT [24, 2], have made the same choice, for similar reasons. However, the declarative
style makes some significant demands on the implementation, since it involves a great deal of replicated
substructure that must be shared to achieve acceptable efficiency.

Our implementation is based on a source to source compiler from XTATIC to C*. One major function of
this compiler is to translate the high-level pattern matching statements of X TATIC into low-level C* code that
is efficient and compact. A previous paper [25] addressed this issue by introducing a formalism of matching
automata and using it to define both backtracking and non-backtracking compilation algorithms for regular
patterns.

The present paper addresses the lower-level issue of how to compile XML values and value-constructing
primitives into appropriate run-time representations. We explore several alternative representation choices
and analyze them with respect to their support for efficient pattern matching, common XTATIC programming
idioms, and safe integration with foreign XML representations such as the standard Document Object Model
(DOM). Our contributions may be summarized as follows:

e a data structure for sequences of XML trees that supports efficient repeated concatenation on both
ends of a sequence, equipped with a fast algorithm for calculating the subsequences bound to pattern
variables;

e a compact and efficient hybrid representation of textual data (PCDATA) that supports regular pattern
matching over character sequences (i.e., a statically typed form of string grep);

e a type-tagging scheme allowing fast dynamic revalidation of XML values whose static types have been
lost, e.g., by upcasting to object for storage in a generic collection; and

e a proxy scheme allowing foreign XML representations such as DOM to be manipulated by XTATIC
programs without first translating them to our representation.



We have implemented these designs and measured their performance both against some natural variants and
against implementations of other XML processing languages. The results show that a declarative statically
typed embedding of XML transformation operations into a stock object-oriented language can be competitive
with existing mainstream XML processing frameworks.

The next section briefly reviews the XTATIC language design. Section 3 discusses the translation scheme
chosen for the compilation of XTATIC types. The heart of the paper is Sections 4 and 5, which describe and
evaluate our representations for trees and textual data. Section 6 deals with issues arising at the interface of
XTATIC and pure C*. Section 7 summarizes results of benchmarking programs compiled by X TATIC against
some other popular XML processing tools. Section 8 discusses related work; Section 9, future work.

2 Language Overview

This section sketches just the aspects of the XTATIC design that directly impact runtime representation
issues. A full description of the language can be found in [8, 9].

Consider the following document fragment—a sequence of two entries from an address book—given here
side-by side in XML and XTATIC concrete syntax.

<person> [[ <person>
<name>Haruo Hosoya</name> <name> ‘Haruo Hosoya‘</name>
<email>hahasoya</email> <email>‘hahasoya‘</email>
</person> </person>
<person> <person>
<name>Jerome Vouillon</name> <name>‘Jerome Vouillon‘</name>
<tel>123</tel> <tel>“123‘</tel>
</person> </person> ]]

XTATIC’s syntax for this document is very close to XML, the only differences being the outer double brackets,
which segregate the world of XML values and types from the regular syntax of C¥, and backquotes, which
distinguish PCDATA (XML textual data) from arbitrary XTATIC expressions yielding XML elements.

One possible type for the above value is a list of persons, each containing a name, an optional phone
number, and a list of emails:

<person> <name>pcdata</> <tel>pcdata</>? <email>pcdata</>* </person>*

The type constructor “?” marks optional components, and “*” marks repeated sub-sequences. XTATIC also
includes the type constructor “|” for non-disjoint unions of types. The shorthand </> is a closing bracket
matching an arbitrarily named opening bracket. Every regular type in XTATIC denotes a set of sequences.
Concatenation of sequences (and sequence types) is written either as simple juxtaposition or (for readability)
with a comma. The constructors “x*” and “?” bind stronger than “,”, which is stronger than “|”. The type
“pcdata” describes sequences of characters.

Types can be given names that may be mentioned in other types. For example, in the presence of these

definitions

regtype Name [[ <name>pcdata</> ]]

regtype Tel [[ <tel>pcdata</> 1]

regtype Email [[ <email>pcdata</> ]]

regtype TPers [[ <person> Name Tel </> 1]

regtype APers [[ <person> Name Tel? Email* </> ]]

our address book could be given the type APersx.

A regular pattern is just a regular type decorated with variable binders. A value v can be matched against
a pattern p, binding variables occurring in p to the corresponding parts of v, if v belongs to the language
denoted by the regular type obtained from p by stripping variable binders. For matching against multiple
patterns, XTATIC provides a match construct that is similar to the switch statement of C* and the match



expression of functional languages such as ML. For example, the following program extracts a sequence of
type TPers from a sequence of type APers, removing persons that do not have a phone number and eliding
emails.

static [[ TPers* ]] addrbook ([[ APers* ]] ps) {
[[ TPers* 1] res = [[ 11;
bool cont = true;
while (cont) {
match (ps) {
case [[ <person> <name>any</> n, <tel>any</> t, any </>, any rest ]]:
res = [[ res, <person> n, t </> 1];
ps = rest;
case [[ <person> any </person>, any rest ]]:
ps = rest;
case [[ 1]:

cont = false;

)

return res; }

An XTATIC pattern is actually just a regular type decorated with variable binders; the run-time behav-
ior of pattern matching is just regular tree language membership testing plus subtree (and sub-sequence)
extraction.

The XTATIC type system ensures that each pattern match is complete (some branch will always succeed).
The compiler can also infer types for variables bound by patterns. For instance, in the first case above,
the variable t is given the type <tel>pcdata</>, even though its associated sub-pattern matches the more
general type <tel>any</>, the type “any” being the least precise sequence type. Similarly, the rest of the
sequence is matched against the type any, but may be stored into the variable ps, which has type APersx,
as the type checker infers its type precisely.

Compared with the facilities available in pure C¥(such as the raw DOM API), regular pattern matching
allows much cleaner and more readable implementations of many tree investigation and transformation
algorithms. However, compared with other native XML processing languages, XTATIC’s pattern matching
primitives are still fairly low-level: for example, no special syntax is provided for collecting all sub-trees
matching a given pattern, or for iterating over sequences. We are currently investigating how best to add
more powerful pattern matching; for now, our implementation efforts are concentrated on achieving good
performance for low-level XML processing code.

The integration of XML sequences with C* objects is accomplished in two steps. First, XTATIC introduces
a special class named Seq that is a supertype of every XML type—i.e., every XML value may be regarded as
an object this class. The regular type [[any]] is equivalent to the class type Seq. This approach is justified
by the homogeneous translation used by our compiler. Second, XTATIC allows any object—not just an XML
tag—to be the label of an element. For instance, we can write <(1)/> for the singleton sequence labeled
with the integer 1 (the parentheses distinguish an XTATIC expression from an XML tag); similarly, we can
recursively define the type any as any = [[ <(object)>any</>x ]].

We close this overview by describing how XTATIC views textual data. Formally, the type pcdata is
defined by associating each character with a singleton class that is a subclass of the C* char class' and taking
pcdata to be an abbreviation for <(char)/>*. In the concrete syntax, we write ‘foo‘ for the sequence type
<(chary)/><(char,)/><(char,) /> and for the corresponding sequence value. This treatment of character
data has two advantages. First, there is no need to introduce a special concatenation operator for pcdata,
as the sequence ‘ab‘, ‘cd‘ is identical to ‘abcd‘. This can also be seen at the type level:

pcdata,pcdata = <(char)/>*,<(char)/>* = <(char)/>* = pcdata

IThese singleton classes do not actually correspond to anything in the ct runtime, where the class char cannot have any
subclasses. They are compiled away by the XTATIC compiler.



Equating pcdata with string would not allow such a seamless integration of the string concatenation opera-
tor with the sequence operator. Second, singleton character classes can be used in pattern matching to obtain
functionality very similar to string regular expressions [35]. For instance, the XTATIC type ‘a‘,pcdata, ‘b¢
corresponds to the regular expression a. *b.

The current XTATIC design adopts a very simple, untyped view of the attributes attached to XML
elements: attributes may appear in tree values and in regular patterns, but they are not tracked by the type
system. This is an interim solution: a language with XTATIC’s goals should clearly treat attributes statically.
At the moment, however, a fully satisfactory type system for attributes remains a matter of ongoing research
(designs based on conventional record types, such as CDUCE’s, do not easily support dynamic transformation
of documents with unknown or partially known types; Hosoya and Murata [13] have a proposal with most
of the properties that we want, but of daunting complexity).

3 Translation Scheme

The most fundamental design choice for compiling a language like XTATIC is whether to use a heterogeneous
translation scheme, where different XML types from the source language can be translated to different
target language types, or a homogeneous scheme, in which all XML types are represented using a single
target language type. This section discusses both alternatives and explains why we chose the latter for the
current compiler implementation.

To begin with, it is useful to distinguish both of these schemes from a third popular alternative, commonly
called data binding. A data binding for XML can be described as (1) a mapping [—] from XML types (in
some XML schema language) to target language types, and (2) an injective mapping [—]__ from XML
values (indexed by their types) to target language values, such that [t], € [T] for each XML value t of type
T. That is, a data binding is a way of embedding XML types and values into the types and values of the
target language. (Note that we are only interested in mapping values and types—there is no source language
as such; the purpose of a data binding is to allow XML values to be “imported” as ordinary target language
data structures and manipulated by writing ordinary target language code.) Several popular data bindings
are available, mapping XML to a variety of host languages [34, etc.]. However, a data binding cannot form
the basis of a compiler for an XML-oriented source language unless it also preserves the subtyping relation
of the source language—i.e., if S and T are XML types with S <: T, we should have [S] <: [T] in the target
language. Data bindings are generally designed so that some subtype relationships between source types
are preserved by translation, but usually—and in particular for XTaTIC and C*—it is not possible to reflect
source subtyping completely.?

A heterogeneous translation scheme may be thought of as a data binding plus a way of translating source-
language subtyping into coercion functions in the target language. Essentially, for every pair of source types
S and T with 8 <: T, there is a coercion function [8 <: T] € [S] — [T].  Sometimes (when we already
have [S]] <: [T] in the target language) these coercions are just identity functions; but in other cases they
perform real, run-time changes of representation. The coercion functions are inserted into target code by
the compiler wherever it sees that an (implicit or explicit) upcast is being used during typechecking.

Heterogeneous translation schemes are attractive because they allow specialized representations that can
be accessed efficiently, avoiding many run-time tests and making compact use of memory (see, e.g., [6]).
However, they raise some tricky design challenges, which we have not attempted to address in XTATIC.
In particular, because performing run-time representation changes on large XML structures could be pro-
hibitively expensive, the subtype relation and representation must be carefully designed together so that
coercions will usually only be applied to small structures.

Instead, for the current XTATIC compiler, we choose the more straightforward (and more common)
approach of using a homogeneous translation, translating all XML types to a single target type. In the case
of XTATIC, there is a natural candidate for this type: the special class Seq, which is defined to be a supertype

2Indeed, it is in the nature of data bindings that this property will generally fail: if the target language type system were
flexible enough to encode all the desired relationships between XML types, then there would be little need (concrete syntax
aside) to have a separate language of XML types in the first place!



of all XML types. In effect, the compilation process takes the rich regular type structure hanging below the
Seq class and squashes it all down to just Seq.

The homogeneous translation scheme also has some potential costs, which we will need to deal with
below. In particular, when type information is needed for a runtime check (e.g., if we have a structure of
type Seq and we wish to cast it to some more precise regular type), a naive implementation might need to
walk over a large structure to recalculate its type; we show in Section 6.2 how this can be avoided by judicious
(programmer-controlled) tagging of trees with their types. Another issue is that the precise compile-time type
information that is thrown away by the homogeneous translation needs to be stored on the side somewhere
so that cross-compilation-unit overloading can be resolved properly; this point is discussed in Section 6.1.

4 Representing Trees

We now turn to the design of efficient representations for XML trees. First, we select a tag representation
that supports separate compilation and XML namespaces (Section 4.1). Next, we design a tree representation
that supports XTATIC’s view of trees as shared and immutable structures (Section 4.2). The main constraint
on the design is that the programming style favored by XTATIC involves a great deal of appending (and
consing) of sequences. To avoid too much re-copying of sub-sequences, we enhance the naive design to do
this appending lazily (Section 4.3). Finally, XTATIC needs to inter-operate with other XML representations
available in .NET, in particular DOM. We show how DOM structures can masquerade as instances of our
XTATIC trees in a type-safe manner (Section 4.4).

4.1 Tags

Our implementation defines a class Tag, and every particular XML tag is an object of this class. A tag object
has a string field for the tag’s local name and a field for its namespace URI. We use memoisation (interning)
to ensure that there is a single run-time object for each known tag, making tag matching a simple matter
of physical object comparison. Separate compilation is supported by allocating these tags at start-up time:
each separately compiled library adds its tags to a common hash table when loaded. Hence, every library
associates the same object to a given tag. Moreover, this tag representation simplifies the recovery of a tag
name, needed to print it.

We considered several other run-time representations of tags. One, directly corresponding to the formal
definition of the XTATIC data model [9], encodes XML tags by different classes. This approach does not work
in the context of separate compilation since the same XML tag occurring in different compilation units would
be mapped to distinct classes sharing the same name but residing in different assemblies. Representing tags by
values of an enumeration type offers the ability to compile pattern-matching into efficient switch statements,
but, like the class-based approach, does not work with separate compilation, since we cannot guarantee that
the same tag will correspond to the same enumeration value in every compilation unit. One might also
represent an XML tag by a single string containing both the namespace and the tag name separated by some
special character, and hash this string using a fixed function carefully chosen as to minimize collisions. This
approach, similar to the one used for the implementation of labels in OCaml [11], is not applicable in our
setting as the name of the tag is no longer available at runtime.

4.2 Simple Sequences

Every XTATIC value with a regular type is a sequence of trees. XTATIC’s pattern-matching algorithms, based
on tree automata, require access to the label of the first tree in the sequence, its children, and its following
sibling. This access style is naturally supported by a simple singly linked structure.

Figure 1 summarizes the classes implementing sequences. Seq is an abstract superclass representing all
sequences regardless of their form. As the exact class of a Seq object is often needed by XTATIC-generated
code, such as pattern matching, it is stored as an enumeration value in the field kind of every Seq object.
Maintaining this field allows us to use a switch statement (which should be implemented by a good .NET



Seq

Kind kind
[ I I I Tz |
SeqEmpty SeqObject Seqlnt SeqChar SeqAppend
Object label int label char label Seq fst
Seq next Seq next Seq next Seq snd
Seq contents Seq contents Seq contents

Figure 1: Classes used for representing sequences.

JIT compiler using a jump table) instead of a chain of if-then-else statements relying on the “is” operator
to test class membership.

The subclass Seq0bject includes two fields, next and contents, that point to the rest of the sequence—
the right sibling—and the first child of the node. The field 1abel holds a C* object. Empty sequences are
represented using a single, statically allocated object of class SeqEmpty. (Using null would require an extra
test before switching on the kind of the sequence—in effect, optimizing the empty-sequence case instead of
the more common non-empty case.)

In principle, the classes SeqEmpty and SeqObject can encode all XTATIC trees. But to avoid downcasting
when dealing with labels containing primitive values (most critically, characters), we also include specialized
classes SeqBool, SeqInt, SeqChar, etc. for storing values of base types.

XML data is encoded using SeqObjects that contain, in their 1abel field, instances of the special class
Tag that represent XML tags. A tag object has a string field for the tag’s local name and a field for its
namespace URI. We use memoisation (interning) to ensure that there is a single run-time object for each
known tag, making tag matching a simple matter of physical object comparison.

Briefly, pattern matching of labels is implemented as follows. The object (or value) in a label matches a
label pattern when: the pattern is a class C and the object belongs to a subclass of C, the pattern is a tag
and the object is physically equal to the tag, the pattern is a base value v and the label holds a value equal
to v.

4.3 Lazy Sequences

In the programming style encouraged by XTATIC, sequence concatenation is a pervasive operation. Un-
fortunately, the run-time representation outlined so far renders concatenation linear in the size of the first
sequence, leading to unacceptable performance when elements are repeatedly appended at the end of a
sequence, as in the assignment of res in the addrbook example in Section 2.

This observation naturally suggests a lazy approach to concatenation:® we introduce a new kind of se-
quence node, SeqAppend, that contains two fields, £st and snd. The concatenation of (non-empty) sequences
Seql and Seq2 is now compiled into the constant time creation of a SeqAppend node, with fst pointing
to Seql, and snd to Seq2. We preserve the invariant that neither field of a SeqAppend node points to the
empty sequence.

To support pattern matching, we need a normalization operation that exposes at least the first element
of a sequence. The simplest approach, eager normalization, just transforms the whole sequence so that it
does not contain any top-level SeqAppend nodes (children of the nodes in the sequence are not normalized).
However, there are cases when it is not necessary to normalize the whole sequence, e.g. when a program
inspects only the first few elements of a long list. To this end we introduce a lazy normalization algorithm,
given in pseudocode form in Figure 2.

3The problem of efficient list concatenation has, of course, been studied in the functional programming community, and a
number of techniques have been proposed; see Section 8. We describe here our adaptation of these ideas to the specifics of
XTtATIC—for example, in-place updates will turn out to be critical for the correctness of pattern variable binding.



Seq lazy_norm(Seq node) {
switch (node.kind) {
case Append: return norm_rec(node.fst, node.snd);
default: return node; }

Seq norm_rec(Seq node, Seq acc) {
switch (node.kind) {
case Append: return norm_rec(node.fst, new SeqAppend(node.snd, acc));
case Object:
switch node.next.kind {
case Empty: return new SeqObject(node.label, node.contents, acc);

default: return new SeqObject(node.label, node.contents,
new SeqgAppend(node.next, acc));
}
/* similar cases for SeqInt, SegBool, ... */ } }

Figure 2: Lazy Normalization Algorithm.
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Figure 3: Lazy normalization of lazy sequences. In (a), the leftmost concrete element has a right sibling; in
(b) it does not. Dotted pointers and their source objects are created during normalization.

The algorithm fetches the first concrete element—that is, the leftmost non-SeqAppend node of the tree—
copies it (so that the contexts that possibly share it are not affected), and makes it the first element of
a new sequence consisting of (copies of) the traversed SeqAppend nodes arranged into an equivalent, but
right-skewed tree. Figure 3 illustrates this algorithm, normalizing the sequence starting at node SeqAppends
to the equivalent sequence starting at node SeqObject).

Since parts of sequence values are often shared, it is not uncommon to process (and normalize) the
same sequence several times. As described so far, the normalization algorithm returns a new sequence,
e.g. SeqObject), but leaves the original lazy sequence unchanged. To avoid redoing the same work during
subsequent normalizations of the same sequence, we also modify in-place the root SeqAppend node, setting
the snd field to null (indicating that this SeqAppend has been normalized), and the fst field to the result
of normalization:

Seq lazy_norm_in_place(Seq node) {
switch (node.kind) {
case Append:
if (node.snd == null) return node.fst;
node.fst = norm_rec(node.fst, node.snd); node.snd = null;
return node.fst;
default: return node; } T

Interestingly, this in-place modification is required for the correctness of binding of non-tail variables in
patterns. The pattern matching algorithm [14] naturally supports only those pattern variables that bind
to tails of sequence values; variables binding to non-tail sequences are handled by a trick. Namely, binding



eager concatenations | eager normalization | lazy normalization
back appending o0 1,050 ms 1,050 ms
front appending 950 ms 950 ms 950 ms

Figure 4: Running times for two variants of the phone book application.

a non-tail variable x is accomplished in two stages. The first stage performs pattern matching and—as it
traverses the input sequence—sets auxiliary variables x; and x, to the beginning and end of the subsequence.
The second stage computes x from x;, and x. by traversing the sequence beginning at x; and copying nodes
until it reaches x.. In both stages, the program traverses the same sequence, performing normalization along
the way. In-place modification guarantees that during both traversals we will encounter physically the same
concrete nodes, and so, in the second stage, we are justified in detecting the end of the subsequence by
checking physical equality between the current node and x..

Because of creation of fresh SeqAppend nodes, the lazy normalization algorithm can allocate more memory
than its eager counterpart. However, we can show that this results in no more than a constant factor overhead,
as follows. A node is said to be a left node if it is pointed by the fst pointer of a SeqAppend. There are
two cases when the algorithm creates a new SeqAppend node: when it traverses a left SeqAppend node, and
when it reaches the leftmost concrete element. In both cases, the newly created nodes are not left nodes
and so will not lead to further creation of SeqAppend nodes during subsequent normalizations. Hence, lazy
normalization allocates at most twice as much memory as eager normalization.

We now present some measurements quantifying the consequences of this overhead on running time.
Figure 4 shows running times for two variants of the phone book application from Section 2, executed on an
address book of 250,000 entries. (Our experimental setup is described below in Section 7.) The first variant
constructs the result as in Section 2, appending to the end. The second variant constructs the result by by
appending to the front:

res = [[ <person> n, t </>, res 11;

This variant favors the non-lazy tree representation from the previous subsection, which serves as a baseline
for our lazy optimizations. Since our implementation recognizes prepending singleton sequences as a special
case, no lazy structures are created when the second program is executed, and, consequently all concatenation
approaches behave the same. For the back-appending program, the system runs out of memory using eager
concatenation, while both lazy concatenation approaches perform reasonably well. Indeed, the performance
of the lazy representations for the back-appending program is within 10% of the performance of the non-lazy
representation for the front-appending program, which favors such a representation.

This comparison does not show any difference between the lazy and eager normalization approaches.
We have also compared performance of eager vs. lazy normalization on the benchmarks discussed below
in Section 7. Their performance is always close, with slight advantage for one or the other depending on
workload. On the other hand, for programs that explore only part of a sequence, lazy normalization can be
arbitrarily faster, making it a clear winner overall.

Our experience suggests that, in common usage patterns, our representation exhibits constant amortized
time for all operations. It is possible, however, to come up with scenarios where repeatedly accessing the
first element of a sequence may take linear time for each access. Consider the following program fragment:

[71;
[71;

[[any]l] resi1
[[anyl] res2
while (true) {

resl = [[resl, <a/>]];

res2 = [[resl, <b/>]];

match (res2) {

case [[<(Tag x)/>, anyll: ...use x...

}

}



Since the pattern matching expression extracts only the first element of res2, only the top-level SeqAppend
object of the sequence stored in res2 is modified in-place during normalization. The SeqAppend object of
the sequence stored in res1 is not modified in-place, and, consequently, is completely renormalized during
each iteration of the loop.

Kaplan, Tarjan and Okasaki [19, 20, 30, 18] describe catenable steques, which provide all the functionality
required by XTATIC pattern-matching algorithms with operations that run in constant amortized time in
the presence of sharing. We have implemented their algorithms in C* and compared their performance with
that of our representation using the lazy normalization algorithm. The steque implementation is slightly
more compact—on average it requires between 1.5 and 2 times less memory than our representation. For
the above tricky example, catenable steques are also fast, while XTATIC’s representation fails on sufficiently
large sequences. For more common patterns of operations, however, our representation is more efficient. The
following table shows running times of a program that builds a sequence by back-appending one element at
a time and fully traverses the constructed sequence. We ran the experiment for sequences of four different
sizes.

Steques | XTATIC
n = 10,000 | 70 ms 6 ms

n = 20,000 | 140 ms | 12 ms
n = 30,000 | 230 ms | 19 ms
n = 40,000 | 325 ms | 31 ms

The implementation using catenable steques is significantly slower than our much simpler representation
because of the overhead arising from the complexity of the steque data structures.

4.4 DOM Interoperability

XTATIC modules are expected to be useful in applications built in other .NET languages with the use
of extensive .NET libraries. The latter already contain support for XML, collected in the System.Xml
namespace. It can greatly enhance the usefulness of XTATIC if its XML manipulation facilities can be applied
to native .NET XML representations and, conversely, if XTATIC XML data can be accessed from vanilla
C* code. We have explored the former direction of this two-sided interoperability problem by implementing
support for DOM, one popular XML representation available in .NET.

A straightforward solution for accessing DOM from XTATIC would be to translate any DOM data of
interest into our representation in its entirety. This is wasteful, however, if an XTATIC program ends up
accessing only a small portion of the document. A better idea is to wrap a DOM fragment in a lazy structure
(using another subclass, called SeqDom, of Seq) and investigate its contents only as needed during pattern
matching. However, since DOM structures are mutable, we need to take some care to maintain type safety.
We do this by investigating the underlying DOM structure just once and copying the parts we have seen
into immutable Seq nodes.

Concretely, a SeqDom object has two fields, dom and seq, one of which is always null. When a SeqDom
object is created, its dom field points to a DOM element node, meaning that the object represents the XML
fragment cousisting of the DOM node, its following siblings, and its children nodes. (The DOM element
node’s pointers to its parent and previous siblings are not relevant for the meaning a SeqDom wrapper, since
XTATIC never needs to traverse them.)

The actual inspection of the underlying DOM nodes happens during normalization. In the most common
case, normalization of a SeqDom object considers its underlying DOM element node (call it ) and creates a
new SeqObject object with the label field corresponding to e.Name and fields contents and next pointing
to newly created SeqDom objects corresponding to the DOM nodes e.FirstChild and e.NextSibling,
In cases where either of the latter two DOM nodes is not an element node—i.e. it is either null or a
DOM text node—the normalization transforms it directly to a SeqEmpty or an appropriate XTATIC pcdata
representation. Finally, the normalization modifies the original SeqDom object by setting the dom field to
null and pointing the seq field to the newly created SeqObject.
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A SeqgDom object can be initially obtained by applying a special library function to a DOM node. The
return type of this function is [[xml]], the least precise XML type. A successful pattern match of such a
value against a pattern more detailed than [[xm1]] has the side-effect of transforming, via the normalizations
that get invoked along the way, some initial “spine” of the value into our native XTATIC representation. If
the pattern contains subpatterns typed as [[xm1]], the corresponding value fragments may safely be put
in SeqDom wrappers; it does not matter if the underlying DOM structures are later modified, since no
assumptions about their actual type have yet been made by XTATIC code.

As a consequence, the parts of the original DOM structure may be destructively updated at any time
after it was wrapped in DomSeq. The results of such updates are visible to XTATIC only if they happen before
pattern matching reaches them. (Caveat: This statement applies to a single-threaded context. It remains
true in a multithreaded setup only when methods of the DOM implementation are thread safe—something
that .NET DOM implementation does not guarantee.)

Using SeqDom wrappers in the context of lazy concatenation with subsequent normalization of the result-
ing structures into concrete XTATIC sequences is crucial to the efficiency of our approach. An alternative
design that implemented concatenation of DOM wrappers as a DOM wrapper and at the same time wanted
to support shared-structure view of data would have to do extensive deep cloning of DOM fragments. Oth-
erwise, the doubly-linked nature of DOM structures could lead to unintended sharing violations.

We plan to address the other direction of the interoperability problem—efficiently exporting XML trees
created by XTATIC for use in native C¥ code—by implementing one of the System.Xml access interfaces on
top of XTATIC sequences.

5 Representing Text

In this section we describe several ways of representing pcdata and weigh the merits of each approach.
The definition of the type pcdata as <(char)/>* immediately suggests a naive representation using
linked lists of SeqChar objects. For example, the text ‘abcd‘ would be represented as:

Sethar/ Sethar/ Sethar/ SeqChar|
14/

1o A NI e q

The primary advantage of this representation is that we can directly use our sequence representation and tree
pattern matching algorithms to inspect textual data. The primary disadvantage is also obvious: extremely
inefficient use of memory, as each character is represented by a SeqChar object.

A more compact alternative is to use native C* strings for representing pcdata. We have explored several
variants.

The simplest of these is to extend the Seq class hierarchy with class SeqString, whose objects store a
string value plus a pointer to the next Seq object. Here is one possible representation for the text ‘abcd’:

SeqString / SeqString

As the example suggests, a single SeqString node does not have to encapsulate an entire run of consecutive
text. In the case where characters are added to the sequence one by one, this actually results in memory
usage less efficient than the naive SeqChar representation, as a one-character string takes more space than
a single char. Moreover, the following program illustrates a common case where the new representation
results in worse behavior than the naive representation. It scans a given chunk of text character by character
and replaces every occurrence of consecutive ‘a’s by a 'b’.

[[pcdatal] process([[pcdatal]l txt) {
[[pcdatal]l res = [[1];
while (true) {
match (txt) {
case [[]]:
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SeqChar SeqString SeqSubstring Adaptive
process 47 Mb / 2,500 ms 00 52 Mb / 4,800 ms | 44 Mb / 4,500 ms
addrbook | 249 Mb / 250 ms | 77 Mb / 180 ms | 68 Mb / 180 ms | 68 Mb / 180 ms

Figure 5: Comparison of pcdata representations.

return res;
case [[‘a‘+, any rest]l]:
res = [[res, ‘b‘]];
txt = rest;
case [[<(char)/> x, any rest]]:
res = [[res, x]];
txt = rest;

}r}

In each iteration of the loop, the content of rest is a string that needs to be extracted—hence copied—from
the current value of txt, resulting in quadratic space and time behavior. For this program, the naive SeqChar
implementation does not need to allocate any new sequences for rest.

We can avoid this problem by refining the SeqString representation to point to a shared string buffer
and maintain a starting offset and length. The new pcdata representation is encoded by class SeqSubstring
as illustrated in the following figure.

0l
o
0l
o

Substring

Substring /

0|2|/ 2|2

There are cases where the SeqSubstring representation is less efficient than the SeqString scheme
because of the two extra memory slots. Therefore, it is advantageous to have the three schemes coexist
and choose adaptively (at instantiation time) which one to use: SeqChar when we find ourselves appending
a single character to a sequence, SeqString when we append a whole string, and SeqSubstring when we
append a piece extracted from an existing string.

An interesting side effect of the string representation is that it allows us to use the .NET regular expression
library System.Text.RegularExpressions for pattern matching over pure PCDATA. Some advantages for
this choice are ease of implementation, leveraging the highly optimized .NET library (which, for example,
translates regular expressions into CLR bytecodes at run time and JIT-compiles them), and the size reduction
of XTAaTIC-generated C* code that results from delegating to library calls all the character matching code that
otherwise would have to be generated. One drawback is that it requires that lazy sequences of characters be
coalesced into a single string object that can be passed to the regular expression engine. When a string is
needed for .NET regular expression matching, the sequence is (eagerly) normalized to eliminate SeqAppends
up to the first non-character representing item and the resulting list of strings is concatenated.

We conclude this section with performance measurements from two experiments (Figure 5). The first
is the program process given earlier in this section, evaluated on a 0.5 Mb pcdata file; the second is the
addrbook example run on an XML document containing 250,000 APers elements. In both experiments, we
measure the memory usage and processing time of the program. In the first experiment, we take a memory
checkpoint right after process finished its work and built the result; in the second, right after the input
document is loaded in memory.

In the first experiment, the SeqString representation did not complete because of its quadratic behav-
ior during suffix extraction. At the time when we take the memory measurement, the document is fully
fragmented and each character is boxed in a SeqChar or SeqSubstring object. Since the latter is larger,
the SeqChar representation is more compact than the SeqSubstring representation for this program. The
SeqChar scheme is also faster. The main reason of this is that suffix extraction does not perform allocation
whereas in the SeqSubstring representation, a suffix is obtained by creating a new SeqSubstring object.

"abed"
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To see how performance of XTATIC’s pattern matching over pcdata compares with performance of native
string manipulation, we handcoded a C* program that implements the behavior of the process example.
Instead of scanning each character of the input string, this program goes directly to the next substring
matching a+ and concatenates the intermediate substrings using C*s StringBuilder. This program com-
pletes in 60 ms and uses 3.5 Mb. This shows that XTATIC pays a heavy price for treating pcdata generically
and doing a lot of boxing and for forcing character for character traversal.

The results of the second experiment contrast with the first. Since addrbook does not pattern match
over pcdata, no fragmentation takes place, and we can benefit from a compact pcdata representation.
As expected, the SeqChar scheme proves to be substantially less efficient than the others. Observe that
SegSubstring is more memory efficient than SeqString even though SeqString objects are smaller. The
reason of this is that with SeqSubstring, we load all pcdata chunks into a single string buffer and avoid
creating a large number of string objects.

The approaches presented in this section are in no way exhaustive. We are planning to extend the XTATIC
pattern matching algorithm to experiment with several strategies to directly match strings and to compare
these with the native .NET regular expression approach.

6 Calling Hell From Heaven

The homogeneous translation scheme raises some issues related to calls between XTATIC and C*. One is
static in nature and is concerned with overloaded methods whose signatures are different in XTATIC but
are mapped to indistinguishable C* signatures. Another is a dynamic issue addressing efficient retrieval of
XTATIC values from homogeneous C* containers. We consider these issues in turn.

6.1 Method Overloading

It is natural for XTATIC to extend Cf method overloading to support method signatures that contain regular
types. This conflicts somewhat with our homogeneous translation scheme, which would translate all such
types to Seq, possibly resulting in shortage of signatures that could differentiate the original methods.

We resolve this problem by generating new names for all methods having arguments of types more
precise than Seq (or, equivalently, [[any]]). (The renaming scheme, however, has to take into account
method signatures so that, e.g., an overriding method receives the same modified name as the method it
overrides). As it follows, this name mangling is not applied to methods whose regular type arguments are
all of class Seq—this is the case that can be handled by C* overloading itself.

Similar treatment, for identical safety reasons, is applied to class fields.

This approach fits well with the needs of separate compilation, when a pre-compiled XTATIC library is
to be used for programming larger applications, either using XTATIC or pure C*:

e In addition to translating X TATIC code to C¥ our compiler also preserves in a separate structure signa-
tures of methods with regular argument types.* Then, an XTATIC library consists of this information
together with an assembly generated by a C* compiler.

e When an XTATIC program is compiled against the library, the preserved signature information is used
to resolve overloaded method calls into appropriate mangled method names.

e A C* program compiled against the XTATIC library is expected to refer only to non-mangled method
names,? that is method names with regular type arguments at most as precise as Seq.

4Currently this structure is a separate file, but we explore if the corresponding information can be stored directly in .NET
assemblies.

5Technically, it is possible to violate safety by finding out the precise mangled names of methods. We are not aware, however,
about protection for mangled methods more substantial than security through obscurity.
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Consequently, if a creator of an XTATIC library needs to expose to pure C* code a method operating
on values of a regular type, say [[Person]], he needs to explicitly create a method accepting Seq values,
casting them to [[Person]], and then performing the intended functionality.

The latter scenario can be contrasted with an entirely different (hypothetical) support for method over-
loading that would translate a method with regular type arguments to a method with Seq arguments,
automatically generating appropriate casting code. We believe that our simpler solution, by exposing to the
programmer need to perform potentially expensive cast operations, can result in better program designs, as
well as more customized error reporting and recovery.

6.2 Fast Downcasting

Part of the appeal of XTATIC is that it allows programmers to use familiar C* libraries to store and manipulate
XML values; in particular, XML values can be stored in generic collections such as Hashtable and Stack.
However, extracting values from such containers requires a downcast from object to the intended type of the
value. In pure C* this operation incurs only a small time overhead, but in XTATIC, downcasting to a regular
type may involve an expensive structural traversal of the entire value. To avoid this overhead, we need a way
to stamp sequence values with a representation of their type and perform a run-time type comparison rather
than full re-validation during downcasting. Our design places this stamping under programmer control.

We begin by extending the source language with a stamping construct, written <[[T]]1>e (“stamp e with
regular type T”). An expression of this form is well typed if e has static type T; in this case, the result
type of the whole expression is object. At run-time, stamped sequences are represented by objects of class
StampedSeq, with two fields: stamp, of type Typestamp, and contents, of type Seq. (Giving stamped values
type object ensures that, at run-time, such values will never appear as part of other sequences. This makes
sequence operations such as concatenation, normalization, and prefix extraction simpler and more efficient.)

For each regular type T appearing in a stamp or cast expression in the program, the compiler generates
initialization code that hashes T type to an object of class Typestamp.

A cast expression of the form ([[T]])e is executed by first checking whether the value of e has class
StampedSeq; if so, it extracts the stamp, checks whether it is identical to the hash of T, and returns the
sequence stored in the contents field of the StampedSeq object; if this fails, it falls back to the general
pattern-matching algorithm, which dynamically re-validates the value.

A small experiment demonstrates the benefits of type-stamping. Consider an obfuscated program for
reversing sequences belonging to the type APers* introduced in Section 2. We traverse the sequence and
put each element in a C* queue. Then we dequeue one element at a time, cast it to APers, and add it to the
result. We ran this program on two XML documents, each containing 30,000 APers elements. In the first
document, each APers element has exactly one email child, in the second, twenty. For each document we
tried two versions of the program: one with type-stamping, and one without.

without type-stamping | with type-stamping
1 email 33 ms 28 ms
20 emails 89 ms 28 ms

On the document with single emails, type stamping yields only a small performance improvement, since
the overhead of adding and checking the type stamps is roughly equivalent to the cost of pattern-matching a
small APers element. In the other case, the benefits of type-stamping are clear—the type-stamping version
of the program is three times faster.

In this design, the burden of type stamping is placed on the programmer. We have experimented with
alternative designs in which stamping is performed silently—either by adding a stamp whenever a sequence
value is upcast to type object or by including a type stamp in every sequence object. However, we have not
found a design in which the performance costs of stamping and stamp checking seem acceptably predictable.
The difficulty is that there are infinitely many equivalent representations of the static type of a given sequence
value. Because the process of stamping is invisible, the programmer has no way of predicting which of these
representations will actually appear in the stamp. Thus, rather than the simple syntactic-identity check
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used above, we must ensure that any representation will produce the same effect—i.e., we must perform full
equivalence checking between stamps at run time. Indeed, to avoid requiring the programmer to calculate
the minimal types of sequence values (because only this type will satisfy an equivalence check), we would
need to perform full subtype testing at run time. This is problematic, since—although common cases of
subtype checking for regular types can be optimized sufficiently to make the compiler’s front end acceptably
fast in practice [16]—in general subtype testing can take time exponential in the size of the types. Such a
potentially costly operation should not be applied automatically.

7 Measurements

This section describes performance measurements comparing XTATIC with some other XML processing
systems. Our goal in gathering these numbers has been to verify that our current implementation gives
reasonable performance on a range of tasks and datasets, rather than to draw detailed conclusions about
relative speeds of the different systems. (Differences in implementation platforms and languages, XML
processing styles, etc. make the latter task well nigh impossible!)

Our tests were executed on a 2GHz Pentium 4 with 512MB of RAM running Windows XP. The XTATIC
and DOM experiments were executed on Microsoft .NET version 1.1. The CDUCE interpreter (CVS version
of November 25th, 2003) was compiled natively using ocamlopt 3.07+2. QI1zX/OPEN and Xalan XSLTC
were executed on SUN JAVA version 1.4.2. Since this paper is concerned with run-time data structures,
our measurements do not include static costs of typechecking and compilation. Also, since the current
implementation of XTATIC’s XML parser is inefficient and does not reveal much information about the
performance of our data model, we factor out parsing and loading of input XML documents from our analysis.
Each measurement was obtained by running a program with given parameters ten times and averaging the
results. We selected sufficiently large input documents to ensure low variance of time measurements and
to make the overhead of just-in-time compilation negligible. The XTATIC programs were compiled using the
hybrid pcdata encoding described in Section 5 and the lazy append with lazy normalization policy described
in Section 4.

We start by comparing XTATIC with the Q1zX/OPEN [5] implementation of XQUERY. Our test is a small
query named shake that counts the number of distinct words in the complete Shakespeare plays, represented
by a collection of XML documents with combined size of 8Mb.

shake
XTATIC 7,500 ms
Q1zx/OPEN | 3,200 ms

The core of the shake implementation in XQUERY is a call to a function tokenize that splits a chunk of
character data into a collection of white-space-separated words. In XTATIC, this is implemented by a generic
pattern matching statement that extracts the leading word or white space, processes it, and proceeds to
handle the remainder of the pcdata. Each time, this remainder is boxed into a SeqSubstring object, only
to be immediately unboxed during the next iteration of the loop. We believe this superfluous manipulation
is the main reason why XTATIC is more than twice slower than Q1zx/OPEN in this example.

We also implemented several XQUERY examples from the XMark suite [31], and ran them on an 11MB
data file generated by XMark (at “factor 0.1”). XTATIC substantially outperforms Qizx/OPEN on all of
these benchmarks—by 500 times on q01, by 700 times on q02, by six times on q02, and by over a thousand
times on q08. This huge discrepancy appears to be a consequence of two factors. Firstly, Qizx/OPEN,
unlike its commercial counterpart, does not use indexing, which for examples such as q01 and q02 can
make a dramatic performance improvement. Secondly, we are translating high-level XQUERY programs into
low-level XTATIC programs—in effect, performing manual query optimization. This makes a comparison
between the two systems problematic, since the result does not provide much insight about the underlying
representations.

Next, we compare XTATIC with two XSLT implementations: .NET XSLT and Xalan XSLTC. The
former is part of the standard CF library; the latter is an XSLT compiler that generates a JAVA class file
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from a given XSLT template.

We implemented several transformations from the XSLTMark benchmark suite [3]. The backwards
program traverses the input document and reverses every element sequence; identity copies the input
document; dbonerow searches a database of person records for a particular entry, and reverser reads a
PCDATA fragment, splits it into words, and outputs a new PCDATA fragment in which the words are reversed.
The first three programs are run on a 2MB XML document containing 10,000 top-level elements; the last
program is executed on a small text fragment.

backwards | identity | dbonerow | reverser
XTATIC 450 ms 450 ms 13 ms 2.5 ms
.NET XSLT 2,500 ms 750 ms 300 ms 9 ms
Xalan XSLTC | 2,200 ms 250 ms 90 ms 0.5 ms

XTATIC exhibits equivalent speed for backwards and identity since the cost of reversing is approximately
equal to the cost of copying a sequence in the presence of lazy concatenation. The corresponding XSLT
programs behave differently since backwards is implemented by copying and sorting every sequence according
to the position of the elements. The XSLT implementations are relatively efficient on identity. This may
be partially due to the fact that they use a much more compact read-only memory representation of XML
documents. XTATIC is substantially slower than Xalan XSLTC on the pcdata-intensive reverser example.
We believe the reason for this is, as in the case of shake in the comparison with Q1zx/OPEN, the overhead of
our pcdata implementation for performing text traversal. Conversely, XTATIC is much faster on dbonerow.
As with Q1zx/OPEN, this can be explained by the difference in the level of programming detail—a single
XPATH line in the XSLTC program corresponds to a low-level XTATIC program that specifies how to search
the input document efficiently.

In the next pair of experiments, we compare XTATIC with CDUCE [1] on two programs: addrbook
and split. The first of these was introduced in Section 2 (the CDUCE version was coded to mimick the
XTATIC version, i.e. we did not use CDUCE’s higher-level transform primitive); it is run on a 25MB data
file containing 250,000 APers elements. The second program traverses a 5SMB XML document containing
information about people and sorts the children of each person according to gender.

split | addrbook
XTATIC | 950 ms | 1,050 ms
CDUCE | 650 ms | 1,300 ms

Although it is difficult to compare programs executed in different run-time frameworks and written in different
source languages, we can say that, to a rough first approximation, XTATIC and CDUCE exhibit comparable
performance. An important advantage of CDUCE is a very memory-efficient representation of sequences.
This is compensated by the fact that XTATIC programs are (just-in-time) compiled while CDUCE programs
are interpreted.

The next experiment compares XTATIC with XACT [24]. We use two programs that are part of the XACT
distribution—recipe processes a database of recipes and outputs its HTML presentation; sortedaddrbook
is a version of the address book program introduced in Section 2 that sorts the output entries. We ran
recipe on a file containing 525 recipes and sortedaddrbook on a 10,000 entry address book."

recipe sortedaddrbook
XTATIC 250 ms 1,600 ms
XACT 60,000 ms 10,000 ms

For both programs XTATIC is substantially faster. As with XQUERY, this comparison is not precise because of
a mismatch between XML processing mechanisms of XTATIC and XACT. In particular, the large discrepancy
in the case of recipe can be partly attributed to the fact that its style of processing in which the whole

6Because of problems installing XAcT under Windows, unlike the other experiments, comparisons with XACT were executed
on a 1GHz Pentium IIT with 256MB of RAM running Linux.
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document is traversed and completely rebuilt in a different form is foreign to the relatively high level XML
manipulation primitives of XACT but is quite natural to the relatively low level constructs of XTATIC.

The last experiment compares XTATIC with a C! program using DOM and the .NET XPATH library,
again using the addrbook example on the 25MB input file. The C* program employs XPATH to extract all
the APers elements with tel children, destructively removes their email children, and returns the obtained
result.

addrbook
XTATIC 1,050 ms
DOM/Xpath | 5,100 ms

This experiment confirms that DOM is not very well-suited for the kind of functional manipulation of
sequences prevalent in XTATIC. The DOM data model is geared for destructive modification and random
access traversal of elements and, as a result, is much more heavyweight.

8 Related Work

We have concentrated here on the runtime representation issues that we addressed while building an im-
plementation of XTATIC that is both efficient and tightly integrated with C¥. Other aspects of the X TATIC
design and implementation are described in several companion papers—one surveying the most significant
issues faced during the design of the language [8], another presenting the core language design, integrating
the object and tree data models and establishing basic soundness results [9], and the third proposing a
technique for compiling regular patterns based on matching automata [25].

There is considerable current research and development activity aimed at providing convenient support for
XML processing in both general-purpose and domain-specific languages. In the latter category, XQUERY [39]
and XSLT [37] are special-purpose XML processing languages specified by W3C that have strong industrial
support, including a variety of implementations and wide user base. In the former, the CDUCE language
of Benzaken, Castagna, and Frisch [7, 1] generalizes XDUCE’s type system with intersection and function
types. The XEN language of Meijer, Schulte, and Bierman [27, 28] is a proposal to significantly modify the
core design of C* in order to integrate support for objects, relations, and XML (in particular, XML itself
simply becomes a syntax for serialized object instances). XACT [24, 2] extends JAvA with XML processing,
proposing an elegant programming idiom: the creation of XML values is done using XML templates, which
are immutable first-class structures representing XML with named gaps that may be filled to obtain ordinary
XML trees. XJ [12] is another extension of JAvA for native XML processing that uses W3C Schema as a
type system and XPATH as a navigation language for XML. XOBE [23] is a source to source compiler for
an extension of JAVA that, from language design point of view, it is very similar to XTATIC. SCALA is a
developing general-purpose web services language that compiles into JAVA bytecode; it is currently being
extended with XML support [4].

So far, most of the above projects have concentrated on developing basic language designs and there is
relatively little published work on serious implementations. (Even for XQUERY and XSLT, we have been
unable to find detailed descriptions of their run-time representations.) We summarize here the available
information.

Considerable effort, briefly sketched in [1], has been put into making the CDUCE’s OCAML-based in-
terpreter efficient. They address similar issues of text and tree representations and use similar solutions.
CDUuCE’s user-visible datatype for strings is also the character list, and they also implement its optimized
alternatives—the one described in the paper resembles our SeqSubstring. CDUCE uses lazy list concatena-
tion, but apparently only with eager normalization. Another difference is the object-oriented flavor of our
representations.

XAcCT’s implementation, developed independently and in parallel with XTATIC but driven by similar
needs (supporting efficient sharing, etc.) and targeting a similar (object-oriented) runtime environment, has
strong similarities to ours; in particular, lazy data structures are used to support efficient gap plugging.
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Our preliminary performance measurements may be viewed as validating the representation choices of both
implementations. XTATIC’s special treatment of pcdata (Section 5) does not appear to be used in XACT.

The current implementations of XOBE and XJ are based on DOM, although the designs are amenable
to alternative back-ends.

Kay [21] describes the implementation of Version 6.1 of his XSLT processor Saxon. The processor is
implemented in JAVA and, like to our approach, does not rely on a pre-existing JAvA DOM library for XML
data representation, since DOM is again too heavyweight for the task at hand: e.g. it carries information
unnecessary for XPATH and XSLT (like entity nodes) and supports updates. Saxon comes with two variants
of run time structures. One is object-oriented and is similar in spirit to ours. Another represents tree
information as arrays of integers, creating node objects only on demand and destroying them after use. This
model is reportedly more memory efficient and quicker to build, at the cost of slightly slower tree navigation.
Overall, it appears to perform better and is provided as the default in Saxon.

In the broader context of functional language implementations, efficient support for list (and string)
concatenation has long been recognized as an important issue. An early paper by Morris, Schmidt and
Wadler [29] describes a technique similar to our eager normalization in their string processing language
Poplar. Sleep and Holmstrom [32] propose a modification to a lazy evaluator that corresponds to our lazy
normalization. Keller [22] suggests using a lazy representation without normalization at all, which behaves
similarly to database B-trees, but without balancing. We are not aware of prior studies comparing the lazy
and eager alternatives, as we have done here.

More recently, the algorithmic problem of efficient representation for lists with concatenation has been
studied in detail by Kaplan, Tarjan and Okasaki [18, 19, 20, 30]. They describe catenable steques, which
provide all the functionality required by XTATIC pattern-matching algorithms with operations that run in
constant amortized time in the presence of sharing. We opted for the simpler representations described
here out of concern for excessive constant factors in running time arising from the complexity of their data
structures.

Another line of work, started by Hughes [17] continued by Wadler [38], and more recently Voigtlander [36],
considers how certain uses of list concatenation (and similar operations) in an applicative program can be
eliminated by a systematic program transformation, sometimes resulting in improved asymptotic running
times. In particular, these techniques capture the well-known transformation from the quadratic to the linear
version of the reverse function. It is not clear, however, whether the techniques are applicable outside the
pure functional language setting: e.g., they transform a recursive function f that uses append to a function f’
that uses only list construction, while in our setting problematic uses of append often occur inside imperative
loops.

Prolog’s difference lists [33] is a logic programming solution to constant time list concatenation. Using
this technique requires transforming programs operating on regular lists into programs operating on differ-
ence lists. This is not always possible. Marriott and Sgndergaard [26] introduce a dataflow analysis that
determines whether such transformation is achievable and define the automatic transformation algorithm.
We leave a more detailed comparison of our lazy concatenation approach and the difference list approach
for future work.

9 Future Work

We have written a number of small application programs in XTATIC, one of which is in regular use for
generating the Caml Weekly News (see http://sardes.inrialpes.fr/"aschmitt/cwn/). In the coming
months, we plan to use XTATIC for some more ambitious applications, to stress-test both the language design
and the implementation.

A pragmatically important area for future exploration is the extension of pattern matching with XPATH-
like constructs. Some preliminary results on translating a “downward axis” fragment of XPATH into regular
patterns are reported in [10].
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