
XML Goes Native:

Run-time Representations for Xtatic

Vladimir Gapeyev, Michael Y. Levin, Benjamin C. Pierce, and Alan Schmitt

University of Pennsylvania

Abstract. Xtatic is a lightweight extension of C] offering native sup-
port for statically typed XML processing. XML trees are built-in values
in Xtatic, and static analysis of the trees manipulated by programs is
part of the ordinary job of the typechecker. “Tree grep” pattern match-
ing is used to investigate and transform XML trees. Xtatic’s surface
syntax and type system are tightly integrated with those of C]. Beneath
the hood, however, an implementation of Xtatic must address a num-
ber of issues common to any language supporting a declarative style of
XML processing (e.g., XQuery, XSLT, XDuce, CDuce, Xact, Xen,
etc.). In particular, it must provide representations for XML tags, trees,
and textual data that use memory efficiently, support efficient pattern
matching, allow maximal sharing of common substructures, and permit
separate compilation. We analyze these representation choices in detail
and describe the solutions used by the Xtatic compiler.

1 Introduction

Xtatic inherits its key features from XDuce [1, 2], a domain-specific language
for statically typed XML processing. These features include XML trees as built-
in values, a type system based on regular types (closely related to popular schema
languages such as DTD and XML-Schema) for static typechecking of computa-
tions involving XML, and a powerful form of pattern matching called regular

patterns. The goals of the Xtatic project are to bring these technologies to a
wide audience by integrating them with a mainstream object-oriented language
and to demonstrate an implementation with good performance. We use C] as
the host language, but our results should also be applicable in a Java setting.

At the source level, the integration of XML trees with the object-oriented
data model of C] is accomplished by two steps. First, the subtype hierarchy
of tree types from XDuce is grafted into the C] class hierarchy by making all
regular types be subtypes of a special class Seq. This allows XML trees to be
passed to generic library facilities such as collection classes, stored in fields of
objects, etc. Conversely, the roles of tree labels and their types from XDuce
are played by objects and classes in Xtatic; XML trees are represented using
objects from a special Tag class as labels.

Subtyping in Xtatic subsumes both the object-oriented subclass relation
and the richer subtype relation of regular types. XDuce’s simple “semantic”
definition of subtyping (sans inference rules) extends naturally to Xtatic’s

object-labeled trees and classes. The combined data model and type system,
dubbed regular object types, have been formalized in [3]. Algorithms for checking
subtyping and inferring types for variables bound in patterns can be adapted
straightforwardly from those of XDuce ([2] and [4]).

Xtatic’s tree construction and pattern matching primitives eschew all forms
of destructive update—instead, the language promotes a declarative style of tree
processing, in which values and subtrees are extracted from existing trees and
used to construct entirely new trees. This style is attractive from many points of
view: it is easy to reason about (no need to worry about aliasing), it integrates
smoothly with other language features such as threads, and it allows rich forms
of subtyping that would be unsound in the presence of update. Many other high-
level XML processing languages, including XSLT [5], XQuery [6], CDuce [7],
and Xact [8], have made the same choice, for similar reasons. However, the
declarative style makes some significant demands on the implementation, since
it involves a great deal of replicated substructure that must be shared to achieve
acceptable efficiency.

Our implementation is based on a source to source compiler from Xtatic
to C]. One major function of this compiler is to translate the high-level pat-
tern matching statements of Xtatic into low-level C] code that is efficient and
compact. A previous paper [9] addressed this issue by introducing a formal-
ism of matching automata and using it to define both backtracking and non-
backtracking compilation algorithms for regular patterns.

The present paper addresses the lower-level issue of how to compile XML val-
ues and value-constructing primitives into appropriate run-time representations.
We explore several alternative representation choices and analyze them with re-
spect to their support for efficient pattern matching, common Xtatic program-
ming idioms, and safe integration with foreign XML representations such as the
standard Document Object Model (DOM). Our contributions may be summa-
rized as follows: (1) a data structure for sequences of XML trees that supports
efficient repeated concatenation on both ends of a sequence, equipped with a
fast algorithm for calculating the subsequences bound to pattern variables; (2) a
compact and efficient hybrid representation of textual data (PCDATA) that
supports regular pattern matching over character sequences (i.e., a statically
typed form of string grep); (3) a type-tagging scheme allowing fast dynamic
revalidation of XML values whose static types have been lost, e.g., by upcasting
to object for storage in a generic collection; and (4) a proxy scheme allowing
foreign XML representations such as DOM to be manipulated by Xtatic pro-
grams without first translating them to our representation. (Because of space
constraints, we present only the first here; details of the others can be found
in an extended version of the paper [10].) We have implemented these designs
and measured their performance both against some natural variants and against
implementations of other XML processing languages. The results show that a
declarative statically typed embedding of XML transformation operations into
a stock object-oriented language can be competitive with existing mainstream
XML processing frameworks.

The next section briefly reviews the Xtatic language design. The heart of the
paper is Section 3, which describes and evaluates our representations for trees.
Section 4 summarizes results of benchmarking programs compiled by Xtatic
against other XML processing tools. Section 5 discusses related work.

2 Language Overview

This section sketches just the aspects of the Xtatic design that directly impact
runtime representation issues. More details can be found in [11, 3].

Consider the following document fragment—a sequence of two entries from
an address book—given here side-by side in XML and Xtatic concrete syntax.

<person>

<name>Haruo Hosoya</name>

<email>hahasoya</email>

</person>

<person>

<name>Jerome Vouillon</name>

<tel>123</tel>

</person>

[[<person>

<name>‘Haruo Hosoya‘</name>

<email>‘hahasoya‘</email>

</person>

<person>

<name>‘Jerome Vouillon‘</name>

<tel>‘123‘</tel>

</person>]]

Xtatic’s syntax for this document is very close to XML, the only differences
being the outer double brackets, which segregate the world of XML values and
types from the regular syntax of C], and backquotes, which distinguish PCDATA
(XML textual data) from arbitrary Xtatic expressions yielding XML elements.

One possible type for the above value is a list of persons, each containing a
name, an optional phone number, and a list of emails:

<person> <name>pcdata</> <tel>pcdata</>? <email>pcdata</>* </person>*

The type constructor “?” marks optional components, and “*” marks repeated
sub-sequences. Xtatic also includes the type constructor “|” for non-disjoint
unions of types. The shorthand </> is a closing bracket matching an arbitrarily
named opening bracket. Every regular type in Xtatic denotes a set of sequences.
Concatenation of sequences (and sequence types) is written either as simple
juxtaposition or (for readability) with a comma. The constructors “*” and “?”
bind stronger than “,”, which is stronger than “|”. The type “pcdata” describes
sequences of characters.

Types can be given names that may be mentioned in other types. E.g., our
address book could be given the type APers* in the presence of definitions

regtype Name [[<name>pcdata</>]]

regtype Tel [[<tel>pcdata</>]]

regtype Email [[<email>pcdata</>]]

regtype TPers [[<person> Name Tel </>]]

regtype APers [[<person> Name Tel? Email* </>]]

A regular pattern is just a regular type decorated with variable binders. A
value v can be matched against a pattern p, binding variables occurring in p

to the corresponding parts of v, if v belongs to the language denoted by the
regular type obtained from p by stripping variable binders. For matching against
multiple patterns, Xtatic provides a match construct that is similar to the
switch statement of C] and the match expression of functional languages such
as ML. For example, the following program extracts a sequence of type TPers

from a sequence of type APers, removing persons that do not have a phone
number and eliding emails.

static [[TPers*]] addrbook ([[APers*]] ps) {

[[TPers*]] res = [[]]; bool cont = true;

while (cont) {

match (ps) {

case [[<person> <name>any</> n, <tel>any</> t, any </>, any rest]]:

res = [[res, <person> n, t </>]]; ps = rest;

case [[<person> any </person>, any rest]]: ps = rest;

case [[]]: cont = false; } }

return res; }

The integration of XML sequences with C] objects is accomplished in two
steps. First, Xtatic introduces a special class named Seq that is a supertype of
every XML type—i.e., every XML value may be regarded as an object this class.
The regular type [[any]] is equivalent to the class type Seq. Second, Xtatic
allows any object—not just an XML tag—to be the label of an element. For in-
stance, we can write <(1)/> for the singleton sequence labeled with the integer 1
(the parentheses distinguish an Xtatic expression from an XML tag); similarly,
we can recursively define the type any as any = [[<(object)>any</>*]].

We close this overview by describing how Xtatic views textual data. For-
mally, the type pcdata is defined by associating each character with a singleton
class that is a subclass of the C] char classand taking pcdata to be an abbrevia-
tion for <(char)/>*. In the concrete syntax, we write ‘foo‘ for the sequence type
<(charf)/><(charo)/><(charo)/> and for the corresponding sequence value.
This treatment of character data has two advantages. First, there is no need to in-
troduce a special concatenation operator for pcdata, as the sequence ‘ab‘,‘cd‘
is identical to ‘abcd‘. This can also be seen at the type level:

pcdata,pcdata = <(char)/>*,<(char)/>* = <(char)/>* = pcdata

Equating pcdata with string would not allow such a seamless integration of
the string concatenation operator with the sequence operator. Second, single-
ton character classes can be used in pattern matching to obtain functionality
very similar to string regular expressions [12]. For instance, the Xtatic type
‘a‘,pcdata,‘b‘ corresponds to the regular expression a.*b.

3 Representing Trees

We now turn to the design of efficient representations for XML trees. First, we
design a tree representation that supports Xtatic’s view of trees as shared and

SeqEmpty

Seq next
Seq contents

SeqObject

Object label
Seq next
Seq contents

SeqInt

int label
Seq next
Seq contents

SeqChar

char label

SeqAppend

Seq fst
Seq snd

Kind kind

Seq

Fig. 1. Classes used for representing sequences.

immutable structures (Section 3.1). The main constraint on the design is that the
programming style favored by Xtatic involves a great deal of appending (and
consing) of sequences. To avoid too much re-copying of sub-sequences, we en-
hance the naive design to do this appending lazily (Section 3.2). Finally, Xtatic
needs to inter-operate with other XML representations available in .NET, in par-
ticular DOM. In the full version of this paper [10], we show how DOM structures
can masquerade as instances of our Xtatic trees in a type-safe manner.

3.1 Simple Sequences

Every Xtatic value with a regular type is a sequence of trees. Xtatic’s pattern-
matching algorithms, based on tree automata, require access to the label of the
first tree in the sequence, its children, and its following sibling. This access style
is naturally supported by a simple singly linked structure.

Figure 1 summarizes the classes implementing sequences. Seq is an abstract
superclass representing all sequences regardless of their form. As the exact class
of a Seq object is often needed by Xtatic-generated code, it is stored as an enu-
meration value in the field kind of every Seq object. Maintaining this field allows
us to use a switch statement instead of a chain of if-then-else statements
relying on the “is” operator to test class membership.

The subclass SeqObject includes two fields, next and contents, that point
to the rest of the sequence—the right sibling—and the first child of the node.
The field label holds a C] object. Empty sequences are represented using a
single, statically allocated object of class SeqEmpty. (Using null would require
an extra test before switching on the kind of the sequence—in effect, optimizing
the empty-sequence case instead of the more common non-empty case.)

In principle, the classes SeqEmpty and SeqObject can encode all Xtatic
trees. But to avoid downcasting when dealing with labels containing primitive
values (most critically, characters), we also include specialized classes SeqBool,
SeqInt, SeqChar, etc. for storing values of base types.

XML data is encoded using SeqObjects that contain, in their label field,
instances of the special class Tag that represent XML tags. A tag object has a
string field for the tag’s local name and a field for its namespace URI. We use
memoisation (interning) to ensure that there is a single run-time object for each
known tag, making tag matching a simple matter of physical object comparison.

Seq lazy_norm(Seq node) {

switch (node.kind) {

case Append: return norm_rec(node.fst, node.snd);

default: return node; } }

Seq norm_rec(Seq node, Seq acc) {

switch (node.kind) {

case Append: return norm_rec(node.fst, new SeqAppend(node.snd, acc));

case Object:

switch node.next.kind {

case Empty: return new SeqObject(node.label, node.contents, acc);

default: return new SeqObject(node.label, node.contents,

new SeqAppend(node.next, acc)); }

/* similar cases for SeqInt, SeqBool, ... */ } }

Fig. 2. Lazy Normalization Algorithm.

Pattern matching of labels is implemented as follows. The object (or value)
in a label matches a label pattern when: the pattern is a class C and the object
belongs to a subclass of C, the pattern is a tag and the object is physically equal
to the tag, the pattern is a base value v and the label holds a value equal to v.

3.2 Lazy Sequences

In the programming style encouraged by Xtatic, sequence concatenation is a
pervasive operation. Unfortunately, the run-time representation outlined so far
renders concatenation linear in the size of the first sequence, leading to unac-
ceptable performance when elements are repeatedly appended at the end of a
sequence, as in the assignment of res in the addrbook example in Section 2.

This observation naturally suggests a lazy approach to concatenation: we
introduce a new kind of sequence node, SeqAppend, that contains two fields,
fst and snd. The concatenation of (non-empty) sequences Seq1 and Seq2 is
now compiled into the constant time creation of a SeqAppend node, with fst

pointing to Seq1, and snd to Seq2. We preserve the invariant that neither field
of a SeqAppend node points to the empty sequence.

To support pattern matching, we need a normalization operation that ex-
poses at least the first element of a sequence. The simplest approach, eager

normalization, just transforms the whole sequence so that it does not contain
any top-level SeqAppend nodes (children of the nodes in the sequence are not
normalized). However, there are cases when it is not necessary to normalize the
whole sequence, e.g. when a program inspects only the first few elements of
a long list. To this end we introduce a lazy normalization algorithm, given in
pseudocode form in Figure 2.

The algorithm fetches the first concrete element—that is, the leftmost non-
SeqAppend node of the tree—copies it (so that the contexts that possibly share
it are not affected), and makes it the first element of a new sequence consisting of

SeqAppend6

SeqAppend5 Seq3

SeqObject4 Seq2

SeqAppend′
5

SeqAppend′
4

SeqObject′
4

Seq1

SeqAppend5 Seq3

SeqObject4 Seq2

SeqAppend′
5

SeqObject′
4

SeqEmpty1

SeqAppend6

(a) (b)

Fig. 3. Lazy normalization of lazy sequences. In (a), the leftmost concrete element has
a right sibling; in (b) it does not. Dotted pointers are created during normalization.

(copies of) the traversed SeqAppend nodes arranged into an equivalent, but right-
skewed tree. Figure 3 illustrates this algorithm, normalizing the sequence starting
at node SeqAppend6 to the equivalent sequence starting at node SeqObject′

4
.

Since parts of sequence values are often shared, it is not uncommon to pro-
cess (and normalize) the same sequence several times. As described so far, the
normalization algorithm returns a new sequence, e.g. SeqObject′

4, but leaves the
original lazy sequence unchanged. To avoid redoing the same work during sub-
sequent normalizations of the same sequence, we also modify in-place the root
SeqAppend node, setting the snd field to null (indicating that this SeqAppend

has been normalized), and the fst field to the result of normalization:

Seq lazy_norm_in_place(Seq node) {

switch (node.kind) {

case Append:

if (node.snd == null) return node.fst;

node.fst = norm_rec(node.fst, node.snd); node.snd = null;

return node.fst;

default: return node; } }

Interestingly, this in-place modification is required for the correctness of bind-
ing of non-tail variables in patterns. The pattern matching algorithm [4] natu-
rally supports only those pattern variables that bind to tails of sequence values;
variables binding to non-tail sequences are handled by a trick. Namely, bind-
ing a non-tail variable x is accomplished in two stages. The first stage performs
pattern matching and—as it traverses the input sequence—sets auxiliary vari-
ables xb and xe to the beginning and end of the subsequence. The second stage
computes x from xb and xe by traversing the sequence beginning at xb and copy-
ing nodes until it reaches xe. In both stages, the program traverses the same
sequence, performing normalization along the way. In-place modification guar-
antees that during both traversals we will encounter physically the same concrete
nodes, and so, in the second stage, we are justified in detecting the end of the
subsequence by checking physical equality between the current node and xe.

Because of creation of fresh SeqAppend nodes, the lazy normalization algo-
rithm can allocate more memory than its eager counterpart. However, we can
show that this results in no more than a constant factor overhead. A node is said
to be a left node if it is pointed by the fst pointer of a SeqAppend. There are
two cases when the algorithm creates a new SeqAppend node: when it traverses
a left SeqAppend node, and when it reaches the leftmost concrete element. In
both cases, the newly created nodes are not left nodes and so will not lead to fur-
ther creation of SeqAppend nodes during subsequent normalizations. Hence, lazy
normalization allocates at most twice as much memory as eager normalization.

We now present some measurements quantifying the consequences of this
overhead on running time. The table below shows running times for two variants
of the phone book application from Section 2, executed on an address book of
250, 000 entries. (Our experimental setup is described below in Section 4.) The
first variant constructs the result as in Section 2, appending to the end. The
second variant constructs the result by by appending to the front:

res = [[<person> n, t </>, res]];

This variant favors the non-lazy tree representation from the previous subsection,
which serves as a baseline for our lazy optimizations. Since our implementation
recognizes prepending singleton sequences as a special case, no lazy structures
are created when the second program is executed, and, consequently all con-
catenation approaches behave the same. For the back-appending program, the
system runs out of memory using eager concatenation, while both lazy concate-
nation approaches perform reasonably well. Indeed, the performance of the lazy
representations for the back-appending program is within 10% of the perfor-
mance of the non-lazy representation for the front-appending program, which
favors such a representation.

eager concatenations eager normalization lazy normalization
back appending ∞ 1,050 ms 1,050 ms
front appending 950 ms 950 ms 950 ms

This comparison does not show any difference between the lazy and eager
normalization approaches. We have also compared performance of eager vs. lazy
normalization on the benchmarks discussed below in Section 4. Their perfor-
mance is always close, with slight advantage for one or the other depending on
workload. On the other hand, for programs that explore only part of a sequence,
lazy normalization can be arbitrarily faster, making it a clear winner overall.

Our experience suggests that, in common usage patterns, our representation
exhibits constant amortized time for all operations. It is possible, however, to
come up with scenarios where repeatedly accessing the first element of a sequence
may take linear time for each access. Consider the following program fragment:

[[any]] res1 = [[]]; [[any]] res2 = [[]];

while (true) {

res1 = [[res1, <a/>]]; res2 = [[res1,]];

match (res2) {

case [[<(Tag x)/>, any]]: ...use x... } }

Since the pattern matching expression extracts only the first element of res2,
only the top-level SeqAppend object of the sequence stored in res2 is modified
in-place during normalization. The SeqAppend object of the sequence stored
in res1 is not modified in-place, and, consequently, is completely renormalized
during each iteration of the loop.

Kaplan, Tarjan and Okasaki [13] describe catenable steques, which provide
all the functionality required by Xtatic pattern-matching algorithms with op-
erations that run in constant amortized time in the presence of sharing. We
have implemented their algorithms in C] and compared their performance with
that of our representation using the lazy normalization algorithm. The steque
implementation is slightly more compact—
on average it requires between 1.5 and 2
times less memory than our representation.
For the above tricky example, catenable ste-
ques are also fast, while Xtatic’s represen-
tation fails on sufficiently large sequences.

Steques Xtatic
n = 10,000 70 ms 6 ms
n = 20,000 140 ms 12 ms
n = 30,000 230 ms 19 ms
n = 40,000 325 ms 31 ms

For more common patterns of operations, our representation is more efficient.
The following table shows running times of a program that builds a sequence
by back-appending one element at a time and fully traverses the constructed
sequence. We ran the experiment for sequences of four different sizes. The imple-
mentation using catenable steques is significantly slower than our much simpler
representation because of the overhead arising from the complexity of the steque
data structures.

4 Measurements

This section describes performance measurements comparing Xtatic with some
other XML processing systems. Our goal in gathering these numbers has been to
verify that our current implementation gives reasonable performance on a range
of tasks and datasets, rather than to draw detailed conclusions about relative
speeds of the different systems. (Differences in implementation platforms and
languages, XML processing styles, etc. make the latter task well nigh impossible!)

Our tests were executed on a 2GHz Pentium 4 with 512MB of RAM running
Windows XP. The Xtatic and DOM experiments were executed on Microsoft
.NET version 1.1. The CDuce interpreter (CVS version of November 25th, 2003)
was compiled natively using ocamlopt 3.07+2. Qizx/Open and Xalan XSLTC
were executed on SUN Java version 1.4.2. Since this paper is concerned with
run-time data structures, our measurements do not include static costs of type-
checking and compilation. Also, since the current implementation of Xtatic’s
XML parser is inefficient and does not reveal much information about the per-
formance of our data model, we factor out parsing and loading of input XML
documents from our analysis. Each measurement was obtained by running a pro-
gram with given parameters ten times and averaging the results. We selected
sufficiently large input documents to ensure low variance of time measurements
and to make the overhead of just-in-time compilation negligible. The Xtatic

programs were compiled using the lazy append with lazy normalization policy
described in Section 3.

We start by comparing Xtatic with the Qizx/Open [14] implementation
of XQuery. Our test is a small query named shake that counts the number of
distinct words in the complete Shakespeare plays, represented by a collection of
XML documents with combined size of 8Mb. The core of the shake implemen-
tation in XQuery is a call to a function tokenize

that splits a chunk of character data into a col-
lection of white-space-separated words. In Xtatic,
this is implemented by a generic pattern matching

shake

Xtatic 7,500 ms
Qizx/Open 3,200 ms

statement that extracts the leading word or white space, processes it, and pro-
ceeds to handle the remainder of the pcdata. Each time, this remainder is boxed
into a SeqSubstring object, only to be immediately unboxed during the next it-
eration of the loop. We believe this superfluous manipulation is the main reason
why Xtatic is more than twice slower than Qizx/Open in this example.

We also implemented several XQuery examples from the XMark suite [15],
and ran them on an 11MB data file generated by XMark (at “factor 0.1”).
Xtatic substantially outperforms Qizx/Open on all of these benchmarks—by
500 times on q01, by 700 times on q02, by six times on q02, and by over a thou-
sand times on q08. This huge discrepancy appears to be a consequence of two
factors. Firstly, Qizx/Open, unlike its commercial counterpart, does not use
indexing, which for examples such as q01 and q02 can make a dramatic perfor-
mance improvement. Secondly, we are translating high-level XQuery programs
into low-level Xtatic programs—in effect, performing manual query optimiza-
tion. This makes a comparison between the two systems problematic, since the
result does not provide much insight about the underlying representations.

Next, we compare Xtatic with two XSLT implementations: .NET XSLT
and Xalan XSLTC. The former is part of the standard C] library; the latter is
an XSLT compiler that generates a Java class file from a given XSLT template.

We implemented several transformations from the XSLTMark benchmark
suite [16]. The backwards program traverses the input document and reverses
every element sequence; identity copies the input document; dbonerow searches
a database of person records for a particular entry, and reverser reads a PCDATA

fragment, splits it into words, and outputs a new PCDATA fragment in which the
words are reversed. The first three programs are run on a 2MB XML document
containing 10,000 top-level elements; the last program is executed on a small
text fragment.

backwards identity dbonerow reverser

Xtatic 450 ms 450 ms 13 ms 2.5 ms
.NET XSLT 2,500 ms 750 ms 300 ms 9 ms
Xalan XSLTC 2,200 ms 250 ms 90 ms 0.5 ms

Xtatic exhibits equivalent speed for backwards and identity since the
cost of reversing is approximately equal to the cost of copying a sequence in the
presence of lazy concatenation. The corresponding XSLT programs behave dif-
ferently since backwards is implemented by copying and sorting every sequence

according to the position of the elements. The XSLT implementations are rel-
atively efficient on identity. This may be partially due to the fact that they
use a much more compact read-only representation of XML documents. Xtatic
is substantially slower than Xalan XSLTC on the pcdata-intensive reverser

example. We believe the reason for this is, as in the case of shake in the com-
parison with Qizx/Open, the overhead of our pcdata implementation for per-
forming text traversal. Conversely, Xtatic is much faster on dbonerow. As with
Qizx/Open, this can be explained by the difference in the level of programming
detail—a single XPath line in the XSLTC program corresponds to a low-level
Xtatic program that specifies how to search the input document efficiently.

In the next pair of experiments, we com-
pare Xtatic with CDuce [7] on two pro-
grams: addrbook and split. The first of these
was introduced in Section 2 (the CDuce ver-

split addrbook

Xtatic 950 ms 1,050 ms
CDuce 650 ms 1,300 ms

sion was coded to mimick the Xtatic version, i.e. we did not use CDuce’s
higher-level transform primitive); it is run on a 25MB data file containing
250,000 APers elements. The second program traverses a 5MB XML document
containing information about people and sorts the children of each person ac-
cording to gender. Although it is difficult to compare programs executed in
different run-time frameworks and written in different source languages, we can
say that, to a rough first approximation, Xtatic and CDuce exhibit comparable
performance. An important advantage of CDuce is a very memory-efficient rep-
resentation of sequences. This is compensated by the fact that Xtatic programs
are (just-in-time) compiled while CDuce programs are interpreted.

The next experiment compares Xtatic with Xact [17]. We use two programs
that are part of the Xact distribution—recipe processes a database of recipes
and outputs its HTML presentation; sortedaddrbook is a version of the address
book program introduced in Section 2 that sorts the output entries. We ran
recipe on a file containing 525 recipes and sortedaddrbook on a 10,000 entry
address book.(Because of problems
installing Xact under Windows,
unlike the other experiments, com-
parisons with Xact were executed

recipe sortedaddrbook

Xtatic 250 ms 1,600 ms
Xact 60,000 ms 10,000 ms

on a 1GHz Pentium III with 256MB of RAM running Linux.) For both programs
Xtatic is substantially faster. As with XQuery, this comparison is not precise
because of a mismatch between XML processing mechanisms of Xtatic and
Xact. In particular, the large discrepancy in the case of recipe can be partly
attributed to the fact that its style of processing in which the whole document
is traversed and completely rebuilt in a different form is foreign to the relatively
high level XML manipulation primitives of Xact but is quite natural to the
relatively low level constructs of Xtatic.

The last experiment compares Xtatic with a
C] program using DOM and the .NET XPath
library, again using the addrbook example on
the 25MB input file. The C] program employs

addrbook

Xtatic 1,050 ms
DOM/Xpath 5,100 ms

XPath to extract all the APers elements with tel children, destructively re-
moves their email children, and returns the obtained result. This experiment
confirms that DOM is not very well-suited for the kind of functional manip-
ulation of sequences prevalent in Xtatic. The DOM data model is geared for
destructive modification and random access traversal of elements and, as a result,
is much more heavyweight.

5 Related Work

We have concentrated here on the runtime representation issues that we ad-
dressed while building an implementation of Xtatic that is both efficient and
tightly integrated with C]. Other aspects of the Xtatic design and implemen-
tation are described in several companion papers—one surveying the most sig-
nificant issues faced during the design of the language [11], another presenting
the core language design, integrating the object and tree data models and es-
tablishing basic soundness results [3], and the third proposing a technique for
compiling regular patterns based on matching automata [9].

There is considerable current research and development activity aimed at
providing convenient support for XML processing in both general-purpose and
domain-specific languages. In the latter category, XQuery [6] and XSLT [5] are
special-purpose XML processing languages specified by W3C that have strong
industrial support, including a variety of implementations and wide user base.
In the former, the CDuce language of Benzaken, Castagna, and Frisch [7] gen-
eralizes XDuce’s type system with intersection and function types. The Xen
language of Meijer, Schulte, and Bierman [18] is a proposal to significantly mod-
ify the core design of C] in order to integrate support for objects, relations, and
XML (in particular, XML itself simply becomes a syntax for serialized object in-
stances). Xact [17, 8] extends Java with XML processing, proposing an elegant
programming idiom: the creation of XML values is done using XML templates,
which are immutable first-class structures representing XML with named gaps
that may be filled to obtain ordinary XML trees. XJ [19] is another extension
of Java for native XML processing that uses W3C Schema as a type system
and XPath as a navigation language for XML. XOBE [20] is a source to source
compiler for an extension of Java that, from language design point of view,
is very similar to Xtatic. Scala is a developing general-purpose web services
language that compiles into Java bytecode; it is currently being extended with
XML support [21].

So far, most of the above projects have concentrated on developing basic lan-
guage designs; there is little published work on serious implementations. (Even
for XQuery and XSLT, we have been unable to find detailed descriptions of
their run-time representations.) We summarize here the available information.

Considerable effort, briefly sketched in [7], has been put into making the
CDuce’s OCaml-based interpreter efficient. They address similar issues of text
and tree representations and use similar solutions. CDuce’s user-visible datatype
for strings is also the character list, and they also implement its optimized

alternatives—the one described in the paper resembles our SeqSubstring. CDuce
uses lazy list concatenation, but apparently only with eager normalization. An-
other difference is the object-oriented flavor of our representations.

Xact’s implementation, developed independently and in parallel with Xtatic
but driven by similar needs (supporting efficient sharing, etc.) and targeting a
similar (object-oriented) runtime environment, has strong similarities to ours;
in particular, lazy data structures are used to support efficient gap plugging.
Our preliminary performance measurements may be viewed as validating the
representation choices of both implementations. Xtatic’s special treatment of
pcdata does not appear to be used in Xact.

The current implementations of XOBE and XJ are based on DOM, although
the designs are amenable to alternative back-ends.

Kay [22] describes the implementation of Version 6.1 of his XSLT processor
Saxon. The processor is implemented in Java and, like in our approach, does
not rely on a pre-existing Java DOM library for XML data representation, since
DOM is again too heavyweight for the task at hand: e.g. it carries information
unnecessary for XPath and XSLT (like entity nodes) and supports updates.
Saxon comes with two variants of run time structures. One is object-oriented
and is similar in spirit to ours. Another represents tree information as arrays of
integers, creating node objects only on demand and destroying them after use.
This model is reportedly more memory efficient and quicker to build, at the cost
of slightly slower tree navigation. Overall, it appears to perform better and is
provided as the default in Saxon.

In the broader context of functional language implementations, efficient sup-
port for list (and string) concatenation has long been recognized as an important
issue. An early paper by Morris, Schmidt and Wadler [23] describes a technique
similar to our eager normalization in their string processing language Poplar.
Sleep and Holmström [24] propose a modification to a lazy evaluator that corre-
sponds to our lazy normalization. Keller [25] suggests using a lazy representation
without normalization at all, which behaves similarly to database B-trees, but
without balancing. We are not aware of prior studies comparing the lazy and
eager alternatives, as we have done here.

More recently, the algorithmic problem of efficient representation for lists
with concatenation has been studied in detail by Kaplan, Tarjan and Okasaki [13].
They describe catenable steques which support constant amortized time sequence
operations. We opted for the simpler representations described here out of con-
cern for excessive constant factors in running time arising from the complexity
of their data structures (see Section 3.2.)

Another line of work, started by Hughes [26] and continued by Wadler [27]
and more recently Voigtlander [28] considers how certain uses of list concatena-
tion (and similar operations) in an applicative program can be eliminated by a
systematic program transformation, sometimes resulting in improved asymptotic
running times. In particular, these techniques capture the well-known transfor-
mation from the quadratic to the linear version of the reverse function. It is not
clear, however, whether the techniques are applicable outside the pure functional

language setting: e.g., they transform a recursive function f that uses append to
a function f ′ that uses only list construction, while in our setting problematic
uses of append often occur inside imperative loops.

Prolog’s difference lists [29] is a logic programming solution to constant time
list concatenation. Using this technique requires transforming programs oper-
ating on regular lists into programs operating on difference lists. This is not
always possible. Marriott and Søndergaard [30] introduce a dataflow analysis
that determines whether such transformation is achievable and define the au-
tomatic transformation algorithm. We leave a more detailed comparison of our
lazy concatenation approach and the difference list approach for future work.

Acknowledgements

Parts of the Xtatic compiler were implemented by Eijiro Sumii and Stephen
Tse. Conversations with Eijiro contributed many ideas to Xtatic and this paper.
We also thank Haruo Hosoya, Alain Frisch, Christian Kirkegaard, and Xavier
Franc for discussing various aspects of this work. Our work on Xtatic has been
supported by the National Science Foundation under Career grant CCR-9701826
and ITR CCR-0219945, and by gifts from Microsoft.

References

1. Hosoya, H., Pierce, B.C.: XDuce: A statically typed XML processing language.
ACM Transactions on Internet Technology 3 (2003) 117–148

2. Hosoya, H., Vouillon, J., Pierce, B.C.: Regular expression types for XML. In:
Proceedings of the International Conference on Functional Programming (ICFP).
(2000)

3. Gapeyev, V., Pierce, B.C.: Regular object types. In: European Conference on
Object-Oriented Programming (ECOOP), Darmstadt, Germany. (2003) A prelim-
inary version was presented at FOOL ’03.

4. Hosoya, H., Pierce, B.C.: Regular expression pattern matching. In: ACM
SIGPLAN–SIGACT Symposium on Principles of Programming Languages
(POPL), London, England. (2001) Full version in Journal of Functional Program-

ming, 13(6), Nov. 2003, pp. 961–1004.

5. W3C: XSL Transformations (XSLT) (1999) http://www.w3.org/TR/xslt.
6. : XQuery 1.0: An XML Query Language, W3C Working Draft (2004) http://www.

w3.org/TR/xquery/.

7. Benzaken, V., Castagna, G., Frisch, A.: CDuce: An XML-centric general-purpose
language. In: ACM SIGPLAN International Conference on Functional Program-
ming (ICFP), Uppsala, Sweden. (2003) 51–63

8. Christensen, A.S., Kirkegaard, C., Møller, A.: A runtime system for XML trans-
formations in Java. In Bellahsène, Z., Milo, T., Michael Rys, e.a., eds.: Database
and XML Technologies: International XML Database Symposium (XSym). Volume
3186 of Lecture Notes in Computer Science., Springer (2004) 143–157

9. Levin, M.Y.: Compiling regular patterns. In: ACM SIGPLAN International Con-
ference on Functional Programming (ICFP), Uppsala, Sweden. (2003)

10. Gapeyev, V., Levin, M.Y., Pierce, B.C., Schmitt, A.: XML goes native: Run-
time representations for Xtatic. Technical Report MS-CIS-04-23, University of
Pennsylvania (2004)

11. Gapeyev, V., Levin, M.Y., Pierce, B.C., Schmitt, A.: The Xtatic experience. Tech-
nical Report MS-CIS-04-24, University of Pennsylvania (2004)

12. Tabuchi, N., Sumii, E., Yonezawa, A.: Regular expression types for strings in a
text processing language. In den Bussche, J.V., Vianu, V., eds.: Proceedings of
Workshop on Types in Programming (TIP). (2002) 1–18

13. Kaplan, H., Okasaki, C., Tarjan, R.E.: Simple confluently persistent catenable
lists. SIAM Journal on Computing 30 (2000) 965–977

14. Franc, X.: Qizx. http://www.xfra.net/qizxopen (2003)
15. Schmidt, A.R., Waas, F., Kersten, M.L., Carey, M.J., Manolescu, I., Busse, R.:

XMark: A benchmark for XML data management. In: Proceedings of the Interna-
tional Conference on Very Large Data Bases (VLDB), Hong Kong, China (2002)
974–985 See also http://www.xml-benchmark.org/.

16. DataPower Technology, Inc.: XSLTMark. http://www.datapower.com/xml_

community/xsltmark.html (2001)
17. Kirkegaard, C., Møller, A., Schwartzbach, M.I.: Static analysis of XML transfor-

mations in Java. IEEE Transactions on Software Engineering 30 (2004) 181–192
18. Meijer, E., Schulte, W., Bierman, G.: Programming with circles, triangles and

rectangles. In: XML Conference and Exposition. (2003)
19. Harren, M., Raghavachari, B.M., Shmueli, O., Burke, M., Sarkar, V., Bordawekar,

R.: XJ: Integration of XML processing into Java. Technical Report rc23007, IBM
Research (2003)

20. Kempa, M., Linnemann, V.: On XML objects. In: Workshop on Programming
Language Technologies for XML (PLAN-X). (2003)

21. Emir, B.: Extending pattern matching with regular tree expressions for XML
processing in Scala. Diploma thesis, EPFL, Lausanne; http://lamp.epfl.ch/

~buraq (2003)
22. Kay, M.H.: Saxon: Anatomy of an xslt processor (2001) http://www-106.ibm.

com/developerworks/library/x-xslt2/.
23. Morris, J.H., Schmidt, E., Wadler, P.: Experience with an applicative string pro-

cessing language. In: ACM Symposium on Principles of Programming Languages
(POPL), Las Vegas, Nevada. (1980) 32–46

24. Sleep, M.R., Holmström, S.: A short note concerning lazy reduction rules for
append. Software Practice and Experience 12 (1982) 1082–4

25. Keller, R.M.: Divide and CONCer: Data structuring in applicative multiprocessing
systems. In: Proceedings of the 1980 ACM conference on LISP and functional
programming. (1980) 196–202

26. Hughes, J.: A novel representation of lists and its application to the function
“reverse”. Information Processing Letters 22 (1986) 141–144

27. Wadler, P.: The concatenate vanishes. Note, University of Glasgow (1987) (revised
1989).

28. Voigtländer, J.: Concatenate, reverse and map vanish for free. In: ACM SIG-
PLAN International Conference on Functional Programming (ICFP), Pittsburgh,
Pennsylvania. (2002) 14–25

29. Sterling, L., Shapiro, E.: The Art of Prolog. MIT Press (1986)
30. Marriott, K., Søndergaard, H.: Difference-list transformation for prolog. New

Generation Computing 11 (1993) 125–157

