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Abstract

The XML Path Language (XPath) is an industry standard notation for addressing parts of an XML
document. It is supported by many XML processing libraries and has been used as the foundation for
several dedicated XML processing languages. Regular patterns, an alternative way of investigating and
destructing XML documents, were first proposed in the XDuce language and feature in a number of its
descendants.

The processing styles offered by XPath and by regular patterns are each quite convenient for certain
sorts of tasks, and the designer of a future XML processing language might well like to provide both.
This designer might wonder, however, to what extent these mechanisms can be based on a common
foundation. Can one be implemented by translating it into the other? Can aspects of both be combined
into a single notation?

As a first step toward addressing these questions, we show in this paper that a language closely related
to the “downward axis” fragment of XPath can be accurately translated into ambiguous XDuce-style
regular patterns with a “collect all matches” interpretation.



1 Introduction

An XPath [16] expression specifies how to traverse an XML value, following one of several possible “axes”
at each step and performing tests on node labels and types to eventually reach a set of matching nodes. For
example, evaluating the path expression

child::person / child::name / child::first

against the XML value

<contacts>

<person>

<name><first>Haruo</first> <last>Hosoya</last></name>

<email>hahasoya</email>

</person>

<person>

<name><first>Jerome</first> <last>Vouillon</last></name>

<tel>123</tel>

</person>

</contacts>

yields the nodes <first>Haruo</first> and <first>Jerome</first>.
XPath is supported by many XML processing libraries and has been used as the foundation for several

dedicated XML processing languages, notably XSLT [14] and XQuery [19].
Regular patterns, an alternative way of investigating and destructing XML documents, were first proposed

in the XDuce language [8] and feature in a number of its descendants, including Xtatic [5, 4], CDuce [1],
XHaskell [10], and Broberg, Farre, and Svenningsson’s Haskell extension [2]. A regular pattern is just a
regular type [9] decorated with some variable binders. For example, the regular pattern1

contacts{ person{name{first{any} as f, last{any} as x}}, any }

can be matched against the same XML document as above to yield the environment mapping the pattern
variable f to the tree <first>Haruo</first> and the variable x to <last>Hosoya</last>. The sub-pattern
inside the contacts node describes a sequence of sub-trees, where the first must match the sub-pattern
person{name{first{any} as f, last{any} as x}} (this is why the pattern retrieves the information for
Hosoya rather than Vouillon) and the rest must match the wildcard pattern any.

Different dialects of XDuce (there have been several) and various descendants have advocated different
decisions about what to do with ambiguous patterns such as this variant of the above example (note that
the person node is both followed and preceded by any):

contacts{any, person{name{first{any} as f, last{any} as x}}, any}

Some use a “first match” semantics, others “longest match.” Yet others give a non-deterministic semantics,
promising to return some match, but refusing to say which. Some refuse to assign any meaning at all to
such patterns.

Still another useful alternative is to ask that an ambiguous regular pattern collect up all matching
sub-trees so that they can be iterated over, returned as a sequence, etc. Besides being useful in itself,
this interpretation of regular patterns raises an interesting linguistic question: What is the precise relation
between these two—superficially quite different—notations for extracting sets of subtrees from XML trees,
path expressions and ambiguous regular patterns? To what extent can each be encoded in the other? Is
there some natural generalization or hybrid that combines elements of both?

In this paper, we take a first step toward addressing these questions. We define a simplified language
of path expressions closely related to the “downward axis” fragment of XPath and demonstrate that this
language can be translated into ambiguous XDuce-style regular patterns.

1Our notation differs from XDuce slightly here: since square brackets are the standard notation for predicates in XPath

expressions, we use curly braces for labeled tree patterns and values.
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Following some notational preliminaries in Section 2, we define the syntax and semantics of regular
patterns in Section 3 and of our path expression language in Section 4. Section 5 presents the translation
from the latter to the former, sketches a proof of its correctness, and shows that the pattern type inference
mechanism used in XDuce can be used to give semantically precise types for translated path expressions.
Sections 6 and 7 discuss related and future work.

2 Preliminary Definitions

Sequence values and trees are defined recursively by the grammar

v ::= t1, . . . , tm sequence, 0 ≤ m

t ::= l{v} tree

where l ranges over a countable set of labels. Sequence values are ranged over by variables v, w and the
set of all values is denoted Val . Trees are ranged over by variables t, u, and Tree stands for the set of all
trees. The empty sequence (when m = 0) is written (). Given two sequences v and w their concatenation is
denoted v, w.

Pattern variables (or just variables) are ranged over by x, y, z, possibly with subscripts. Var denotes
the set of all variables. An environment Σ is a mapping from a finite subset dom(Σ) of Var to Val . The set
of all environments is denoted Env . A concrete environment Σ is specified by writing down the mappings
for all its variables: Σ = {x1 =v1, x2 =v2, . . . , xn =vn}. In particular, the environment Σ with dom(Σ) = ∅
is written {}. If two environments Σ1, Σ2 are such that dom(Σ1) ∩ dom(Σ2) = ∅, they can be combined, in
the standard way, into the environment Σ1, Σ2 that contains the bindings of both.

A relation between sets A and B is a set R ⊆ A×B. The fact that (a, b) ∈ R is also written in infix form
a R b. For two relations R1 ⊆ A × B and R2 ⊆ B × C, their composition is the relation R1 ◦ R2 ⊆ A × C

defined as R1 ◦ R2 = { (a, c) ∈ A × C | ∃ b ∈ B. a R1 b and b R2 c }.

3 Patterns

This section recaps basic definitions of regular tree pattern matching from XDuce [8], in the notation used
in this paper. The only significant difference from XDuce is that we take the intersection of two patterns
as a syntactic pattern constructor, as in CDuce [1].

The syntax of patterns (which are ranged over by P , R) is defined by the following grammar, where
x and l range over variables and labels, as introduced in Section 2, and X ranges over a countable set of
pattern names.

P ::= patterns

| L{P} tree
| () empty sequence
| P1, P2 concatenation
| P1 ∪ P2 union
| P1 ∩ P2 intersection
| P as x binding
| X pattern name

L ::= label patterns

| l atomic label
| * label wildcard

Parentheses can be freely used to specify order of pattern operators, as in (l{P1}, P2) ∪ ().
A pattern definition table (or just table) is a mapping D from a finite set of pattern names to patterns

such that, for any X ∈ dom(D), if a name X ′ appears in D(X), then also X ′ ∈ dom(D). If D(X) = P , we
also say that the definition, or equation, X = P is in D. Note that tables permit recursion—when a name
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refers to itself, possibly via a “loop” of pattern definitions. A table D′ extends table D if D′ extends D as a
function, i.e. D′ ⊇ D.

The standard table is the table Dstd that consists of the equations

anyone = *{any}

any = (anyone,any) ∪ ().

In the following we always assume that any table D under consideration extends the standard table Dstd.
A pattern P is defined under table D, or D defines P , if for every pattern name X appearing in P ,

we have X ∈ dom(D). This implies that every name X ′, accessible from P by recursively following the
definitions, is also in dom(D).

We also extend the last definition to handle derived pattern forms P ∗, P+ and P?. Namely, it is said
that P ∗ is defined under table D if P is defined under D, and D contains the equation

D(starP ) = P, starP ∪ ().

That is, whenever we mention a pattern P ∗, we actually mean the pattern starP . Then P+ stands for
P, P ∗, and P? is short for P ∪ ().

Following XDuce, we assume a couple syntactic restrictions on patterns, or, more precisely, on pattern
definition tables (formal details can be found in [9] and [8]):

• Regularity: all “loops” through the definitions in a table D from a variable X back to itself must pass
through the body P of at least one tree pattern L{P}. This ensures that the value sets corresponding
to patterns, according to the semantics to be defined shortly, are regular tree languages.

• Linearity: no variable x is bound in a pattern twice, except in union patterns, where branches must
bind exactly the same variables. (This notion also takes into account not just a syntactic pattern, but
its “unfolding” w.r.t. its defining table D.)

The set of free variables of pattern P under definitions D is denoted fvD(P ) and consists of all variables x

occurring in P and, recursively, in any patterns reachable from P in D. Formally, fvD is the function which
is the least fixed point of the following system of monotone equations:

fvD(L{P}) = fvD(P )
fvD(()) = ∅
fvD(P1, P2) = fvD(P1) ∪ fvD(P2)
fvD(P1 ∪ P2) = fvD(P1) ∪ fvD(P2)
fvD(P1 ∩ P2) = fvD(P1) ∪ fvD(P2)
fvD(X) = fvD(D(X))
fvD(P as x) = fvD(P ) ∪ {x}

In most cases D is clear from context, and we write just fv(P ) instead of fvD(P ).
If a pattern P is defined under a table D, then its semantics is a relation JP KD ⊆ Val × Env defined by

the following inference rules. If v JP KD Σ, we say that matching value v against pattern P (which is defined
under table D) results in environment Σ. When table D is clear from the context, we elide it and write just
v JP K Σ. In particular, the following rules defining the relation do not change D (and only one rule actually
references D), so we use the light notation assuming a fixed table D is given.

() J()K {}

l ∈ L v JP K Σ

l{v} JL{P}K Σ l ∈ l l ∈ *

v = v1, v2 v1 JP1K Σ1 v2 JP2K Σ2

v JP1, P2K Σ1, Σ2

v JP1K Σ1

v JP1 ∪ P2K Σ1

v JP2K Σ2

v JP2 ∪ P2K Σ2

v JP1K Σ1 v JP2K Σ2

v JP1 ∩ P2K Σ1, Σ2

v JP K Σ

v JP as xK {x=v}, Σ

D(X) = P v JP KD Σ

v JXKD Σ
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The linearity of patterns ensures that whenever the environment combination Σ1, Σ2 is invoked by the rules,
it is well-defined. Also, v JP K Σ implies that dom(Σ) = fv(P ). Note that the relation JP K is not a function
thanks to the rules for patterns P1, P2 and P1 ∪P2, which can relate a value to more than one environment.
This is different from XDuce which imposed additional disambiguation conditions on these rules.

3.1 Lemma: If pattern P is defined under table D and D′ extends D, then JP KD = JP KD′ .

3.2 Lemma: For any value v, we have v JanyKDstd
{}.

A pattern whose set of free variables is empty is called a type. Types are ranged over by T and the set of
all types is written Type. We say that the type of the pattern P , denoted type(P ), is the type obtained from
P by erasing all variable binders, i.e. by changing all fragments of the form R as x to just R, recursively. If
necessary, this involves traversing pattern name definitions in the defining table D and duplicating them as
types, using fresh names. A typing environment Γ is a mapping from a finite subset dom(Γ) of Var to Type.

If T is a type and v JT KD Σ, then Σ = {}. Thus, we can identify the relation JT KD with the set
JT KD = { v | v JT KD {} }. This enables us to define subtyping on types:

T1 <:D T2 iff JT1KD ⊆ JT2KD,

and on patterns:
P1 <:D P2 iff type(P1) <:D type(P2).

A type T (defined under D ⊇ Dstd) is called a tree type if T <:D *{any}—motivated by the fact that
all values in JT KD are trees (i.e., singleton sequences). Similarly, a pattern P is a tree pattern if type(P ) is a
tree type.

3.3 Lemma: Let R be a tree pattern defined under table D. Let v be a sequence value v = t1, . . . , tn.
Then, for any Σ

v Jany, P,anyKD Σ iff ∃ i. ti JP KD Σ.

The pattern matching relation JP KD satisfies the following fundamental theorem (paraphrased from [8, 7]).

3.4 Theorem [Hosoya–Pierce, 2001]: For any type T and a pattern P , both defined under table D,
there exist a table D′ ⊇ D and a typing environment Γ with dom(Γ) = fv(P ) such that, for any x ∈ fv(P ),

JΓ(x)KD′ = {Σ(x) | ∃ v ∈ JT KD. ∃Σ. v JP KD Σ }.

We denote the situation described in the theorem by T JP KD⊆D′ Γ and say that the typing environment Γ
represents the result of pattern type inference matching the input type T against pattern P .

This theorem tells us that, for any input type T , pattern P , and variable x occurring in P , the set of
all values that could ever get bound to x as the result of matching against P all possible values from JT KD

is representable by a type (namely, the type Γ(x)). Indeed, there is an algorithm computing Γ and D′ such
that T JP KD⊆D′ Γ [8].
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4 Paths

We now turn to paths. The following grammar defines a simplified language of paths based on the forward-
axis fragment of XPath: 2

p ::= paths

| s single step
| s / p multiple steps

s ::= steps

| a :: N simple step
| s[q] step with predicate

N ::= L{T} node test

q ::= predicates

| p path
| q or q disjunction
| q and q conjunction

a ::= axes

| self

| child

| desc

| dos

Note that node tests N = L{T} happen to be patterns (more precisely, types) from Section 3. Because of
this, we have to say sometimes that a path p is defined under a table D, which means that all node test
patterns occurring in p are defined under D.

Some sample paths (all defined under Dstd) that could be written in this language are

• dos :: a{any} that returns all subtrees of the input tree whose top node is labeled with a,

• dos :: *{()} that returns all leaves of the input tree,

• child :: a{any} / child :: b{any} / child :: c{any} returning all c-labeled grand-grand children of
the input tree that are also children of b-labeled nodes, that are in turn children of a-labeled children
of the input tree,

• self :: a{any}[child :: b{any} and child :: c{any}] / child :: c{d{any}} that checks if the input
tree is labeled with a and has children labeled with b and c; if so, it returns only those c-labeled children
that have a single, d-labeled, child.

This language mimics XPath’s unabbreviated syntax, in that axes are mentioned explicitly in every
step. XPath also offers abbreviated notation for the more popular child and dos axes. For example, an
abbreviated path a / b would correspond, in our notation, to child :: a{any} / child :: b{any}, and a // b

would correspond to child :: a{any} / dos :: *{any} / child :: b{any}. We use only the unabbreviated
syntax for the sake of uniformity.

Following the structure of the syntax, the semantics of paths is given by several mutually dependent
relations and predicates on trees: J·Kp, J·Ks, J·Kq and J·Ka. As with patterns, the semantics is parameterized
by a table D, but we again omit this parameter from almost all definitions in order to lighten the notaion.

The meaning of a path p is a relation JpKp

D
⊆ Tree × Tree given by the following rules.

t JsKs u

t JsKp u

t JsKs t′ t′ JpKp u

t Js / pKp u

2The tokens desc and dos correspond to XPath axis names descendant and descendant-or-self.
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When t JpKp u, we say that tree u is among the trees resulting from applying path p to tree t.
The meaning of a step s is a relation JsKs

D
⊆ Tree × Tree given by the following rules.

t JaKa u u JNKD Σ

t Ja :: NKs

D
u

t JsKs u u ∈ JqKq

t Js[q]Ks u

When t JsKs u, we say that tree u is among the trees resulting from applying step s to tree t.
The meaning of a path predicate q is a predicate JqKq

D
⊆ Tree given by the following rules.

t JpKp u

t ∈ JpKq

t ∈ Jq1K
q t ∈ Jq2K

q

t ∈ Jq1 and q2K
q

t ∈ Jq1K
q

t ∈ Jq1 or q2K
q

t ∈ Jq2K
q

t ∈ Jq1 or q2K
q

When t ∈ JqKq, we say that tree t matches predicate q.
The meaning of an axis a is a relation JaKa ⊆ Tree × Tree given by the following rules. (Observe that

JaKa does not need to be parameterized by D.)

t JselfKa t

t = l{t1, . . . , tn} 1 ≤ i ≤ n

t JchildKa ti

t = l{t1, . . . , tn} 1 ≤ i ≤ n ti JdosKa u

t JdescKa u t JdosKa t

t JdescKa u

t JdosKa u

When t JaKa u, we say that tree u is among the trees resulting from applying axis a to tree t.
Finally, the semantics of paths can be extended to operate on sequence values, JpKp

D
⊆ Val × Tree, via

the natural “lifting” rule

v = t1, . . . , tn ti JpKp u

v JpKp u

This formulation of paths semantics is similar to formalizations of XPath 1.0 [16] given elsewhere,
e.g. [15, 6]. (One variation is due to node tests, which are a types-based feature of XPath 2.0 [17]. However,
instead of matching against type names inside values, as XPath does (the type names are added during
validation against a W3C Schema), we give meaning to node tests by reusing the semantics of regular tree
patterns from Section 3.) This direct approach differs from XPath 2.0 Formal Semantics [18] that defines
a core language of for loop expressions operating on sequences resulting from axis projections and gives
meaning to path steps and predicates by translation into this core language.

Given a tree type T and a path p we write T JpKp to denote the set of trees

T JpKp = { u | ∃ t ∈ JT K. t JpKp u }.

In the following section, we will see that this set is actually representable by a regular type.
We finish this section with a few remarks on the relationship between the language of paths introduced

above and XPath:

• We use only the downward subset of XPath forward axes, which are the axes that can be supported
in the data model of immutable values with sharing. This excludes all reverse axes (e.g., parent and
ancestor), as well as the forward axes following-sibling and following whose semantics refers to
the parent node of the context node and cannot be supported in our data model.

• For a similar reason, we did not include the root step, as in (abbreviated) patterns like / a and // a.

• Our semantics of node tests is structural (and, as noticed above, coincides with the semantics of tree
patterns), in contrast to the XPath 2.0 nominal semantics grounded in W3C Schema validation.

• Predicates are restricted to conjunctions and disjunctions of paths—in contrast to XPath, where they
can be arbitrary boolean-valued computations involving arithmetic, function calls, etc.
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• We have refrained from using negation in path predicates. It would have to be translated (in Section 5)
into negation on patterns, which would require to modify the semantics of patterns to explicitly model
matching failure (e.g., as a special ⊥ environment). We felt this complication would be out of balance
with the ideas we present here.

• This semantics does not support positional predicates since they, compared to path predicates (as well
as to other path features of our fragment), have to be defined in terms of intermediate sequences.
Consider, for example, the path child :: a[3] with the positional predicate [3] when applied to a tree
of type *{a{}∪ b{}}. This path selects all a-children (ignoring all possible b-children in between), and
picks the third among them. In a sense, the a-children are materialized into a new sequence—a one
that does not exist as a contiguous fragment of the input tree. In contrast, our semantics can only
analyze the value structure that is already present in the input. The latter property is common with
the semantics of patterns and is essential for the success of the translation in the next section.

5 Paths Into Patterns

The translation from paths into regular patterns is given by a collection of mutually dependent functions for
translating a path p, a step s, a predicate q, or an axis a into a pattern. Each of the functions additionally
takes as an argument and returns as a result a pattern definition table: the output table D′ is possibly an
extension of the input table D with new pattern definitions that have been generated during the translation
of axes. Also, all functions (except the predicate translation) take a third argument, a pattern R, which may
be thought of as a “continuation” carrying the result of an earlier translation.

The translation of a path p into a pattern P (with continuation R, taking definitions D and yielding

definitions D′), written D ; p
R
−→p P ; D′, is defined by the following rules:

D ; s
R
−→s P ; D′

D ; s
R
−→p P ; D′

D ; p
R
−→p R′ ; D′ D ; s

R
′

−→s P ; D′′

D ; s / p
R
−→p P ; D′′

The translation of a step s into a pattern P , written D ; s
R
−→s P ; D′, is defined by the following rules:

D ; a
N∩R
−−−→a P ; D′

D ; a ::N
R
−→s P ; D′

D ; q −→q R′ ; D′ D ; s
R

′∩R
−−−→s P ; D′′

D ; s[q]
R
−→s P ; D′′

The translation of a predicate q into a pattern P , written D ; q −→q P ; D′, is defined by the following rules:

D ; q
any
−−−→p P ; D′

D ; q −→q P ; D′

D ; q1 −→q P1 ; D′ D′ ; q2 −→q P2 ; D′′

D ; q1 and q2 −→q P1 ∩ P2 ; D′′

D ; q1 −→q P1 ; D′ D′ ; q2 −→q P2 ; D′′

D ; q1 or q2 −→q P1 ∪ P2 ; D′′

The translation of an axis a into a pattern P , written D ; a
R
−→a P ; D′, is defined by the following rules (desc

and dos in the final two rules are fresh pattern names):

D ; self
R
−→a R ; D D ; child

R
−→a *{any, R,any} ; D

desc 6∈ dom(D)
D′ = D ∪ {desc = *{any, (R ∪ desc),any}}

D ; desc
R
−→a desc ; D′

dos 6∈ dom(D)
D′ = D ∪ {dos = R ∪ *{any,dos,any}}

D ; dos
R
−→a dos ; D′

Given a path p, translating it to a pattern P amounts to picking a variable x (which is going to bind, in

P , to results of p) and invoking the translation D ; p
any as x
−−−−−−→p P ; D′, where D is a table under which p is

defined. (Here, as well is in the rule for translating the elementary path predicate, one could prefer to use
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anyone rather than any as the “seed pattern”, but this is not necessary, since this pattern eventually gets
intersected with a node test pattern.)

This translation captures precisely the semantics of paths in the following sense: the results of applying p

to a value v are exactly the values that are bound to x in all possible environments resulting from matching
v against P . This result (Theorem 5.4 below) depends on Lemmas 5.2 and 5.3, which relate the above four
translations to the corresponding four semantics of paths, steps, predicates, and axes.

But first, we need a few preliminary lemmas.

5.1 Lemma: If D ; q −→q P ; D′, then fv(P ) = ∅. Consequently, v JP KD′ Σ implies Σ = {}.

5.2 Lemma: Let R be a tree pattern defined under table D. Then, for any axis a,

D ; a
R
−→a P ; D′ implies JaKa ◦ JRKD = JP KD′ .

5.3 Lemma: Let pattern R be defined under table D. Then for any path p, any step s, and any predicate
q, all of the following are true:

D ; p
R
−→p P ; D′ implies JpKp

D
◦ JRKD = JP KD′ ,

D ; s
R
−→s P ; D′ implies JsKs

D
◦ JRKD = JP KD′ ,

D ; q −→q P ; D′ implies JqKq

D
= { t | t JP KD′ {} }.

The translation correctness theorem now follows from the first clause of Lemma 5.3.

5.4 Theorem: Let p be a path defined under table D, and x be a variable. If D ; p
any as x
−−−−−−→p P ; D′, then,

for any value v,
{ u | v JpKp

D
u } = {Σ(x) | v JP KD′ Σ }.

5.5 Corollary: For any type T and any path p the set T JpKp , the results of applying p to values from T ,
is representable as a regular type.

Proof: Suppose both T and p are defined under the table D. By a simple calculation involving Theorems 5.4
and 3.4 we can obtain that there exists a typing environment Γ such that T JpKp

D
= JΓ(x)KD , which means

that the set T JpKp

D
is represented by the regular type Γ(x). �

This corollary states that the translation from paths to patterns proposed here provides not only a
mechanism for evaluating paths, but also, when combined with the pattern type inference algorithm from [8],
it provides a type system for the XPath fragment which is precise, i.e. sound and complete w.r.t. the
evaluation semantics of paths. This is in contrast to the typing rules in XQuery 1.0 and XPath 2.0 Formal
Semantics [18], which are sound, but not complete (with respect to the same fragment of XPath that we
consider here).

6 Related Work

We are not aware of other work formally comparing functionality of paths and regular patterns. Therefore,
this section briefly mentions several works broadly related to the subject of the paper.

In most language designs based on regular patterns ambiguity was addressed by proposing a disam-
biguation policy for selecting a single answer among multiple possibilities. The original paper on XDuce

regular patterns [8] assigned numeric choice sequences (recording choices made by union patterns) to each
successful match, and the match with the smallest choice sequence in the dictionary order was taken as the
result. A different implementation of the same disambiguation policy is described by Frisch and Cardelli [3].
Vansummeren[13] studies two other disambiguation policies.

Another approach to returning multiple bindings from a pattern that is worth a closer look is using
non-linear patterns, i.e. patterns that bind a variable more than once during a single parse of the input
value (as contrasted to ambiguous patterns where multiple bindings result from alternative parses of the
same value). CDuce [1] and regular patterns proposal[2] for Haskell are a couple language designs that
exploit non-linearity in recursive patterns to arrange iteration over sequences.

Murata [11] studies a language of path expressions extended with conditions on siblings of nodes in a
path that are similar to regular patterns without variables.
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7 Future Work

The multi-match semantics of patterns and paths presented in this paper are “relational”, in the sense that
they relate an input value to a single output value or environment (of which there can be many, though).
This can be contrasted to an approach when the input value is mapped, functionally, to a list representing
the totality of all answers. Even though the relational approach helped us to obtain results presented
here (after a few false starts with the other approach), the current semantics does not capture the aspect of
XPath related to “provenance” of results. More concretely, if a path selects several distinct, but structurally
equivalent, subtrees from the input value, our semantics cannot determine how many are there. This can be
rectified, however, by a straightforward modification of the semantics to relate an input value to locations
in the input value rather than to output values corresponding to those locations.

There exists literature (e.g., [12]) on translating XPath with reverse axes into XPath with only forward
axes, based on the assumption that the path possibly containing reverse axes is always applied to the
document root. Combining such a translation with the approach presented here could translate paths
involving all of XPath axes into regular patterns. The most value of reverse axes, however, comes from use
cases where the document root is not explicitly given, or, in other words, where a path’s reverse fragments
traverse the input tree upwards beyond its top node. So, there does not appear to be a significant pragmatic
advantage from combining the two translations.

An interesting question is translating the other way around, from patterns to paths. For example, can
every ambiguous pattern binding exactly one variable be translated into an equivalent path? Is there a
natural point of view on paths that can ascribe them a semantics of multiple variable binders, to parallel
the ambiguous view of patterns that allowed us to ascribe them a multiple-result semantics?

Last, but not least, is implementing the proposal presented here in our XML processing language
Xtatic [5, 4]. While doing so, we hope to design a pattern language that mixes together paths and patterns.
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