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Abstract
Lenses—bidirectional transformations between pairs of connected
structures—have been extensively studied and are beginning to find
their way into industrial practice. However, some aspects of their
foundations remain poorly understood. In particular, most previous
work has focused on the special case of asymmetric lenses, where
one of the structures is taken as primary and the other is thought of
as a projection, or view. A few studies have considered symmetric
variants, where each structure contains information not present in
the other, but these all lack the basic operation of composition.
Moreover, while many domain-specific languages based on lenses
have been designed, lenses have not been thoroughly studied from
a more fundamental algebraic perspective.

We offer two contributions to the theory of lenses. First, we
present a new symmetric formulation, based on complements, an
old idea from the database literature. This formulation generalizes
the familiar structure of asymmetric lenses, and it admits a good
notion of composition. Second, we explore the algebraic structure
of the space of symmetric lenses. We present generalizations of a
number of known constructions on asymmetric lenses and settle
some longstanding questions about their properties—in particular,
we prove the existence of (symmetric monoidal) tensor products
and sums and the non-existence of full categorical products or sums
in the category of symmetric lenses. We then show how the meth-
ods of universal algebra can be applied to build iterator lenses for
structured data such as lists and trees, yielding lenses for operations
like mapping, filtering, and concatenation from first principles. Fi-
nally, we investigate an even more general technique for construct-
ing mapping combinators, based on the theory of containers.

1. Introduction
The electronic world is rife with partially synchronized data—
replicated structures that are not identical but that share some com-
mon parts, and where the shared parts need to be kept up to date as
the structures change. Examples include databases and materialized
views, in-memory and on-disk representations of heap structures,
connected components of user interfaces, and models representing
different aspects of the same software system.

In current practice, the propagation of changes between con-
nected structures is mostly handled by ad hoc methods: given a
pair of structures X and Y , we write one transformation that maps
changes to X into changes to Y and a separate transformation that
maps Y changes to X changes. When the structures involved are
complex, managing such pairs of transformations manually can be
a maintenance nightmare.

This has led to a burgeoning interest in bidirectional program-
ming languages, in which every expression denotes a related pair
of transformations. A great variety of bidirectional languages have
been proposed (see [8, 15] for recent surveys), and these ideas are

beginning to see commercial application, e.g., in RedHat’s system
administration tool, Augeas [24].

One particularly well-studied class of bidirectional program-
ming languages is the framework of lenses introduced in [12]. Prior
work on lenses and lens-like structures has mostly been carried out
in specific domains—designing combinators for lenses that work
over strings [5, 7, 13, 14], trees [12, 20, 23, 28], relations [6],
graphs [19], or software models [9–11, 17, 18, 29, 30, 33]. By con-
trast, our aim in this paper is to advance the foundations of lenses
in two significant respects.

First, we show that lenses can be generalized from their usual
asymmetric presentation—where one of the structures is always
“smaller”—to a fully symmetric version where each of the two
structures may contain information that is not present in the other
(Section 2). This generalization is significantly more expressive
than any previously known: although symmetric variants of lenses
have been studied [11, 26, 31], they all lack a notion of sequential
composition of lenses, a significant technical and practical limita-
tion (see Section 10). As we will see, the extra structure that we
need to support composition is nontrivial; in particular, construc-
tions involving symmetric lenses need to be proved correct modulo
a notion of behavioral equivalence (Section 3).

Second, we undertake a systematic investigation of the alge-
braic structure of the space of lenses, using the concepts of ele-
mentary category theory as guiding and organizing principles. Our
presentation is self contained, but readers may find some prior fa-
miliarity with basic concepts of category theory helpful.

We begin this algebraic investigation with some simple generic
constructions on symmetric lenses: composition, dualization, ter-
minal lenses, simple bijections, etc. (Section 4). We then settle
some basic questions about products and sums (Sections 5 and 6).
In particular, it was previously known that asymmetric lenses ad-
mit constructions intuitively corresponding to pairing and projec-
tion [7] and another construction that is intuitively like a sum [12].
However, these constructions were not very well understood; in
particular, it was not known whether the pairing and projection
operations formed a full categorical product, while the injection
arrows from X to X + Y and from Y to X + Y were not defin-
able at all in the asymmetric setting. We prove that the category of
symmetric lenses does not have full categorical products or sums,
but does have “symmetric monoidal” structures with many of the
useful properties of products and sums.

Next, we consider how to build lenses over more complex
data structures such as lists and trees (Section 7). We first ob-
serve that the standard construction of algebraic datatypes can be
lifted straightforwardly from the category of sets to the category
of lenses. For example, from the definition of lists as the least so-
lution of the equation L(X) ' Unit + X × L(X) we obtain a
lens connecting the set L(X) with the set Unit + X × L(X);
the two directions of this lens correspond to the unfold and fold
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operations on lists. Moreover, the familiar notion of initial algebra
also generalizes to lenses, giving us powerful iterators that allow
for a modular definition of many symmetric lenses on lists and
trees—e.g., mapping a symmetric lens over a list, filtering, revers-
ing, concatenating, and translating between lists and trees.

Finally, we briefly investigate an even more general technique
for constructing “mapping lenses” that apply the action of a given
sublens to all the elements of some data structure (Section 8). This
technique applies not only to algebraic data structures but to an ar-
bitrary container in the sense of Abbot, Altenkirch, and Ghani [2].
This extends the variety of list and tree mapping combinators that
we can construct from first principles to include non-inductive
datatypes such as labeled dags and graphs.

We carry out these investigations in the richer space of symmet-
ric lenses, but many of the results and techniques should also apply
to the special case of asymmetric lenses. Indeed, we can show (Sec-
tion 9) that asymmetric lenses form a subcategory of symmetric
ones in a natural way: every asymmetric lens can be embedded in
a symmetric lens, and many of the algebraic operators on symmet-
ric lenses specialize to known constructions on asymmetric lenses.
Conversely, a symmetric lens can be factored into a “back to back”
assembly of two asymmetric ones.

Sections 10 and 11 discuss related and future work.

2. Fundamental Definitions
Asymmetric Lenses To set the stage, let’s review the standard
definition of asymmetric lenses. (Other definitions can be given,
featuring both weaker and stronger laws, but this version is per-
haps the most widely accepted. We discuss some alternatives in
Section 10.) Suppose X is some set of source structures (say, the
possible states of a database) and Y a set of target structures (views
of the database). An asymmetric lens from X to Y comprises two
functions:

get ∈ X → Y
put ∈ Y ×X → X

The get component is the forward transformation, a total function
from X to Y . The put component takes an old X and a modified Y
and yields a correspondingly modified X . Furthermore, every lens
must obey two “round-tripping” laws for every x ∈ X and y ∈ Y :

put (get x) x = x (GETPUT)

get (put y x) = y (PUTGET)

It is also useful to be able to create an element of x given just
an element of y, with no “original x” to put it into; in order to
handle this in a uniform way, we assume that each lens also comes
equipped with a function create ∈ Y → X and one more axiom:

get (create y) = y (CREATEGET)

Complements The key step toward symmetric lenses is the no-
tion of complements. The idea, which dates back to a famous pa-
per in the database literature on the view update problem [4] and
was adapted to lenses in [5] (and, for a slightly different defini-
tion, [25]), is quite simple. If we think of the get component of a
lens as a sort of projection function, then there is another projection
from X into some set C that keeps all the information discarded by
get . Equivalently, we can think of get as returning two results—an
element of Y and an element of C—that together contain all the
information needed to reconstitute the original element of X . The
put function doesn’t need a whole x ∈ X to recombine with some
updated y ∈ Y , either— it can just take the complement c ∈ C
generated from x by the get , since this will contain all the informa-
tion that is missing from y. Moreover, instead of a separate create
function, we can simply pick a distinguished element missing ∈ C
and define create(y) as put(y,missing).

Formally, an asymmetric lens with complement mapping be-
tween X and Y consists of a set C, a distinguished element
missing ∈ C, and two functions

get ∈ X → Y × C
put ∈ Y × C → X

obeying the following laws for every x ∈ X , y ∈ Y , and c ∈ C:1

get x = (y, c)

put (y, c) = x
(GETPUT)

get (put (y, c)) = (b′, c′)

b′ = y
(PUTGET)

Note that the type is just “lens from X to Y ”: the set C is an internal
component, not part of the externally visible type. In type-theoretic
notation, we could write Lens(X, Y ) = ∃C. {missing : C, get :
X → Y × C, put : Y × C → X}.

Symmetric Lenses Now we can symmetrize. First, instead of hav-
ing only get return a complement, we make put return a comple-
ment, too, and we take this complement as a second argument to
get .

get ∈ X × CY → Y × CX

put ∈ Y × CX → X × CY

Intuitively, CX is the “information from X that is discarded by
get ,” and CY is the “information from Y that is discarded by put .”
Next, we observe that we can, without loss of generality, use the
same set C as the complement in both directions. (This seeming
tweak is actually critical: it is what allows us to define composition
of symmetric lenses.)

get ∈ X × C → Y × C
put ∈ Y × C → X × C

Intuitively, we can think of the combined complement C as CX ×
CY —that is, each complement contains some “private information
from X” and some “private information from Y ”; by convention,
the get function reads the CY part and writes the CX part, while
the put reads the CX part and writes the CY part. Lastly, now that
everything is symmetric, the get / put distinction is not helpful, so
we rename the functions to putr and putl . This brings us to our
core definition.

2.1 Definition [Symmetric lens]: A lens ` from X to Y (written
` ∈ X ↔ Y ) has three parts: a set of complements C, a distin-
guished element missing ∈ C, and two functions

putr ∈ X × C → Y × C

putl ∈ Y × C → X × C

satisfying the following round-tripping laws:

putr(x, c) = (y, c′)

putl(y, c′) = (x, c′)
(PUTRL)

putl(y, c) = (x, c′)

putr(x, c′) = (y, c′)
(PUTLR)

When several lenses are under discussion, we use record notation
to identify their parts, writing `.C for the complement set of `, etc.

1 We can convert back and forth between the two presentations; in particular,
if (get , put , create) are the components of a traditional lens, then we de-
fine a canonical complement by C = {f ∈ Y →X | ∀y. get(f(y)) = y}.
We then define the components missing ′, get ′, and put ′ of an asym-
metric lens with complement as missing ′ = create and get ′(x) =
(get(x), λy.put(y, x)) and put ′(y, f) = f(y). Going the other way, if
(get , put ,missing) are the components of an asymmetric lens with com-
plement, we can define a traditional lens by get ′(x) = fst(get(x)) and
put ′(y, x) = put(y, snd(get(x))) and create(y) = put(y,missing).
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Figure 1. Behavior of a symmetric lens

The force of the PUTRL and PUTLR laws is to establish some
“consistent” or “steady-state” triples (x, y, c), for which puts of x
from the left or y from the right will have no effect. In general,
a put of a new x′ from the left entails finding a y′ and a c′ that
restore consistency. We will use the equation putr(x, c) = (y, c)
to characterize the steady states.

Examples Figure 1 illustrates the use of a symmetric lens. The
structures in this example are lists of textual records describing
composers. The partially synchronized records (a) have a name and
two dates on the left and a name and a country on the right. The
complement (b) contains all the information that is discarded by
both puts—all the dates from the left-hand structure and all the
countries from the right-hand structure. (It can be viewed as a pair
of lists of strings, or equivalently as a list of pairs of strings; the
way we build list lenses later actually corresponds to the latter.) If
we add a new record to the left hand structure (c) and use the putr
operation to propagate it through the lens (d), we copy the shared
information (the new name) directly from left to right, store the
private information (the new dates) in the complement, and use a
default string to fill in both the private information on the right and
the corresponding right-hand part of the complement. If we now
update the right-hand structure to fill in the missing information and
correct a typo in one of the other names (e), then a putl operation
will propagate the edited country to the complement, propagate
the edited name to the other structure, and use the complement to
restore the dates for all three composers.

Viewed a little more abstractly, the connection between the
information about a single composer in the two tables is a lens from
X×Y to Y ×Z, with complement X×Z—let’s call it e. Its putr
component updates the X part of the complement and uses the Z
part (together with the Y from its input) to build its output; the putl
component does the opposite. Then the top-level lens in Figure 1—
let’s call it e?—abstractly has type (X × Y )? ↔ (Y × Z)? and
can be thought of as the “lifting” of e from elements to lists.

There are several plausible implementations of e?, giving rise
to slightly different behaviors when list elements are added and
removed—i.e., when the input and complement arguments to putr
or putl are lists of different lengths. One possibility is to take
e?.C = (e.C)? and either truncate the complement list if it is
longer or pad it (with e.missing) if it is shorter. For example, taking
X = {a, b, c, . . .}, Y = {1, 2, 3, . . .}, Z = {A, B, C, . . .}, and

e.missing = (z, Z), we have:

putr([(a, 1)], [(m, M), (n, N)])
= putr([(a, 1)], [(m, M)])
= ([(1, M)], [(a, M)])

putr([(a, 1), (b, 2)], [(a, M)])
= putr([(a, 1), (b, 2)], [(a, M), (z, Z)])
= ([(1, M), (2, Z)], [(a, M), (b, Z)])

Notice that, after the first putr , the information in the second
component of the complement (containing the value N ) is lost.
Even though the second putr restores the second element of the
list, the value N is gone forever; what’s left is the default value Z.

A slightly sneakier—and arguably better behaved—possibility
is to keep an infinite list of complements. Whenever we do a put ,
we use (and update) a prefix of the complement list of the same
length as the current value being put , but we keep the infinite tail so
that, later, we have values to use when the list being put is longer.

putr([(a, 1)], [(m, M), (n, N), (z, Z), (z, Z), . . .])
= ([(1, M)], [(a, M), (n, N), (z, Z), (z, Z), . . .])

putr([(a, 1), (b, 2)], [(a, M), (n, N), (z, Z), (z, Z), . . .])
= ([(1, M), (2, N)], [(a, M), (b, N), (z, Z), . . .])

We call the first form the forgetful list mapping lens and the
second the retentive list mapping lens. We will see, later, that the
difference between these two precisely boils down to a difference
in the behavior of the lens-summing operator⊕ in the specification
e? ' idUnit ⊕ (e⊗ e?) of the list mapping lens.

Put-Put Laws

2.2 Lemma: The following “put the same thing twice” laws follow
from the ones we have:

putr(x, c) = (y, c′)

putr(x, c′) = (y, c′)
(PUTR2)

putl(y, c) = (x, c′)

putl(y, c′) = (x, c′)
(PUTL2)

We could consider generalizing these to say that putting an
arbitrary pair of values, one after the other, is the same as doing
just the second put into the first complement:

putr(x, c) = ( , c′)

putr(x′, c′) = putr(x′, c)
(STRONG-PUTPUTR∗)
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putl(y, c) = ( , c′)

putl(y′, c′) = putl(y′, c)
(STRONG-PUTPUTL∗)

But these laws are very strong—probably too strong to be useful
(the ∗ annotations in their names are a reminder that we do not
adopt them). The reason is that they demand that the effect of every
update is completely undoable—not only the effect on the other
replica, but also the effect of the first update on the complement
must be completely forgotten if we make a second update. In
particular, neither of the list-mapping lenses in Section 6 satisfy
these laws.

A weaker version of these laws, constraining the output but not
the effect on the complement, may be more interesting:

putr(x, c) = ( , c′)
putr(x′, c) = (y, )
putr(x′, c′) = (y′, )

y = y′
(WEAK-PUTPUTR*)

putl(y, c) = ( , c′)
putl(y′, c) = (x, )
putl(y′, c′) = (x′, )

x = x′
(WEAK-PUTPUTL*)

We do not choose to adopt these laws here because they are not
satisfied by the “forgetful” variants of our summing and list map-
ping lenses. However, the forgetful variants are only mainly inter-
esting because of their close connection to analogous asymmetric
lenses; in practice, the “retentive” variants seem more useful, and
these do satisfy the weak PUTPUT laws.

Alignment One important non-goal of the present paper is deal-
ing with the (important) issue of alignment [5, 7]. We consider only
the simple case of lenses that work “positionally.” For example, the
lens e? in the example will always use e to propagate changes be-
tween the first element of x and the first element of y, between the
second element of x and the second of y, and so on. This amounts
to assuming that the lists are edited either by editing individual el-
ements in-place or by adding or deleting elements at the end of the
list; if an actual edit inserts an element at the head of one of the
lists, positional alignment will produce surprising (and probably
distressing) results. We see two avenues for incorporating richer
notions of alignment: either we can generalize the mechanisms of
matching lenses [5] to the setting of symmetric lenses, or we can
refine the whole framework of symmetric lenses with a notion of
delta propagation; see Section 11.

3. Equivalence
Since each lens carries its own complement—and since this need
not be the same as the complement of another lens with the same
domain and codomain—we need to define what it means for two
lenses to be indistinguishable (in the sense that no user could ever
tell the difference between them by observing just the X and Y
parts of their outputs). We will use this relation pervasively in what
follows: indeed, most of the laws we would like our constructions
to validate—even things as basic as associativity of composition—
will not hold “on the nose,” but only up to equivalence.

3.1 Definition: Given sets X, Y, Cf , Cg and a relation R ∈ Cf ×
Cg , we say that functions f ∈ X × Cf → Y × Cf and g ∈
X × Cg → Y × Cg are R-similar, written f ∼R g, if they take
inputs with R-related complements to equal outputs with R-related
complements:

(cf , cg) ∈ R
f(x, cf ) = (yf , c′f )
g(x, cg) = (yg, c′g)

yf = yg ∧ (c′f , c′g) ∈ R

3.2 Definition [Lens equivalence]: Two lenses k and ` are equiv-
alent (written k ≡ `) if there is a relation R ∈ k.C × `.C on their
complement sets with

1. (k.missing , `.missing) ∈ R
2. k.putr ∼R `.putr
3. k.putl ∼R `.putl .

We write X ⇐⇒ Y for the set of equivalence classes of lenses
from X to Y . When ` is a lens, we write [`] for the equivalence
class of ` (that is, ` ∈ X ↔ Y iff [`] ∈ X ⇐⇒ Y ). Where no
confusion results, we abuse notation and drop these brackets, using
` for both a lens and its equivalence class.

The following is straightforward.

3.3 Lemma: Lens equivalence is an equivalence relation.

3.4 Definition: Given a lens ` ∈ X ↔ Y , define a put object for `
to be a member of X + Y . Define a function apply taking a lens,
an element of that lens’ complement set, and a list of put objects as
follows (using ML-like syntax):

apply(`, c, inl x:puts) = let (y, c′) = `.putr(x, c) in

inr y:apply(`, c′, puts)

apply(`, c, inr y:puts) = let (x, c′) = `.putl(y, c) in

inl x:apply(`, c′, puts)

apply(`, c, 〈〉) = 〈〉

3.5 Definition [Observational equivalence]: Lenses k, ` ∈ X ↔
Y are observationally equivalent (written k ≈ `) if, for every
sequence of put objects P ∈ (X + Y )? we have

apply(k, k.missing , P ) = apply(`, `.missing , P ).

3.6 Theorem: k ≈ ` iff k ≡ `.

Proof: (⇐=) Suppose that k ≡ ` via relation R. For all sequences
of put objects P , and for elements c ∈ k.C and d ∈ k.C such
that (c, d) ∈ R, we have apply(k, c, P ) = apply(`, d, P ). This
follows by induction on the length of P from the definition of
apply . Thus, k ≈ ` follows by specialization to c = k.missing
and d = `.missing .

(=⇒) Now suppose k ≈ `. To show k ≡ `, define R ⊆ k.C ×
`.C by R = {(c, d) | apply(k, c, P ) = apply(`, d, P ) for all P}.
By assumption, we have (k.missing , `.missing) ∈ R.

Now suppose that (c, d) ∈ R and that k.putr(x, c) = (y, c′)
and `.putr(x, d) = (y′, d′). Applying the assumption (c, d) ∈
R to the length-one sequence P = 〈inl (x)〉 shows y = y′.
To show (c′, d′) ∈ R let P be an arbitrary sequence of put
objects and define P ′ = inl (x):P . The assumption (c, d) ∈
R gives apply(k, c, P ′) = apply(`, d, P ′), hence in particular
apply(k, c′, P ) = apply(`, d′, P ), thus (c′, d′) ∈ R. We have
thus shown that k.putr ∼R `.putr . Analogously, we show that
k.putl ∼R `.putl , and it follows that k ≡ ` via relation R. �

4. Basic Constructions
With the basic definitions in hand, we can now begin defining
lenses. We begin in this section with several relatively simple con-
structions.

4.1 Definition [Identity lens]: Let Unit be a distinguished single-
ton set and () its only element.

4 2010/7/28



idX ∈ X ↔ X

C = Unit
missing = ()
putr(x, ()) = (x, ())
putl(x, ()) = (x, ())

To check that this definition is well formed, we must show
that the components defined in the lower box satisfy the round-
trip laws implied by the upper box. The proof is a straightforward
calculation.

4.2 Definition [Lens composition]:

k ∈ X ↔ Y ` ∈ Y ↔ Z

k; ` ∈ X ↔ Z

C = k.C × `.C
missing = (k.missing , `.missing)
putr(x, (ck, c`)) = let (y, c′k) = k.putr(x, ck) in

let (z, c′`) = `.putr(y, c`) in
(z, (c′k, c′`))

putl(z, (ck, c`)) = let (y, c′`) = `.putl(z, c`) in
let (x, c′k) = k.putl(y, ck) in
(x, (c′k, c′`))

Verifying that this forms a lens is straightforward.
This definition specifies what it means to compose two individ-

ual lenses. To show that this definition lifts to equivalence classes
of lenses, we need to check the following congruence property.

4.3 Lemma [Composition preserves equivalence]: If k ≡ k′ and
` ≡ `′, then k; ` ≡ k′; `′.

4.4 Definition [Swizzle]: The following function on relations will
be convenient in several proofs:

R1 ×R2 = {((c1, c2), (c
′
1, c

′
2)) | (c1, c

′
1) ∈ R1 ∧ (c2, c

′
2) ∈ R2}

Proof: If Rk is a simulation witnessing k ≡ k′ and R` witnesses
` ≡ `′ then it is straightforward to verify that Rk × R` witnesses
k; ` ≡ k′; `′. �

4.5 Lemma [Associativity of composition]:

j; (k; `) ≡ (j; k); `

(The equivalence is crucial here: j; (k; `) and (j; k); ` are not the
same lens because their complements are structured differently.)

Proof: We define a witnessing simulation relation R by

(c1, (c2, c3)) R ((c1, c2), c3)

whenever c1 ∈ j.C and c2 ∈ k.C and c3 ∈ `.C. �

4.6 Lemma [Identity arrows]: The identity arrow is a left and
right identity for composition:

idX ; ` ≡ `; idY ≡ `

Proof: For left identity we use the simulation relation R given by
((), c2)Rc2 whenever c2 ∈ `.C. The verification is direct; right
identity is symmetric. �

Thus symmetric lenses form a category, LENS, with sets as
objects and equivalence classes of lenses as arrows. The identity
arrow for a set X is [idX ]. Composition is [k]; [`] = [k; `].

4.7 Proposition [Bijective lenses]: Every bijective function gives
rise to a lens:

f ∈ X → Y f bijective
bijf ∈ X ↔ Y

C = Unit
missing = ()
putr(x, ()) = (f(x), ())
putl(y, ()) = (f−1(y), ())

(If we were designing syntax for a bidirectional language, we might
not want to include bij, since we would then need to offer pro-
grammers some notation for writing down bijections in such a way
that we can verify that they are bijections and derive their inverses.
However, even if it doesn’t appear in the surface syntax, we will
see several places where bij is useful in talking about the algebraic
theory of symmetric lenses.)

We omit the obvious verification that bijf is a lens.
This transformation (and several others) respect much of the

structure available in our category. Formally, bij is a functor. Recall
that a a covariant (respectively, contravariant) functor between
categories C and D is a pair of maps—one from objects of C to
objects of D and the other from arrows of C to arrows of D—that
preserve typing, identities, and composition:

• The image of any arrow f : X → Y in C has the type F (f) :
F (X) → F (Y ) (respectively, F (f) : F (Y ) → F (X)) in D.

• For every object X in C, we have F (idX) = idF (X) in D.
• If f ; g = h in C, then F (f); F (g) = F (h) (respectively,

F (g); F (f) = F (h)) in D.

Covariant functors are simply called functors. When it can be
inferred from the arrow mapping, the object mapping is often
elided.

4.8 Lemma: The bij operator forms a functor from the category
ISO, whose objects are sets and whose arrows are isomorphic func-
tions, to LENS—that is, bijidX = idX and bijf ; bijg = bijf ;g .

Proof: It is easy to see that bijidX = idX . To show that bijf ; bijg =
bijf ;g , we use the complete relation R ∈ (Unit × Unit) × Unit
together with the identity (f ; g)−1 = g−1; f−1. �

Since functors preserve isomorphisms it follows that bijective
lenses are isomorphisms in the category of lenses. However, not
every isomorphism in LENS is of that form.

Consider the following counterexample. Define the set Trit =
{−1, 0, 1} and the function f ∈ Trit×Trit → Trit which returns
its arguments if they are equal and the third possible value if they
are not:

c x f(c, x)
−1 −1 −1
−1 0 1
−1 1 0

0 −1 1
0 0 0
0 1 −1
1 −1 0
1 0 −1
1 1 1

For any particular c, the partial application f(c) is a bijection and
an involution. Thus, we can define the following lens, which is its
own inverse but is not equivalent to any bijective lens:
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strange ∈ Trit ↔ Trit

C = Unit + Trit
missing = inl ()
putr(x, inl ()) = (x, inr x)
putr(x, inr c) = (f(c, x), inr c)
putl(x, inl ()) = (x, inr x)
putl(x, inr c) = (f(c, x), inr c)

We can show, however, that the putr and putl functions of any
invertible lens induce a bijection between the two replicas for any
pair of reachable complements. More precisely:

4.9 Lemma: Suppose we have lenses k ∈ X ↔ Y and ` ∈ Y ↔
X such that k; ` ≡ idX and `; k ≡ idY . Then there is a relation
R ∈ k.C × `.C satisfying the following conditions:

(k; `).missing ∈ R (1)

(k; `).putr(x, c) = (x′, c′) c ∈ R

x′ = x ∧ c′ ∈ R
(2)

(k; `).putl(x, c) = (x′, c′) c ∈ R

x′ = x ∧ c′ ∈ R
(3)

(`; k).putr(y, c) = (y′, c′) γ×(c) ∈ R

y′ = y ∧ γ×(c′) ∈ R
(4)

(`; k).putl(y, c) = (y′, c′) γ×(c) ∈ R

y′ = y ∧ γ×(c′) ∈ R
(5)

Here, the function γ× is the symmetry in SET, namely γ×((x, y)) =
(y, x).

Proof: We get an R1 that satisfies 1-3 from the fact that k; ` ≡
idX , and we get an R2 that satisfies 1, 4, and 5 from the fact that
`; k ≡ idY . Then we can define R = R1 ∩ R2. There are four
conditions to check, but we will consider only one of them here, as
the others are very similar:

(k; `).putr(x, c) = (x′, c′) c ∈ R

c′ ∈ R2

Now c ∈ R means there are ck, c` such that ck R1 c` and
ck R2 c`. We can define

(y, c′k) = k.putr(x, ck)

(x′, c′`) = `.putr(y, c`).

Since R1 satisfies 2, we know x′ = x, that is, we know

`.putr(y, c`) = (x, c′`)

k.putr(x, ck) = (y, c′k).

Now the fact that R2 satisfies 4 above tells us that c′k R2 c′`, that
is, c′ ∈ R2. �

4.10 Corollary: Consider the functions f and g which give the
value-only part of a lens’ puts:

f`,c`(x) = fst(`.putr(x, c`))

g`,c`(x) = fst(`.putl(x, c`))

If ck R c` (using the R given by the previous lemma), then fk,ck ,
f`,c` , gk,ck , and g`,c` are all bijections.

Proof: We show that they are injective first. Choose x1, x2 such
that fk,ck (x1) = fk,ck (x2); then

x1 = f`,c`(fk,ck (x1)) by 2
= f`,c`(fk,ck (x2)) by assumption
= x2 by 2

The other functions can similarly be shown to be injective. But now
since fk,k.missing ∈ X → Y and f`,`.missing ∈ Y → X are both
injective, we know |X| = |Y | and hence that each of the functions
is also bijective. �

4.11 Definition [Dual of a lens]:

` ∈ X ↔ Y

`op ∈ Y ↔ X

C = `.C
missing = `.missing
putr(y, c) = `.putl(y, c)
putl(x, c) = `.putr(x, c)

The verifications of well-definedness as a lens and on equiva-
lence classes is straightforward.

It is easy to see that (−)op is involutive—that is, that (`op)op =
` for every `—and that bijf−1 = bijopf for any bijective f . Re-
calling that an endofunctor is a functor whose source and target
categories are identical, we can also show the following lemma.

The following is direct.

4.12 Lemma: The (−)op operation can be lifted to a contravariant
endofunctor on the category LENS mapping each object to itself and
each arrow [`] to [`op ].

4.13 Corollary: The category LENS is self dual, i.e., equivalent to
its own opposite. (Note that this does not mean that each arrow is
its own inverse!)

Proof: This is because the morphism part of (−)op is bijective. �

4.14 Definition [Terminal lens]:

x ∈ X

termx ∈ X ↔ Unit

C = X
missing = x
putr(x′, c) = ((), x′)
putl((), c) = (c, c)

The verification is straightforward.

4.15 Proposition [Uniqueness of terminal lens]: Lenses with the
same type as a terminal lens are equivalent to a terminal lens. More
precisely, suppose k ∈ X ↔ Unit and k.putl((), k.missing) =
(x, c). Then k ≡ termx.

Proof: The behavior of k is uniquely defined by the given data:
putl must return x the first time and echo the last putr henceforth.
Formally, we may define a simulation relation and return x the first
time. We use the simulation relation

R = {(c, y) | fst(k.putl((), c)) = y}

The verifications are straightforward. �

4.16 Definition [Disconnect lens]:

x ∈ X y ∈ Y

disconnectxy ∈ X ↔ Y

disconnectxy = termx; termop
y
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The disconnect lens does not synchronize its two sides at all. The
complement, disconnect .C, is X × Y ; inputs are squirreled away
into one side of the complement, and outputs are retrieved from the
other side of the complement.

(Note that we do not need an explicit proof that disconnect is a
lens: this follows from the fact that term is a lens and (−)op and ;
construct lenses from lenses.)

5. Products
A few more notions from elementary category theory will be useful
at this point for giving us ideas about what sorts of properties
to look for and for structuring the discussion of which of these
properties hold and which fail for lenses.

The categorical product of two objects X and Y is an object
X × Y and arrows π1 : X × Y → X and π2 : X × Y → Y
such that for any two arrows f : Z → X and g : Z → Y there is
a unique arrow 〈f, g〉 : Z → X × Y —the pairing of f and g—
satisfying 〈f, g〉; π1 = f and 〈f, g〉; π2 = g. It is well known that,
if a categorical product exists at all, it is unique up to isomorphism.
If a category C has a product for each pair of objects, we say that C
has products.

5.1 Theorem: LENS does not have products.

Proof: Uniqueness of pairing shows that there is exactly one lens
from Unit to Unit×Unit (whatever this may be). Combined with
Prop. 4.15 this shows that Unit ×Unit is a one-element set. This,
on the other hand, contradicts the symmetric nature of lens.

In more detail: Assume, for a contradiction, that LENS does
have products, and let W be the product of Unit with itself. The
two projections are maps into Unit . By Proposition 4.15 there is
exactly one lens from Unit to Unit . By uniqueness of pairing we
can then conclude that there is exactly one map from Unit to W .
Now for each w ∈ W the lens (termw)op is such a map, whence
W must be a singleton set, and we can without loss of generality
assume W = Unit . But now consider the pairing of term0 and
term1 from {0, 1} to Unit . Their pairing is a lens from {0, 1} to
W = Unit , hence itself of the form termx for some x ∈ {0, 1}.
But each of these violate the naturality laws. �

However, LENS does have a similar (but weaker) structure: a
tensor product—i.e., an associative, two-argument functor. For any
two objects X and Y , we have an object X ⊗ Y , and for any two
arrows f : A → X and g : B → Y , an arrow f ⊗ g : A ⊗ B →
X ⊗ Y such that (f1; f2) ⊗ (g1; g2) = (f1 ⊗ g1); (f2 ⊗ g2)
and idX ⊗ idY = idX⊗Y . Furthermore, for any three objects
X, Y, Z there is a natural isomorphism αX,Y,Z : (X ⊗ Y )⊗Z →
X⊗(Y ⊗Z) satisfying certain coherence conditions (which specify
that all ways of re-associating a quadruple are equal).

A categorical product is always a tensor product (by defining
f ⊗ g = 〈π1; f, π2; g〉), and conversely a tensor product is a
categorical product if there are natural transformations π1, π2, diag

π1,X,Y ∈ X ⊗ Y → X
π2,X,Y ∈ X ⊗ Y → Y
diagX ∈ X → X ⊗X

such that (suppressing subscripts to reduce clutter)

(f ⊗ g); π1 = π1; f (1)
(f ⊗ g); π2 = π2; g (2)

diag ; (f ⊗ f) = f ; diag (3)

for all arrows f and g. Moreover, the following diagrams must com-
mute, in the sense that composite arrows with the same endpoints
represent equal arrows:

X ⊗X Xπ2
X π1

X

id id
diag

X ⊗ Y (X ⊗ Y )⊗ (X ⊗ Y )
diag

X ⊗ Y

π1 ⊗ π2id

The former diagram says that the result of applying diag is an
element whose components are both equal to the original. The latter
diagram says that the application of diag results in independent
copies of the original.

Building a categorical product from a tensor product is not the
most familiar presentation, but it can be shown to be equivalent (see
Proposition 13 in [3], for example).

In the category LENS, we can build a tensor product and can
also build projection lenses with reasonable behaviors. However,
these projections are not quite natural transformations—laws 1
and 2 above hold only with an additional indexing constraint for
particular f and g. More seriously, while it seems we can define
some reasonable natural transformations with the type of diag
(that is, lenses satisfying law 3), none of them make the additional
diagrams commute.

5.2 Definition [Tensor product lens]:

k ∈ X ↔ Z ` ∈ Y ↔ W

k ⊗ ` ∈ X × Y ↔ Z ×W

C = k.C × `.C
missing = (k.missing , `.missing)
putr((x, y), (ck, c`)) = let (z, c′k) = k.putr(x, ck) in

let (w, c′`) = `.putr(y, c`) in
((z, w), (c′k, c′`))

putl((z, w), (ck, c`)) = let (x, c′k) = k.putl(z, ck) in
let (y, c′`) = `.putl(w, c`) in
((x, y), (c′k, c′`))

The verification that this forms a lens is straightforward.

Proof of preservation of equivalence: If Rk is a witness that
k ≡ k′ and R` is a witness that ` ≡ `′, then Rk × R` witnesses
k ⊗ ` ≡ k′ ⊗ `′. �

5.3 Lemma: The tensor product operation on lenses induces a
bifunctor on the category LENS, that is,

idX ⊗ idY ≡ idX×Y , and
(k1; `1)⊗ (k2; `2) ≡ (k1 ⊗ k2); (`1 ⊗ `2).

Proof of functoriality: The complete relation R ∈ (Unit ×
Unit)×Unit witnesses the former equivalence.

The latter has a slightly more intricate (but hardly more inter-
esting) witness relation:

((ck1 , c`1), (ck2 , c`2)) R ((ck1 , ck2), (c`1 , c`2))

That is, one state is related to another precisely when it is a rear-
rangement of the component states. It is clear that this relates the
missing states of each lens, and the putr and putl components
do identical computations (albeit in a different order), so they are
related by ∼R as necessary. �
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5.4 Lemma [Product bijection]: For bijections f and g,

bijf ⊗ bijg ≡ bijf×g.

Proof: Write k = bijf ⊗ bijg and ` = bijf×g . The total re-
lation R ∈ (Unit × Unit) × Unit is a witness. It’s clear that
k.missing R `.missing , so let’s show that the puts are similar.
Since all complements are related, this reduces to showing that
equal input values yield equal output values.

k.putr((x, y), ((), ())) = let (x′, c1) = bijf .putr(x, ()) in

let (y′, c2) = bijg.putr(y, ()) in

((x′, y′), (c1, c2))

= ((f(x), g(y)), ((), ()))

`.putr((x, y), ()) = ((f(x), g(y)), ())

The putl direction is similar. �

In fact, the particular tensor product defined above is very well
behaved: it induces a symmetric monoidal category—i.e., a cate-
gory with a unit object 1 and the following natural isomorphisms:

αX,Y,Z : (X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z)

λX : 1⊗X → X

ρX : X ⊗ 1 → X

γX,Y : X ⊗ Y → Y ⊗X

These are known as the associator, left-unitor, right-unitor, and
symmetry, respectively. In addition to the equations implied by
these being natural isomorphisms, they must also satisfy the co-
herence equations:

α; α = (α⊗ id); α; (id ⊗ α)

ρ⊗ id = α; (id ⊗ λ)

α; γ; α = (γ ⊗ id1); α; (id1 ⊗ γ)

α−1; γ; α−1 = (id1 ⊗ γ); α−1; (γ ⊗ id1)

γ; γ = id

5.5 Proposition [LENS,⊗ is a symmetric monoidal category]:
In the category SET, the Cartesian product is a bifunctor with
Unit as unit, and gives rise to a symmetric monoidal category. Let
α×, λ×, ρ×, γ× be associator, left-unitor, right-unitor, and sym-
metry natural isomorphisms. Then the ⊗ bifunctor also gives rise
to a symmetric monoidal category of lenses, with Unit as unit and
α⊗ = bij◦α×, λ⊗ = bij◦λ×, ρ⊗ = bij◦ ρ×, and γ⊗ = bij◦ γ×

as associator, left-unitor, right-unitor, and symmetry, respectively.

Knowing that LENS is a symmetric monoidal category is useful
for several reasons. First, it tells us that, even though it is not
quite a full-blown product, the tensor construction is algebraically
quite well behaved. Second, it justifies a convenient intuition where
lenses built from multiple tensors are pictured as graphical “wiring
diagrams,” and suggests a possible syntax for lenses that shuffle
product components (which we briefly discuss in Section 11).

Proof: We know α⊗, λ⊗, ρ⊗, and γ⊗ are all isomorphisms be-
cause every bijection lens is an isomorphism. Showing that they
are natural is a straightforward calculation. The five coherence
conditions follow from coherence in SET, functoriality of bij, and
Lemma 5.4. �

5.6 Definition [Projection lenses]: In LENS, the projection is
parametrized by an extra element to return when executing a putl
with a missing complement.

y ∈ Y

π1y ∈ X × Y ↔ X

π1y = (idX ⊗ termy); ρX

The other projection is defined similarly.

The extra parameter to the projection prevents full naturality
from holding (and therefore prevents this from being a categorical
product), but the following “indexed” version of the naturality law
does hold.

5.7 Lemma [Naturality of projections]: Suppose k ∈ Xk ↔ Yk

and ` ∈ X` ↔ Y` and choose some initial value yi ∈ Y`. Define
(xi, ci) = `.putl(yi, `.missing). Then (k ⊗ `); π1yi ≡ π1xi ; k.

Proof: We show that the following diagram commutes:

Xk ×X`

Xk ×Unit

Xk

Yk × Y`

Yk ×Unit

Yk

k ⊗ `

idXk ⊗ termxi idYk ⊗ termyi

k ⊗ idUnit

ρXk ρYk

k

To show that the top square commutes, we invoke functoriality
of ⊗ and the property of identities; all that remains is to show that

`; termyi ≡ termxi

which follows from the uniqueness of terminal lenses and the
definition of xi. The bottom square commutes because ρ is a natural
isomorphism. �

The most serious problem, though, is that there is no diagonal.
There are, of course, lenses with the type we need for diag—for
example, disconnect! Or, more usefully, the lens that coalesces
the copies of X whenever possible, preferring the left one when it
cannot coalesce (this is essentially the merge lens from [12])

diag ∈ X → X ×X

C = Unit + X
missing = inl ()
putr(x, inl ()) = ((x, x), inl ())
putr(x, inr x′) = ((x, x′), eq(x, x′))
putl((x, x′), c) = (x, eq(x, x′))

where here the eq function tests its arguments for equality:

eq(x, x′) =


inl () x = x′

inr x′ x 6= x′

This assumes that X possesses a decidable equality, a reasonable
assumption for the applications of lenses that we know about.
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Proof of well-formedness:
PUTRL:

putr(putl((x, x′), c)) = putr(x, eq(x, x′))

=


putr(x, inl ()) x = x′

putr(x, inr x′) x 6= x′

=


((x, x), inl ()) x = x′

((x, x′), inr x′) x 6= x′

= ((x, x′), eq(x, x′))

putl(putr(x, inl ())) = putl((x, x), inl ())

= (x, inl ())

putl(putr(x, inr x′)) = putl((x, x′), eq(x, x′))

= (x, eq(x, x′))

�

6. Sums and Lists
The status of sums has been even more mysterious than that of
products. In particular, the injection arrows from A to A + B and
B to A + B do not even make sense in the asymmetric setting; as
functions, they are not surjective, so they cannot satisfy PUTGET.

Before we study the question for LENS, let us formally define
a sum. A categorical sum of two objects X and Y is an object
X + Y and arrows inl : X → X + Y and inr : Y → X + Y
such that for any two arrows f : X → Z and g : Y → Z there
is a unique arrow [f, g] : X + Y → Z—the choice of f or g—
satisfying inl ; [f, g] = f and inr ; [f, g] = g. As with products, if
a sum exists, it is unique up to isomorphism.

Since products and sums are dual, Corollary 4.13 and Theo-
rem 5.1 implies that LENS does not have sums. Nevertheless, we
do have a tensor whose object part is a set-theoretic sum—in fact,
there are at least two different ones that are worth discussing—and
we can define useful associated structures, including a choice oper-
ation on lenses. But these constructions are even farther away from
being categorical sums than what we saw with products.

As with products, a tensor can be extended to a sum by provid-
ing three natural transformations—this time written inl , inr , and
codiag ; that is, for each pair of objects X and Y , there must be
arrows

inlX,Y ∈ X → X ⊕ Y
inrX,Y ∈ Y → X ⊕ Y

codiagX ∈ X ⊕X → X

such that
inl ; (f ⊕ g) = f ; inl
inr ; (f ⊕ g) = g; inr

(f ⊕ f); codiag = codiag ; f

and making the following diagrams commute:

X ⊕X X
inr

X
inl

X

id idcodiag

X ⊕ Y (X ⊕ Y )⊕ (X ⊕ Y )
codiag

X ⊕ Y

inl ⊕ inrid

These diagrams are identical to the product diagrams, with the
exception that the arrows point in the opposite directions (that is,
the sum diagrams are the dual of the product diagrams).

The two tensors, which we called retentive and forgetful in
Section 2, differ in how they handle the complement when faced
with a situation where the new value being put is from a different
branch of the sum than the last one that was put . The retentive sum
keeps complements for both sublenses in its own complement and
switches between them as needed. The forgetful sum keeps only
one complement, corresponding to whichever branch was last put .
If the next put switches sides, the complement is replaced with
missing .

6.1 Definition [Retentive tensor sum lens]:

k ∈ X ↔ Z ` ∈ Y ↔ W

k ⊕ ` ∈ X + Y ↔ Z + W

C = k.C × `.C
missing = (k.missing , `.missing)
putr(inl x, (ck, c`)) = let (z, c′k) = k.putr(x, ck) in

(inl z, (c′k, c`))
putr(inr y, (ck, c`)) = let (w, c′`) = `.putr(y, c`) in

(inr w, (ck, c′`))
putl(inl z, (ck, c`)) = let (x, c′k) = k.putl(z, ck) in

(inl x, (c′k, c`))
putl(inr w, (ck, c`)) = let (y, c′`) = `.putl(y, c`) in

(inr y, (ck, c′`))

Proof of well-formedness: This is a straightforward, but tedious
case analysis. �

Proof of preservation of equivalence: Suppose k ≡ k′ and ` ≡
`′, as witnessed by relations Rk and R`, respectively. Then Rk×R`

witnesses the equivalence k ⊕ ` ≡ k′ ⊕ `′. �

6.2 Lemma: The tensor sum operation on lenses induces a bifunc-
tor on LENS.

Proof of functoriality: The total relation R ∈ (Unit × Unit) ×
Unit is a witness that idX ⊕ idY ≡ idX+Y . For composition, the
obvious isomorphism between complements witnesses the equiva-
lence (k; `)⊕ (k′; `′) ≡ (k ⊕ k′); (`⊕ `′), namely:

ck ∈ k.C c′k ∈ k′.C
c` ∈ `.C c′` ∈ `′.C

(((ck, c`), (c
′
k, c′`)), ((ck, c′k), (c`, c

′
`))) ∈ R �

6.3 Definition [Forgetful tensor sum]:

k ∈ X ↔ Z ` ∈ Y ↔ W

k ⊕f ` ∈ X + Y ↔ Z + W

C = k.C + `.C
missing = inl k.missing
putr(inl x, inl ck) = let (z, c′k) = k.putr(x, ck) in

(z, inl c′k)
putr(inl x, inr c`) = let (z, ck) = k.putr(x, k.missing) in

(z, inl ck)
putr(inr y, inl ck) = let (w, c`) = `.putr(y, `.missing) in

(w, inr c`)
putr(inr y, inr c`) = let (w, c′`) = k.putr(y, c`) in

(w, inr c′`)

putl is similar
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Proof of well-formedness: Straightforward case analysis. �

Proof of preservation of equivalence: If R witnesses k ≡ k′ and
S witnesses ` ≡ `′ then k ⊕f ` ≡ k′ ⊕f `′ may be witnessed by

{(inl (c), inl (c′)) | cRc′} ∪ {(inr (c), inr (c′)) | cSc′}

The verification is straightforward. �

Proof of functoriality: By straightforward case analysis. �

6.4 Lemma [Sum bijection]: For bijections f and g,

bijf ⊕ bijg ≡ bijf ⊕f bijg ≡ bijf+g

Proof: Write k = bijf ⊕ bijg , kf = bijf ⊕f bijg , and ` = bijf×g .
The total relation R ∈ (Unit × Unit) × Unit is a witness that
k ≡ ` and the total relation Rf ∈ (Unit + Unit) × Unit is a
witness that kf ≡ `. It’s clear that k.missing R `.missing and
kf .missing Rf `.missing , so let’s show that the puts are similar.
Since all complements are related, this reduces to showing that
equal input values yield equal output values.

k.putr(inl x, ((), ())) = let (z, ck) = bijf .putr(x, ()) in

(inl z, (ck, ()))

= let (z, ck) = (f(x), ()) in

(inl z, (ck, ()))

= (inl f(x), ((), ()))

k.putr(inr y, ((), ())) = (inr g(y), ((), ()))

kf .putr(inl x, c) = let (z, ck) = bijf .putr(x, ()) in

(inl z, inl ck)

= let (z, ck) = (f(x), ()) in

(inl z, inl ck)

= (inl f(x), inl ())

kf .putr(inr y, c) = (inr g(y), inr ())

`.putr(inl x, ()) = ((f + g)(inl x), ())

= (inl f(x), ())

`.putr(inr y, ()) = (inr g(y), ())

The putl direction is similar. �

6.5 Proposition [LENS,⊕, ⊕f are symmetric monoidal categories]:
In SET, the disjoint union gives rise to a symmetric monoidal cate-
gory with ∅ as unit. Let α+, λ+, ρ+, γ+ be associator, left-unitor,
right-unitor, and symmetry natural isomorphisms. Then the ⊕ and
⊕f bifunctors each give rise to a symmetric monoidal category
of lenses with ∅ as unit and α⊕ = bij ◦ α+, λ⊕ = bij ◦ λ+,
ρ⊕ = bij ◦ ρ+, and γ⊕ = bij ◦ γ+ as associator, left-unitor,
right-unitor, and symmetry, respectively.

The types of these natural isomorphisms are:

α⊕X,Y,Z ∈ (X + Y ) + Z ↔ X + (Y + Z)

λ⊕X ∈ ∅+ X ↔ X

ρ⊕X ∈ X + ∅ ↔ X

γ⊕X,Y ∈ X + Y ↔ Y + X

Proof: We know α⊕, λ⊕, ρ⊕, and γ⊕ are all isomorphisms be-
cause every bijection lens is an isomorphism. Showing that they are
natural is a straightforward calculation. The only subtlety comes in
showing that (k ⊕f `); γ⊕ ≡ γ⊕; (` ⊕f k). We must be careful
to include the missing complements in the relation; the following

relation will do:

R = {(inl c, inr c) | c ∈ k.C} ∪
{(inr c, inl c) | c ∈ `.C} ∪
{(inl k.missing , inl `.missing)}

The five coherence conditions follow from coherence in SET,
functoriality of bij, and Lemma 6.4. �

Unlike the product unit, there are no interesting lenses with the
sum’s unit, so this cannot be used to define the injection lenses. We
have to do it by hand.

6.6 Definition [Injection lenses]:

x ∈ X

inlx ∈ X ↔ X + Y

C = X × (Unit + Y )
missing = (x, inl ())
putr(x, (x′, inl ())) = (inl x, (x, inl ()))
putr(x, (x′, inr y)) = (inr y, (x, inr y))
putl(inl x, c) = (x, (x, inl ()))
putl(inr y, (x, c)) = (x, (x, inr y))

We also define inry = inly; γ⊕Y,X .

Proof of well-formedness: Straightforward case analysis. �

6.7 Proposition: The injection lenses are not natural.

Proof: We first define a lens that counts the number of changes it
sees in the putr direction, and allows puts of non-numbers to be
overridden in the putl direction:

x ∈ X

countx ∈ X ↔ Unit + N

C = X × Bool × N
missing = (x, true, 0)
putr(x, (x′, b, n)) =8<: (inl (), (x, b, n)) x = x′ ∧ ¬b

(inr n, (x, b, n)) x = x′ ∧ b
(inr (n + 1), (x, true, n)) x 6= x′

putl(inl (), (x, b, n)) = (x, (x, false, n))
putl(inr n, (x, b, n′)) = (x, (x, true, n))

We now contrast the lens inlb; (countb′⊕idUnit) with countb′ ; inln
(where b and b′ are arbitrary Bool values and n is an arbitrary
Unit + N value). Consider the put object

〈inl true, inr (inr ()), inl false, inr (inl (inl ())), inl true, inl false〉
The first two values in the put object are simply initializing the lens:
we first put true to the right, getting an inl object out on the right
from both lenses, then put back an inr object, switching sides.

The next put of false to the right is where the problem really
arises. For the countb′ ; inln lens, the counting lens first registers
the change from true to false, then its output gets thrown away. On
the other hand, in the inlb; (countb′ ⊕ idUnit) lens, the false gets
thrown away before the counting lens can see it, so the complement
in the counting lens doesn’t get updated.

The remainder of the puts simply manifest this problem by
switching the sum back to the counting side, and getting an output
from the counting lenses; one will give a higher count than the
other.

The proof for inr is symmetric. �
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As with products, where we have a useful lens of type X ↔
X × X that is nevertheless not a diagonal lens, we can craft a
useful conditional lens of type X+X ↔ X that is nevertheless not
a codiagonal lens. In fact, we define a more general lens union ∈
X + Y ↔ X ∪ Y . Occasionally, a value that is both an X and
a Y may be put to the left across one of these union lenses. In
this situation, the lens may legitimately choose either an inr tag
or an inl tag. Below, we propose two lenses that break this tie in
different ways.The union lens uses the most recent unambiguous
put to break the tie. The union ′ lens, on the other hand, looks back
to the last tagged value that was put to the right that was in both
sets.

6.8 Definition [Union lens]:

unionXY ∈ X + Y ↔ X ∪ Y

C = Bool
missing = false
putr(inl x, c) = (x, false)
putr(inr y, c) = (y, true)
putl(xy, c)

=


(inl xy, false) xy /∈ Y ∨ (xy ∈ X ∧ ¬c)
(inr xy, true) xy /∈ X ∨ (xy ∈ Y ∧ c)

Proof of well-formedness:
PUTRL:

putl(putr(inr x, c)) = putl(x, false)

= (inr x, false)

putl(putr(inl y, c)) = putl(y, true)

= (inl y, true)

PUTLR: There are six cases to consider, corresponding to which of
the sets X , Y , and X ∩Y our value is a member of and to whether
the complement is true or false.

putr(putl(xy, false)) = putr(inl xy, false)

= (xy, false)

putr(putl(x, false)) = putr(inl x, false)

= (x, false)

putr(putl(y, false)) = putr(inr y, true)

= (y, true)

The cases for when the complement is true are symmetric. �

6.9 Definition [Another union lens]: Given two sets X and Y ,
let’s define a few bijections:

f ∈ X → X \ Y + X ∩ Y

g ∈ Y → X ∩ Y + Y \X

h ∈ X \ Y + X ∩ Y + Y \X → X ∪ Y

f(x) =


inl x x /∈ Y
inr x x ∈ Y

g(y) =


inl y y ∈ X
inr y y /∈ X

h(inl x) = x

h(inr (inl xy)) = xy

h(inr (inr y)) = y

union ′XY ∈ X + Y ↔ X ∪ Y

union ′XY = bij(f+g);α+ ;
(idX ⊕ (unionX∩Y,X∩Y ⊕ idY ));
bijh

These definitions are not symmetric in X and Y , because putl
prefers to return an inl value if there have been no tie breakers yet.
Because of this preference, neither union nor union ′ can be used
to construct a true codiagonal. However, there are two useful related
constructions:

6.10 Definition [Switch lens]:

switchX ∈ X + X ↔ X

switchX = unionXX

We’ve used union rather than union ′ in this definition, but it
actually doesn’t matter: the two lenses’ tie-breaking methods are
equivalent when X = Y :

6.11 Lemma:
unionXX ≡ union ′XX

Proof: The relation that equates the states of the two union lenses
is a witness: R = {(b, (((), (b, ())), ())) | b ∈ Bool}. �

6.12 Definition [Retentive case lens]:

k ∈ X ↔ Z ` ∈ Y ↔ Z

casek,` ∈ X + Y ↔ Z

casek,` = (k ⊕ `); switchX

6.13 Definition [Forgetful case lens]:

k ∈ X ↔ Z ` ∈ Y ↔ Z

casef
k,` ∈ X + Y ↔ Z

casef
k,` = (k ⊕f `); switchX

Lists We can also define a variety of lenses operating on lists.
We’ll just consider mapping here, because in the next section we’re
going to see how to obtain this and a whole variety of other func-
tions on lists as instances of a powerful generic theorem, but it is
useful to see one concrete instance first!

Write X? for the set of lists with elements from the set X . Write
〈〉 for the empty list and x:xs for the list with head x and tail xs.
Write Xω for the set of infinite lists over X . When x ∈ X and
ss ∈ Xω , write x:ss ∈ Xω for the infinite list with head x and tail
ss. Write xω ∈ Xω for the infinite list of x’s.
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6.14 Definition [Retentive list mapping lens]:

` ∈ X ↔ Y

map(`) ∈ X? ↔ Y ?

C = (`.C)ω

missing = (`.missing)ω

putr(x, c) = let 〈x1, . . . , xm〉 = x in
let 〈c1, . . .〉 = c in
let (yi, c

′
i) = `.putr(xi, ci) in

(〈y1, . . . , ym〉 , 〈c′1, . . . , c′m, cm+1, . . .〉)
putl (similar)

As we saw in Section 2, there is also a forgetful variant of the
list mapping lens. Indeed, this is the one that corresponds to the
known list mapping operator on asymmetric lenses [7, 12].

6.15 Definition [Forgetful list mapping lens]:

` ∈ X ↔ Y

mapf (`) ∈ X? ↔ Y ?

C = `.C?

missing = 〈〉
putr(x, c) = let 〈x1, . . . , xm〉 = x in

let 〈c1, . . . , cn〉 = c in
let 〈cn+1, . . .〉 = (`.missing)ω in
let (yi, c

′
i) = `.putr(xi, ci) in

(〈y1, . . . , ym〉 , 〈c′1, . . . , c′m〉)
putl (similar)

Rather than proving that these two forms of list mapping are
lenses, preserve equivalence, induce functors, and so on, we show
that these properties hold for a generalization of their construction
in the next section.

We can make the relationship between the retentive sum and
map lenses and the forgetful sum and map lenses precise; the
following two diagrams commute:

Y ?

X?

Unit + Y × Y ?

Unit + X ×X?
bij

idUnit ⊕ (`⊗map(`)) map(`)
bij

Y ?

X?

Unit + Y × Y ?

Unit + X ×X?
bij

idUnit ⊕f (`⊗mapf (`)) mapf (`)
bij

7. Iterators
In functional programming, mapping functionals are usually seen
as instances of more general “fold patterns,” or defined by general
recursion. In this section, we investigate to what extent this path
can be followed in the world of symmetric lenses.

Allowing general recursive definitions for symmetric lenses
may be possible, but in general, complements change when un-
folding a recursive definition; this means that the structure of the
complement of the recursively defined function would itself have
to be given by some kind of fixpoint construction. Preliminary in-
vestigation suggests that this is possible, but it would considerably
clutter the development—on top of the general inconvenience of
having to deal with partiality.

Therefore, we choose a different path. We identify a “fold” com-
binator for lists, reminiscent of the view of lists as initial alge-
bras. We show that several important lenses on lists—including,
of course, the mapping combinator—can be defined with the help
of a fold, and that, due to the self-duality of lenses, folds can be
composed back-to-back to yield general recursive patterns in the
style of hylomorphisms [27].

We also discuss iteration patterns on trees and argue that the
methodology carries over to other polynomial inductive datatypes.

7.1 Lists
Let f ∈ Unit + (X×X?) → X? be the bijection between
“unfolded” lists and lists that takes inl () to 〈〉 and inr (x, xs) to
x:xs. Note that bijf ∈ Unit+(X×X?) ⇐⇒ X? is then a bijective
arrow in the category LENS.

7.1.1 Definition: An X-list algebra on a set Z is an arrow ` ∈
Unit + (X×Z) ⇐⇒ Z and a function w ∈ Z → N such that
`.putl(z, c) = (inr (x, z′), c′) implies w(z′) < w(z). We write
T ?

X for the functor that sends any lens k to idUnit ⊕ (idX ⊗ k).

7.1.2 Theorem: For X-list algebra ` on Z, there is a unique arrow
It(`) ∈ X? ⇐⇒ Z such that the following diagram commutes:

T ?
X(X?)

T ?
X(Z)

X?

Z

bijf

T ?
X(It(`)) It(`)

`

In the terminology of universal algebra, an algebra for a functor
F from some category to itself is simply an object Z and an
arrow F (Z) → Z. A homomorphism between F -algebras (Z, f)
and (Z′, f ′) is a morphism u ∈ Z → Z′ such that f ; u =
F (u); f ′. The F -algebras thus form a category themselves. An
initial F -algebra is an initial object in that category (an initial object
has exactly one arrow to each other object, and is unique up to
isomorphism). F -algebras can be used to model a wide variety of
inductive datatypes, including lists and various kinds of trees [32].
Using this terminology, Theorem 7.1.2 says that bijf is an initial
object in the subcategory consisting of those T ?

X -algebras for which
a weight function w is available.

Before we give the proof, let us consider some concrete in-
stances of the theorem. First, if k ∈ X ⇐⇒ Y is a lens, then
we can form an X-list algebra ` on Y ? by composing two lenses
as follows:

Unit + (X×Y ?)

Unit + (Y×Y ?)

Y ?

idUnit ⊕ (k ⊗ idY ?)

bijf

A suitable weight function is given by w(ys) = length(ys).
The induced lens It(`) ∈ X? ⇐⇒ Y ? is the lens analog of
the familiar list mapping function. In fact, substituting the lens
e ∈ X × Y ⇐⇒ Y × Z (from the introduction) for k in the
above diagram, we find that It(`) is the sneakier variant of the lens
e?.
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Second, suppose that X = X1 + X2 and let Z be X?
1 × X?

2 .
Writing X+

i for Xi ×X?
i , we can define isomorphisms

f ∈ (X1 + X2)×X?
1 ×X?

2

→ (X+
1 + X+

2 ) + (X+
1 ×X+

2 + X+
1 ×X+

2 )

g ∈ Unit + ((X+
1 + X+

2 ) + X+
1 ×X+

2 )

→ X?
1 ×X?

2

by distributing the sum and unfolding the list type for f and by
factoring the polynomial and folding the list type for g.2

f(inl x1, xs1, 〈〉) = inl (inl (x1, xs1))

f(inl x1, xs1, x2:xs2) = inr (inl ((x1, xs1), (x2, xs2)))

f(inr x2, 〈〉 , xs2) = inl (inr (x2, xs2))

f(inr x2, x1:xs1, xs2) = inr (inr ((x1, xs1), (x2, xs2)))

g(inl ()) = (〈〉 , 〈〉)
g(inr (inl (inl (x1, xs1)))) = (x1 : xs1, 〈〉)
g(inr (inl (inr (x2, xs2)))) = (〈〉 , x2 : xs2)

g(inr (inr ((x1, xs1), (x2, xs2)))) = (x1 : xs1, x2 : xs2)

Then we can create

` ∈ Unit + ((X1 + X2)× Z) ↔ Z

` = (idUnit ⊕ bijf );
(idUnit ⊕ (id

X+
1 +X+

2
⊕ switch

X+
1 ×X+

2
));

bijg

A suitable weight function for ` is given by w((xs1, xs2)) =
length(xs1) + length(xs2). The lens It(`) ∈ (X1 + X2)

? ⇐⇒
X?

1 × X?
2 that we obtain from iteration partitions the input list in

one direction and uses a stream of booleans from the state to put
them back in the right order in the other direction. Composing it
with a projection yields a filter lens. (Alternatively, the filter lens
could be obtained directly by iterating a slightly trickier `.)

Proof of 7.1.2: We define the lens It(`) explicitly.

` ∈ T ?
X(Z) ↔ Z ∃ suitable w

It(`) ∈ X? ↔ Z

It(`).C = (`.C)ω

It(`).missing = (`.missing)ω

It(`).putr(〈〉 , c:cs) = let (z, c′) = `.putr(inl (), c) in
(z, c′:cs)

It(`).putr(x:xs, c:cs) = let (z, cs′) = It(`).putr(xs, cs) in
let (z′, c′) = `.putr(inr (x, z), c) in
(z′, c′:cs′)

It(`).putl(z, c:cs) = match `.putl(z, c) with
(inl (), c′) → (〈〉 , c′:cs)

| (inr (x, z′), c′) →
let (xs, cs′) = It(`).putl(z′, cs) in
(x:xs, c′:cs′)

Note that the first element of the complement list holds both the
complement that is used when we do a putr of an empty list and the

2 The bijections f and g can be written in terms of the associators, symme-
tries, unfolds, folds, and so forth that were already introduced, so the lenses
bijf and bijg would not have to be defined “out of whole cloth” as they are
here, but these definitions get bogged down in syntax without adding much
value.

complement that is used for the first element when we do a putr of
a non-empty list. Similarly, the second element of the complement
list holds both the complement that is used at the end when we do a
putr of a one-element empty list and the complement that is used
for the second element when we do a putr of a two or more element
list.

The recursive definition of It(`).putr is clearly terminating
because the first argument to the recursive call is always a shorter
list; the recursive definition of It(`).putl is terminating because the
value of w is always smaller on the arguments to the recursive call.
The round-trip laws are readily established by induction on xs and
on w(z), respectively. So this is indeed a lens.

Commutativity of the claimed diagram is a direct consequence
of the defining equations (which have been crafted so as to make
commutativity hold).

To show uniqueness, let k ∈ X? ⇐⇒ Z be another lens for
which the diagram commutes—i.e., such that:

T ?
X(X?)

T ?
X(Z)

X?

Z

bijf

T ?
X(k) k

`

Choose representatives of the equivalence classes k and `—for
convenience, call these representatives k and `. Let R ⊆ k.C ×
(k.C× `.C) be a simulation relation witnessing the commutativity
of this diagram (recalling that equality of LENS-arrows means lens-
equivalence of representatives). Notice that k.C is the complement
of (a representative of) the upper path through the diagram, and
k.C × `.C is the complement of (a representative of) the lower
path through the diagram. (Strictly speaking, the complements are
Unit×k.C and Unit×Unit×k.C×`.C; using these isomorphic
forms reduces clutter.) Thus, the commutativity of the diagram
means:

(k.missing , (k.missing , `.missing)) ∈ R

(d, (d′, c)) ∈ R
k.putr(〈〉 , d) = (z, d1) `.putr(inl (), c) = (z′, c1)

(d1, (d
′, c1)) ∈ R ∧ z = z′

(d, (d′, c)) ∈ R k.putr(x:xs, d) = (z, d1)
k.putr(xs, d′) = (z′, d′1) `.putr(inr (x, z′), c) = (z′′, c1)

(d1, (d
′
1, c1)) ∈ R ∧ z = z′′

(d, (d′, c)) ∈ R
k.putl(z, d) = (〈〉 , d1)

`.putl(z, c) = (inl (), c1) ∧ (d1, (d
′, c1)) ∈ R

(d, (d′, c)) ∈ R k.putl(z, d) = (x:xs, d1)

`.putl(z, c) = (inr (x, z′), c1)
∧ k.putl(z′, d′) = (xs, d′1)
∧ (d1, (d

′
1, c1)) ∈ R

The variables c1, z
′, d′1 in the last two rules are existentially quan-

tified.
In order to show that It(`) ≡ k we define a relation S ⊆

It(`).C × k.C inductively as follows:

(It(`).missing , k.missing) ∈ S

(d, (d′, c)) ∈ R (cs, d′) ∈ S

(c:cs, d) ∈ S

Notice that if (c:cs, d) ∈ S by either one of the rules, then there
exists d′ such that (d, (d′, c)) ∈ R and (cs, d′) ∈ S. In particular,
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for the first rule, c:cs = It(`).missing and we choose d′ =
k.missing .

It remains to show that S is compatible with putl and putr . So
assume that (c:cs, d) ∈ S, hence (d, (d′, c)) ∈ R and (cs, d′) ∈ S
for some d′. We proceed by induction on length(xs) in the putr
cases and by induction on w(z) in the putl cases.
Case for putr of empty list: By definition, It(`).putr(〈〉 , c:cs) =

(z, c′:cs), where (z, c′) = `.putr(inl (), c). Let (z1, d1) =
k.putr(〈〉 , d). Commutativity of the diagram then tells us that
(d1, (d

′, c′)) ∈ R and z1 = z. Since (cs, d′) ∈ S, we can con-
clude (c′:cs, d1) ∈ S, as required.
Case for putr of nonempty list: This time, the definition gives us
It(`).putr(x:xs, c:cs) = (z′, c′:cs′), where

(z, cs′) = It(`).putr(xs, cs)
(z′, c′) = `.putr(inr (x, z), c).

Let
(z1, d1) = k.putr(x:xs, d)
(z2, d2) = k.putr(xs, d′)
(z3, c3) = `.putr(inr (x, z2), c).

Inductively, we get z2 = z and (cs′, d2) ∈ S. Thus, z3 = z′ and
c3 = c′. From commutativity we get z1 = z′ and (d1, (d2, c

′)) ∈
R, so (c′:cs′, d1) ∈ S and we are done.
Case where It .putl on z returns the empty list: Suppose we have
It(`).putl(z, c:cs) = (〈〉 , c′:cs), where (inl (), c′) = `.putl(z, c).
Let k.putr(z, d) = (xs, d1). Commutativity of the diagram asserts
that (d1, (c

′, d′)) ∈ R and xs = 〈〉. Now, since (cs, d′) ∈ S, we
can conclude (c′:cs, d1) ∈ S, as required.
Case where It .putl on z returns a non-empty list: Suppose we have
It(`).putl(z, c:cs) = (x:xs, c′:cs′), where (inr (x, z′), c′) =
`.putl(z, c) and (xs, cs′) = It(`).putl(z′, cs). Since `.putl(z, c)
returns an inr we are in the situation of the fourth rule above and
we have k.putl(z, d) = (x:xs′, d1) for some xs′ and d1. Further-
more, we have k.putl(z′, d′) = (xs′, d′1) and (d1, (d

′
1, c1)) ∈ R.

The induction hypothesis applied to z′ in view of w(z′) < w(z)
then yields xs′ = xs and also (cs′, d′1) ∈ S. It then follows
(c′:cs′, d1) ∈ S and we are done. �

7.1.3 Corollary: Suppose kop is an X-list algebra on W and ` is
an X-list algebra on Z. Then there is a lens Hy(k, `) ∈ W ⇐⇒ Z
such that the following diagram commutes:

T ?
X(W )

T ?
X(Z)

W

Z

k

T ?
X(Hy(k, `)) Hy(k, `)

`

Proof: Define Hy(k, `) as the composition It(kop)op ; It(`). �

One can think of Hy(k, `) as a recursive definition of a lens. The
lens k tells whether a recursive call should be made, and if so,
produces the argument for the recursive call and some auxiliary
data. The lens ` then describes how the result is to be built from
the result of the recursive call and the auxiliary data. This gives
us a lens version of the hylomorphism pattern from functional
programming [27]. Unfortunately, we were unable to prove or
disprove the uniqueness of Hy(k, `).

We have not formally studied the question of whether It(`) is
actually an initial algebra, i.e., whether it can be defined and is
unique even in the absence of a weight function. However, this
seems unlikely, because then it would apply to the case where Z
is the set of finite and infinite X lists and ` the obvious bijective

lens. The putl component of It(`) would then have to truncate an
infinite list, which would presumably break the commuting square.

7.2 Other Datatypes
Analogs of Theorem 7.1.2 and Corollary 7.1.3 are available for a
number of other functors, in particular those that are built up from
variables by + and ×. All of these can also be construed as con-
tainers (see Section 8), but the iterator and hylomorphism patterns
provide more powerful operations for the construction of lenses
than the mapping operation available for general containers. More-
over, the universal property of the iterator provides a modular proof
method, allowing one to deduce equational laws which can be cum-
bersome to establish directly because of the definition of equality as
behavioral equivalence. For instance, we can immediately deduce
that list mapping is a functor. Containers, on the other hand, sub-
sume datatypes such as labeled graphs that are not initial algebras.

Parametrized lists The list iterator allows us to define a lens
between X? and some other set Z. In order to define a lens between
X?×Y and Z (think of Y as modeling parameters) we cannot use
Theorem 7.1.2 directly. In standard functional programming, a map
from X? × Y to Z is tantamount to a map from X? to Y→Z, so
iteration with parameters is subsumed by the parameterless case.
Unfortunately, LENS does not seem to have the function spaces
required to play this trick.

Therefore, we introduce the functor T ?
X,Y (Z) = Y + X × Z

and notice that T ?
X,Y (X? × Y ) ' X? × Y . Just as before, an

algebra for that functor is a lens ` ∈ T ?
X,Y (Z) ↔ Z together with

a function w : Z → N such that `.putl(z, c) = (inr (x, z′), c′)
implies w(z′) < w(z).

As an example, let Y = Z = X? and define

` ∈ X? + X ×X? ↔ X?

C = Bool
missing = true

`.putr(inl xs, b) = (xs, true)
`.putr(inr (x, xs), b) = (x:xs, false)

`.putl(〈〉 , b) = (inl 〈〉 , true)
`.putl(x:xs, true) = (inl (x:xs), true)
`.putl(x:xs, false) = (inr (x, xs), false)

Iteration yields a lens X? × X? ↔ X? that can be seen as a
bidirectional version of list concatenation. The commuting square
for the iterator corresponds to the familiar recursive definition
of concatenation: concat(〈〉 , ys) = ys and concat(x:xs, ys) =
x:concat(xs, ys). In the bidirectional case considered here the
complement will automatically retain enough information as to
allow splitting in the putl -direction.

We can use a version of Corollary 7.1.3 for parametrized lists in
order to justify tail recursive constructions. Consider, for instance,
the opposite of a T ?

Unit,X? -algebra k : X?×X? ↔ X?+X?×X?

where
k.putr((acc, 〈〉), true) = (inl acc, true)
k.putr((acc, x:xs), true) = (inr (x:acc, xs), true)
k.putr((acc, xs), false) = (inr (acc, xs), false).

Together with the T ?
Unit,X? -algebra switchX? : X? + X? ↔ X?

this furnishes a bidirectional version of the familiar tail recursive
list reversal that sends (acc, xs) to xsrevacc.

Trees For set X let Tree(X) be the set of binary X-labeled
trees given inductively by leaf ∈ Tree(X) and x ∈ X, ` ∈
Tree(X), r ∈ Tree(X) ⇒ node(x, `, r) ∈ Tree(X). Consider
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the endofunctor T Tree
X given by T Tree

X (Z) = Unit + X ×Z ×Z.
Let c ∈ TTree

X (Tree(X)) ↔ Tree(X) denote the obvious bijective
lens.

An X-tree algebra is a lens ` ∈ TTree
X (Z) ↔ Z and a

function w ∈ Z → N with the property that if `.putl(z, c) =
(inr (x, zl, zr), c

′) then w(zl) < w(z) and w(zr) < w(z). The
bijective lens c is then the initial object in the category of X-tree
algebras; that is, every X-tree algebra on Z defines a unique lens
in Tree(X) ↔ Z.

Consider, for example, the concatenation lens concat : X? ×
X? ↔ X?. Let concat ′ : Unit + X × X? × X? ↔ X? be
the lens obtained from concat by precomposing with the fold-
isomorphism and the terminal lens term〈〉. Intuitively, this lens
sends inl () to 〈〉 and x, xs, xs′ to x:xs@xs′, using the complement
to undo this operation properly. This lens forms an example of a
tree algebra (with number of nodes as weight functions) and thus
iteration furnishes a lens Tree(X) ↔ X? which does a pre-order
traversal, keeping enough information in the complement to rebuild
a tree from a modified traversal.

The hylomorphism pattern can also be applied to trees, yielding
the ability to define symmetric lenses by divide-and-conquer, i.e.,
by dispatching one call to two parallel recursive calls whose results
are then appropriately merged.

8. Containers
The previous section suggests a construction for a variety of oper-
ations on datatypes built from polynomial functors. Narrowing the
focus to the very common “map” operation, we can generalize still
further, to any kind of container functor [1], i.e. a normal functor
in the terminology of Hasegawa [16] or an analytic functor in the
terminology of Joyal [22]. (These structures are also related to the
shapely types of Jay and Cockett [21].)

8.1 Definition [Container]: A container consists of a set I to-
gether with an I-indexed family of sets B ∈ I → Set .

Each container (I, B) gives rise to an endofunctor FI,B on SET
whose object part is defined by FI,B(X) =

P
i∈I B(i) → X . For

example, if I = N and B(n) = {0, 1, . . . , n−1}, then FI,B(X)
is X? (up to isomorphism). Or, if I = Tree(Unit) is the set of
binary trees with trivial labels and B(i) is the set of nodes of i,
then FI,B(X) is the set of binary trees labeled with elements of X .
In general, we can think of I as a set of shapes and, for each shape
i ∈ I , we can think of B(i) as the set of “positions” in shape i. So
an element (i, f) ∈ FI,B(X) consists of a shape i and a function
f assigning an element f(p) ∈ X to each position p ∈ B(i).

The morphism part of FI,B maps a function u ∈ X → Y to
a function FI,B(u) ∈ FI,B(X) → FI,B(Y ) given by (i, f) 7→
(i, f ; u).

Now, we would like to find a way to view a container as a
functor on the category of lenses. In order to do this, we need a
little extra structure.

8.2 Definition: A container with ordered shapes is a pair (I, B)
satisfying these conditions:

1. I is a partial order with binary meets. We say i is a subshape of
j whenever i ≤ j.

2. B is a functor from (I,≤) viewed as a category (with one
object for each element and an arrow from i to j iff i ≤ j)
into SET. When B and i are understood, we simply write b|i′
for B(i ≤ i′)(b) if b ∈ B(i) and i ≤ i′.

3. If i and i′ are both subshapes of a common shape j and we
have positions b ∈ B(i) and b′∈B(i′) with b|j = b′|j, then
there must be a unique b0∈B(i∧i′) such that b = b0|i and

b′ = b0|i′. Thus such b and b′ are really the same position. In
other words, every diagram of the following form is a pullback:

B(i ∧ i′)

B(i′)

B(i)

B(j)

B(i ∧ i′ ≤ i)

B(i ∧ i′ ≤ i′) B(i ≤ j)

B(i′ ≤ j)

If i ≤ j, we can apply the instance of the pullback diagram
where i = i′ and hence i ∧ i′ = i and deduce that B(i ≤ j) ∈
B(i) → B(j) is always injective.

For example, in the case of trees, we can define t ≤ t′ if
every path from the root in t is also a path from the root in t′.
The morphism part of B then embeds positions of a smaller tree
canonically into positions of a bigger tree. The meet of two trees is
the greatest common subtree starting from the root.

8.3 Definition [Container mapping lens]:

` ∈ X ↔ Y

FI,B(`) ∈ FI,B(X) ↔ FI,B(Y )

C =
{t ∈

Q
i∈I B(i) → `.(C) |

∀i, i′. i ≤ i′ ⊃ ∀b∈B(i). t(i′)(b|i′) = t(i)(b)}
missing(i)(b) = `.missing
putr((i, f), t) =

let f ′(b) = fst(`.putr(f(b), t(i)(b))) in
let t′(j)(b) =

if ∃b0 ∈ B(i ∧ j). b0|j = b
then snd(`.putr(f(b0|i), t(j)(b)))
else t(j)(b)

in

((i, f ′), t′)
putl (similar)

(Experts will note that C is the limit of the contravariant functor
i 7→ (B(i) → `.(C)). Alternatively, we can construe C as the
function space D → `.(C) where D is the colimit of the functor
B. Concretely, D is given by

P
i∈I B(i) modulo the equivalence

relation ∼ generated by (i, b) ∼ (i′, b′) whenever i ≤ i′ and
b′ = B(i ≤ i′)(b).)

Proof of well-formedness: To show that this definition is a lens,
we should begin by checking that it is well typed—i.e., that the
t′ we build in putr really lies in the complement (the argument
for putl will be symmetric). So suppose that j ≤ j′ and b∈B(j).
There are two cases to consider:

1. b = b0|j for some (unique) b0∈B(i∧j). Then b|j′ = b0|j′ so
we are in the “then” branch in both t′(j′)(b|j′) and t′(j)(b),
and the results are equal by the fact that t ∈ C.

2. b is not of the form b0|j for some (unique) b0∈B(i∧j). We
claim that then b|j′ is not of the form b1|j′ for any b1∈B(i∧j′),
so that we are in the “else” branch in both applications of t′.
Since t ∈ C, this will conclude the proof of this case. To
see the claim, assume for a contradiction that b|j′ = b1|j′
for some b1∈B(i∧j′). Applying the pullback property to the
situation i∧j ≤ j ≤ j′ and i∧j ≤ i∧j′ ≤ j′ yields a
unique b0∈B(i∧j) such that b = b0|j and b1 = b0|(i∧j′),
contradicting the assumption.
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It now remains to verify the lens laws. We will check PUTRL; the
PUTLR law can be checked similarly. Suppose that

FI,B(`).putr((i, f), t) = ((i, fr), tr)

FI,B(`).putl((i, fr), tr) = ((i, frl), trl)

We must check that frl = f and trl = tr .
Let us check that frl = f . Choose arbitrary b ∈ B(i). Then

frl(b) = fst(`.putl(fr(b), tr(i)(b))). Inspecting the definition of
tr , we find that tr(i)(b) = snd(`.putr(f(b), t(i)(b))), and from
the definition of fr , we find that fr(b) = fst(`.putr(f(b), t(i)(b))).
Together, these two facts imply that

frl(b) = fst(`.putl(`.putr(f(b), t(i)(b))))

Applying PUTRL to `, this reduces to frl(b) = f(b), as desired.
Finally, we must show that trl = tr . Choose arbitrary j ∈ I

and b ∈ B(j). There are two cases: either we have b0|j = b or not.

• Suppose b0|j = b. Then we find that

trl(j)(b) = snd(`.putl(fr(b0|i), tr(j)(b)))

Now, inspecting the definitions of fr and tr , we find that this
amounts to saying

trl(j)(b) = snd(`.putl(`.putr(f(b0|i), t(j)(b))))
Furthermore, we have tr(j)(b) = snd(`.putr(f(b0|i), t(j)(b))),
so the PUTRL law applied to ` tells us that trl(j)(b) =
tr(j)(b), as desired.

• Otherwise, there is no b0 with that property. Then we find that
trl(j)(b) = tr(j)(b) immediately from the definition of trl. �

Proof of preservation of equivalence: If R witnesses k ≡ `,
then we relate functions that yield related outputs for each pos-
sible input:

RI,B = {(tk, t`) | ∀i, b. tk(i)(b) R t`(i)(b)}
For any i and b, we can show

FI,B(k).missing(i)(b) = k.missing

k.missing R `.missing

`.missing = FI,B(`).missing(i)(b)

so the missing elements are related by RI,B . Now suppose the
following relationships hold:

tk RI,B t`

FI,B(k).putr((i, f), tk) = ((i, fk), t′k)

FI,B(`).putr((i, f), t`) = ((i, f`), t
′
`)

We must show that fk = f` and that t′k RI,B t′`. The for-
mer follows directly; for any b, we have fk(b) = f`(b) because
tk(i)(b) R t`(i)(b). For the latter, consider an arbitrary j and
b. There are two cases. If b0|j = b for some b0 ∈ B(i ∧ j),
then t′k(j)(b) R t′`(j)(b) because k and ` preserve R-states; oth-
erwise, t′k(j)(b) R t′`(j)(b) because t′k(j)(b) = tk(j)(b) and
t′`(j)(b) = t`(j)(b). �

Proof of functoriality: The complete relation (which has only
one element) witnesses the equivalence FI,B(idX) ≡ idFI,B(X).
The relation

{(t, (tl, tr)) | ∀i, b. t(i)(b) = (tl(i)(b), tr(i)(b))}
witnesses the equivalence FI,B(k; `) ≡ FI,B(k); FI,B(`). �

For the case of lists, this mapping lens coincides with the reten-
tive map that we obtained from the iterator in Section 7. We believe
it should also be possible to define a forgetful version where the
complement is just FI,B(`.C).

In the literature on containers, the notion of combinatorial
species further generalizes the container framework by allowing
the family B(i) → X to be quotiented by some equivalence rela-
tion; we can obtain multisets in this way, for example. However, we
do not see a way to apply this generalization in the case of lenses,
because it is then not clear how to match up positions.

9. Asymmetric Lenses as Symmetric Lenses
The final step in our investigation is to formalize the connection
between symmetric lenses and the more familiar space of asym-
metric lenses and to show how known constructions in this space
correspond to the constructions we have considered.

Write X
a↔ Y for the set of asymmetric lenses from X to Y

(using the first presentation of asymmetric lenses from Section 2,
with get , put , and create components).

9.1 Definition: Every asymmetric lens can be embedded in a sym-
metric one.

` ∈ X
a↔ Y

`sym ∈ X ↔ Y

C = {f ∈ Y → X | ∀y ∈ Y. `.get(f(y)) = y}
missing = `.create
putr(x, f) = (`.get(x), fx)
putl(y, f) = let x = f(y) in (x, fx)

(Here, fx(y) means `.put(y, x).) Viewing X as the source of an
asymmetric lens (and therefore as having “more information” than
Y ), we can understand the definition of the complement here as
being a value from X stored as a closure over that value. The
presentation is complicated slightly by the need to accommodate
the situation where a complete X does not yet exist—i.e. when
defining missing—in which case we can use create to fabricate an
X value out of a Y value if necessary.

Proof of well-formedness: The CREATEGET law guarantees that
`.create ∈ C and the PUTGET law guarantees that fx ∈ C for all
x ∈ X , so we need merely check the round-trip laws.
PUTRL:

putl(putr(x, c)) = putl(`.get(x), fx)

= let x′ = fx(`.get(x)) in (x′, fx′)

= let x′ = `.put(`.get(x), x) in (x′, fx′)

= (x, fx)

PUTLR:

putr(putl(y, f)) = putr(let x = f(y) in (x, fx))

= putr(f(y), ff(y))

= (`.get(f(y)), ff(y))

= (y, ff(y))

�

9.2 Definition [Asymmetric lenses]: Here are several useful asym-
metric lenses (based on string lenses from [7]).

copyX ∈ X
a↔ X

get(x) = x
put(x, x′) = x
create(x) = x
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k ∈ X
a↔ Y ` ∈ Y

a↔ Z

k; ` ∈ X
a↔ Z

get(x) = `.get(k.get(x))
put(z, x) = k.put(`.put(z, k.get(x)), x)
create(z) = k.create(`.create(z))

v ∈ X

aconstv ∈ X
a↔ Unit

get(x) = ()
put((), x) = x
create(()) = v

k ∈ X
a↔ Y ` ∈ Z

a↔ W

k · ` ∈ X × Z
a↔ Y ×W

get(x, z) = (k.get(x), `.get(z))
put((y, w), (x, z)) = (k.put(y, x), `.put(w, z))
create((y, w)) = (k.create(y), `.create(w))

k ∈ X
a↔ Y ` ∈ Z

a↔ W

k|` ∈ X + Z
a↔ Y ∪W

get(inl x) = k.get(x)
get(inr z) = `.get(z)

put(yw, inl x) =


inl k.put(yw, x) yw ∈ Y
inr `.create(yw) yw ∈ W \ Y

put(yw, inr z) =


inr `.put(yw, z) yw ∈ W
inl k.create(yw) yw ∈ Y \W

create(yw) =


inl k.create(yw) yw ∈ Y
inr `.create(yw) yw ∈ W \ Y

` ∈ X
a↔ Y

`? ∈ X? a↔ Y ?

get(〈x1, . . . , xn〉) = 〈`.get(x1), . . . , `.get(xn)〉
put(〈y1, . . . , ym〉 , 〈x1, . . . , xn〉)

= 〈x′1, . . . , x′m〉

where x′i =


`.put(yi, xi) i ≤ min(m, n)
`.create(yi) n + 1 ≤ i

create(〈y1, . . . , yn〉) = 〈`.create(y1), . . . , `.create(yn)〉

9.3 Theorem: The symmetric embeddings of these lenses corre-
spond nicely to definitions from earlier in this paper:

copysym
X ≡ idX (1)

(k; `)sym ≡ ksym ; `sym (2)
aconstsymx ≡ termx (3)
(k · `)sym ≡ ksym ⊗ `sym (4)

(k|`)sym ≡ casef
ksym ,`sym (5)

(`?)sym ≡ mapf (`sym) (6)

The first two show that (−)sym is a functor.

Proof: Throughout the proofs, we will use a to refer to the left-
hand side of the equivalence, and b to refer to the right-hand side.

1. The complete relation R ∈ {x 7→ x} × Unit witnesses the
equivalence.

2. The relation

R = {(fk`, (fk, f`)) | fk` = f`; fk}
witnesses the equivalence. The fact that a.missing R b.missing
is immediate from the definitions.
Now, to show that a.putr ∼R b.putr , suppose fk` R (fk, f`).
We first compute a.putr(x, fk`).

a.putr(x, fk`) = ((k; `).get(x), z 7→ (k; `).put(z, x))

= (`.get(k.get(x)),

z 7→ k.put(`.put(z, k.get(x)), x))

= (xa, f ′k`)

And now b.putr(x, (fk, f`)):

ksym .putr(x, fk) = (k.get(x), y 7→ k.put(y, x))

`sym .putr(k.get(x), f`) = (`.get(k.get(x)),

z 7→ `.put(z, k.get(x)))

b.putr(x, (fk, f`)) = (xb, (f
′
k, f ′`))

It’s now clear that

f ′k(f ′`(z)) = f ′k(`.put(z, k.get(x)))

= k.put(`.put(z, k.get(x)), x)

= f ′k`(z)

and that xa = xb, so a.putr ∼R b.putr .
Finally, to show that a.putl ∼R b.putl , suppose again that
fk` R (fk, f`).

a.putl(z, fk`) = let x = fk`(z) in

(x, z′ 7→ (k; `).put(z′, x))

= let x = fk`(z) in

(x, z′ 7→ k.put(`.put(z′, k.get(x)), x))

Similarly,

`sym .putl(z, f`) = let y = f`(z) in

(y, z′ 7→ `.put(z′, y))

ksym .putl(f`(z), fk) = let x = fk(f`(z)) in

(x, y′ 7→ k.put(y′, x))

b.putl(z, (fk, f`)) = (fk(f`(z)),

(y′ 7→ k.put(y′, fk(f`(z))),

z′ 7→ `.put(z′, f`(z))))

Now, we want to show that the first parts of the outputs are
equal, that is, that fkl(z) = fk(f`(z)), which is immediate
from fkl R (fk, f`), and that the second parts of the outputs
are related:

f ′k(f ′`(z
′)) = f ′k(`.put(z, f`(z)))

= k.put(`.put(z, f`(z)), fk(f`(z)))

Observing that k.get(fk(f`(z))) = f`(z) because fk ∈
ksym .C and that fk(f`(z)) = fk`(z) because fk` R (fk, f`),
that last line becomes

f ′k(f ′`(z
′)) = k.put(`.put(z, k.get(fk`(z))), fk`(z))

= f ′k`(z
′)

so the second parts of the outputs are related after all, and
a.putl ∼R b.putl .

3. The relation

R = {(() 7→ x, x) | x ∈ X}
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witnesses the equivalence.
4. The relation

R = {(fk`, (fk, f`)) | fk`(y, w) = (fk(y), f`(w))}
witnesses the equivalence.

5. Suppose k ∈ X
a↔ Y and ` ∈ Z

a↔ W . Define the following
functions:

g ∈ ((Y → X) + (W → Z))× (Y ∪W ) → X + Z

g(inl fk, yw) =


inl fk(yw) yw ∈ Y
inr `.create(yw) yw ∈ W \ Y

g(inr f`, yw) =


inr f`(yw) yw ∈ W
inl k.create(yw) yw ∈ Y \W

tag ∈ (Y → X) + (W → Z) → Bool

tag(inl fk) = false

tag(inr f`) = true

Then we can define the relation

R = {(g(f), (f, tag(f))) | f ∈ (ksym ⊕f `sym).C}.
It is tedious but straightforward to verify that this witnesses the
equivalence.

6. (`∗)sym .C comprises functions f : Y ∗ → X∗ such that
f([y1, . . . , yn]) = [x1, . . . , xm] implies m = n and `.get(xi) =
yi.
The complement mapf (`sym).C on the other hand com-
prises lists of functions [f1, . . . , fn] where fi : Y → X
and `.get(fi(y)) = y. Relate two such complements f
and [f1, . . . , fn] if f([y1, . . . , ym]) = [x1, . . . , xm] implies
xi = fi(yi) when i ≤ n and xi = `.create(yi) otherwise.
Clearly, the two “missings” are thus related and it is also
easy to see that putr is respected. As for the putl direc-
tion consider that f and [f1, . . . , fn] are related and that
ys = [y1, . . . , ym] is do be putl -ed. Let [x1, . . . , xk] be
the result in the (f∗)sym direction. It follows k = m and
[x1, . . . , xm] = f([y1, . . . , ym]). If [x′1, . . . , x

′
m] is the re-

sult in the mapf (`sym) direction then x′i = fi(yi) if i ≤ n
and x′i = `.create(yi) otherwise. Now xi = x′i follows by
relatedness.
The new (`∗)sym complement then is λys.(`∗).put(ys, xs).
The new mapf (`sym) complement is [g1, . . . , gm] where
gi(y) = `.put(xi, y). These are clearly related again. �

The (−)sym functor is not full—that is, there are some symmet-
ric lenses which are not the image of any asymmetric lens. Injection
lenses, for example, have no analog in the category of asymmetric
lenses, and the composer lens illustrated in Figure 1 cannot be im-
plemented as an asymmetric lens. However, we can characterize
symmetric lenses in terms of asymmetric ones in a slightly more
elaborate way.

9.4 Theorem: Given any arrow ` of LENS, there are asymmetric
lenses k1, k2 such that

(ksym
1 )op ; ksym

2 = `.

This suggests that the category LENS could be constructed from
spans in ALENS. We choose not to try this because it makes many
things more awkward. While it is possible to define composition of
spans with a pullback construction, it would—as in our account—
not be associative unless some equivalence would be imposed.
However, in the span presentation there does not seem to be a natu-
ral and easy-to-use candidate for such an equivalence. Of course,
going back-and-forth via symmetric lenses does induce such an
equivalence.

To see this, we need to know how to “asymmetrize” a symmetric
lens.

9.5 Definition: We can view a symmetric lens as a pair of asym-
metric lenses joined “tail to tail” whose common domain is consis-
tent triples. For any lens ` ∈ X ↔ Y , define

S` = {(x, y, c) ∈ X × Y × `.C | `.putr(x, c) = (y, c)}.
Now define:

` ∈ X ↔ Y

`asymr ∈ S`
a↔ X

get((x, y, c)) = x
put(x′, (x, y, c)) = let (y′, c′) = `.putr(x′, c)

in (x′, y′, c′)
create(x) = let (y, c) = `.putr(x, `.missing)

in (x, y, c)

` ∈ X ↔ Y

`asyml ∈ S`
a↔ Y

get((x, y, c)) = y
put(y′, (x, y, c)) = let (x′, c′) = `.putl(y′, c)

in (x′, y′, c′)
create(y) = let (x, c) = `.putl(y, `.missing)

in (x, y, c)

Proof of well-formedness: We show only that `asymr is well-
formed; the proof for `asyml is similar.
GETPUT:

put(get((x, y, c)), (x, y, c)) = put(x, (x, y, c))

= let (y′, c′) = `.putr(x, c)

in (x, y′, c′)

= (x, y, c)

The final equality is justified because (x, y, c) is a consistent triple.
PUTGET:

get(put(x′, (x, y, c))) = let (y′, c′) = `.putr(x′, c)

in get((x′, y′, c′))

= x′

CREATEGET:

get(create(x)) = let (y, c) = `.putr(x, `.missing)

in get((x, y, c))

= x

In addition to the three round-trip laws, we must show that put
and create yield consistent triples. But this is clear: the PUTR2 law
is exactly what we need. �

Proof of 9.4: Given arrow [`], choose k1 = `asymr and k2 =
`asyml . Writing `r for ((`asymr )sym)op and `l for (`asyml )sym , we
then need to show that `r; `l ≡ `. Define two functions:

fc(x) = let (y, c′) = `.putr(x, c) in (x, y, c′)

gc(y) = let (x, c′) = `.putl(y, c) in (x, y, c′)

Then the relation R = {((fc, gc), c) | c ∈ C} witnesses the
equivalence. We can check the definitions to discover that

`r.missing = `asymr .create = f`.missing

`l.missing = `asyml .create = g`.missing

18 2010/7/28



and hence that (`r; `l).missing R `.missing .
We also need to show that (`r; `l).putr and `.putr are well-

behaved with respect to R. Suppose `.putr(x, c) = (y, c′); then
we need to show that (`r; `l).putr(x, (fc, gc)) = (y, (fc′ , gc′)).
First we compute `r.putr(x, fc):

`r.putr(x, fc) = ((`asymr )sym)op .putr(x, fc)

= (`asymr )sym .putl(x, fc)

= let t = fc(x) in (t, x′ 7→ `asymr .put(x′, t))

= let (y, c′) = `.putr(x, c) in

((x, y, c′), x′ 7→ `asymr .put(x′, (x, y, c′)))

= ((x, y, c′), x′ 7→ `asymr .put(x′, (x, y, c′)))

= ((x, y, c′), fc′)

We then compute `l.putr((x, y, c′), gc):

`l.putr((x, y, c′), gc) = (`asyml )sym .putr((x, y, c′), gc)

= (`asyml .get((x, y, c′)),

y′ 7→ `asyml .put(y′, (x, y, c′)))

= (y, y′ 7→ `asyml .put(y′, (x, y, c′)))

= (y, gc′)

We conclude from this that (`r; `l).putr(x, (fc, gc)) = (y, (fc′ , gc′))
as desired.

The argument that (`r; `l).putl and `.putl are well-behaved
with respect to R is almost identical. �

10. Related Work
There is now a large literature on lenses and related approaches
to propagating updates between connected structures. We discuss
only the most closely related work here; good general surveys of
the area can be found in [8, 15]. Connections to the literature on
view update in databases are surveyed in [12].

The first symmetric approach to update propagation was pro-
posed by Meertens [26] and followed up in the context of model-
driven design by Stevens [29] and Diskin [11]. Meertens suggests
modeling synchronization between two sets X and Y by a con-
sistency relation R ⊆ X × Y and two consistency maintainers
/ : X × Y → X and . : X × Y → Y such that (x / y) R y and
x R (x . y) always hold, and such that x R y implies x / y = x
and x . y = y.

The main advantage of symmetric lenses over consistency
maintainers is their closure under composition. Indeed, all of the
aforementioned authors note that, in general, consistency main-
tainers do not compose and view this as a drawback. Suppose that
we have relations R ⊆ X × Y and R′ ⊆ Y × Z maintained by
., / and .′, /′, resp. If we want to construct a maintainer for the
composition R; R′, we face the problem that, given x ∈ X and
z ∈ Z, there is no canonical way of coming up with a y ∈ Y
that will allow us to use either of the existing maintainer functions.
Concretely, Meertens gives the following counterexample. Let X
be the set of nonempty context free grammars over some alpha-
bet, and let Y be the set of words over that same alphabet. Let
R ⊆ X × Y be given by G R x ⇐⇒ x ∈ L(G). It is easy
to define computable maintainer functions making this relation a
constraint maintainer. Composing this relation with its opposite
yields an undecidable relation (namely, whether the intersection
of two context-free grammars is nonempty), so there cannot be
computable maintainer functions.

We can transform any constraint maintainer into a symmetric
lens as follows: take the relation R itself (viewed as a set of pairs) as
the complement, and define putl(x′, (x, y)) = (x′ .y, (x′, x′ .y))
and similarly for putr . If we compose such a symmetric lens with

its opposite we obtain R×Rop as the complement and, for example,
putr(x′, ((x1, y1), (y2, x2))) = (x2/(x′.y1), ((x

′, x′.y1), (x
′.

y1, x2/(x′.y1)))). For Meertens’ counterexample, we would have
complements of the form ((G1, w1), (w2, G2)), with w1 ∈ L(G1)
and w2 ∈ L(G2); “putr”-ing a new grammar G′

1 through the com-
posed lens yields the complement ((G′

1, w
′
1), (w

′
1, G

′
2)), where w′

1

is w1 if w1 ∈ L(G1) and some default otherwise, and where
G′

2 = G2 if w′
1 ∈ L(G2) and S→w′

1 (where S is the start
state) otherwise. Meertens recommends using a chain of consis-
tency maintainers in such a situation to achieve a similar effect;
however, the properties of such chains have not been explored.

For asymmetric lenses, a number of alternative choices of be-
havioral laws have been explored. Some of these are strictly weaker
than ours; for example, a number of papers from a community of
researchers based in Tokyo replace the PUTGET law with a some-
what looser PUTGETPUT law, permitting a broader range of useful
behaviors for lenses that duplicate information. It would be inter-
esting to see what kind of categorical structures arise from these
choices. The proposal by Matsuda et al.[25] is particularly interest-
ing because it also employs the idea of complements. Conversely,
stronger laws can be imagined, such as the PUTPUT law discussed
by Foster et al. [12] and the more refined variants in [14].

A different foundation for defining lenses by recursion was
explored by Foster et al. [12], using standard tools from domain
theory to define monotonicity and continuity for lens combinators
parametrized on other lenses. The main drawback of this approach
is that the required (manual) proofs that such recursive lenses are
total tend to be somewhat intricate. By contrast, we expect that our
initial-algebra approach can be equipped with automatic proofs of
totality (that is, choices of the weight function w) in many cases of
interest.

11. Conclusions and Future Work
We have proposed the first notion of symmetric bidirectional trans-
formations that supports composition. Composability opens up the
study of symmetric bidirectional transformations from a category-
theoretic perspective. We have explored the category of symmetric
lenses, which is self-dual and has the category of bijections and that
of asymmetric lenses each as full subcategories. We have surveyed
the structure of this category and found it to admit tensor product
structures that are the Cartesian product and disjoint union on ob-
jects. We have also investigated datatypes both inductively and as
“containers” and found the category of symmetric lenses to support
powerful mapping and folding constructs.

Syntax Although we have focused here on semantic and alge-
braic foundations, many of our constructions have a straightfor-
ward syntactic realization. In particular, it is easy to give a string-
transformation interpretation to all the constructions in Sections 4
to 6 (including lenses over lists); these could easily be used to build
a symmetric version of Boomerang [7].

More interesting would be to eliminate Boomerang’s built-in
lists and instead obtain lenses over lists and other structures (map-
ping, reversing, flattening of lists, transforming trees into lists)
solely by using the combinators derived from the category-theoretic
structure we have exhibited. To accomplish this, two further fine
points need to be considered. First, we would want an automatic
way for discovering weight functions for iterators. We believe that
a straightforward termination analysis based on unfolding (similar
to the one built into Coq) could help, but the details remain to be
checked. And second, we must invent a formal syntax for program-
ming with containers. Surprisingly, the existing literature does not
seem to contain such a proposal.

More speculatively, it is a well-known folklore result that sym-
metric monoidal categories are in 1-1 correspondence with wiring
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diagrams and with first-order linear lambda calculus. We would
like to exploit this correspondence to design a lambda-calculus-
like syntax for symmetric lenses and perhaps also a diagrammatic
language. The linear lambda calculus has judgments of the form
x1:A1, . . . , xn:An ` t : A0, where A0, . . . , An are sets or possi-
bly syntactic type expressions and where t is a linear term made up
from basic lenses, lens combinators, and the variables x1, . . . , xn.
This could be taken as denoting a symmetric lens A1⊗· · ·⊗An ↔
A0. For example, here is such a term for the lens concat ′ from Sec-
tion 7.2:
z:Unit ⊕A⊗A? ⊗A? ` match z with

| inl () 7→ termop
〈〉

| inr (a, al, ar) 7→ concat(a:al, ar)

The interpretation of such a term in the category of lenses then takes
care of the appropriate insertion of bijective lenses for regrouping
and swapping tensor products.

Complements as States One benefit of treating complements ex-
plicitly is that it opens the way to a stateful presentation of lenses.
The idea is that the complement of a lens can be thought of as its lo-
cal storage—the part of the heap that belongs to it. An obvious next
step is that, instead of the lens components taking the local storage
as an argument and returning an updated version as a result, they
can just hang onto it themselves, internally, in mutable variables.
The types of the put operations then become just

`.putr ∈ A → B
`.putl ∈ B → A

where the→ is now a “programming language function type,” with
the usual implicit treatment of the heap. This avoids destructing the
given C each time we propagate an update and rebuilding a new
C to yield as a result, improving the efficiency of the implemen-
tation. An additional improvement comes from the next potential
extension.

Alignment and Delta Lenses As we mentioned in Section 2,
dealing correctly with alignment of structured information is cru-
cial in practice. This issue has been extensively explored in the
context of asymmetric lenses, and it seems it should be possible
to adapt existing ideas such as dictionary lenses [7] and matching
lenses [5] to symmetric lenses. An even better approach might be to
change the fundamental nature of lenses so that, instead of working
directly with entire structures, they work with deltas—descriptions
of changes to the structures. These deltas can arise from simple po-
sitional judgments, as in this paper, from diff-like heuristics, from
cues within the data itself, or perhaps even from user interaction—
the lens itself doesn’t need to know anything about this.

Many of our basic constructions can be adapted to deltas by
taking the domain and codomain of a lens to be monoids (of edit
operations) instead of sets, and then, for each lens construction,
defining an appropriate edit monoid from the monoids of its com-
ponents. For example, an edit for a pair lens is a pair of edits for the
left- and right-hand sides of the pair. However, more thought is re-
quired to make this scheme really work: applying this idea naively
leads to insufficiently expressive edit languages for structures like
lists. In particular, we would like to see insertion and deletion as
edit operations on lists (and rotations and the like for trees, etc.).
Currently, we believe that containers are a promising framework
for this endeavour.
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