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David N. TurnerAn Teallach LimitedTechnology Transfer CenterKing's BuildingsEdinburgh, EH9 3JL, UKdnt@an-teallach.comIndiana UniversityCSCI Technical Report #493November 12, 1997AbstractWe study two partial type inference methods for a language combining subtyping and impredicative poly-morphism. Both methods are local in the sense that missing annotations are recovered using only informationfrom adjacent nodes in the syntax tree, without long-distance constraints such as uni�cation variables. Onemethod infers type arguments in polymorphic applications using a local constraint solver. The other infersannotations on bound variables in function abstractions by propagating type constraints downward fromenclosing application nodes. We motivate our design choices by a statistical analysis of the uses of typeinference in a sizable body of existing ML code.1 IntroductionMost statically typed programming languages o�er some form of type inference, allowing programmers toomit type annotations that can be recovered from context. Such a facility can eliminate a great dealof needless verbosity, making programs easier both to read and to write. Unfortunately, type inferencetechnology has not kept pace with developments in type systems. In particular, the combination of subtypingand parametric polymorphism has been intensively studied for more than a decade in calculi such as SystemF� [CW85, CG92, CMMS94, etc.], but these features have not yet been satisfactorily integrated with practicaltype inference methods. Part of the reason for this gap is that most work on type inference for this class oflanguages has concentrated on the di�cult problem of developing complete methods, which are guaranteed toinfer types, whenever possible, for entirely unannotated programs. In this paper, we pursue a much simpleralternative, re�ning the idea of partial type inference with the additional simplifying principle that missingannotations should be recovered using only types propagated locally, from adjacent nodes in the syntax tree.Our goal is to develop simple, well-behaved type inference techniques for new language designs in thestyle of Quest [Car91], Pizza [OW97], or ML2000|designs supporting both object-oriented programmingidioms and the characteristic coding styles of languages such as ML and Haskell. It has recently becomefashionable to refer to these languages as HOT (\higher-order, typed"). By extension, we can speak of aHOT programming style|a style in which (1) the use of higher-order functions and anonymous abstractionsis encouraged; (2) polymorphic de�nitions are used freely and at a fairly �ne grain (for individual functionde�nitions rather than whole modules); and (3) \pure" data structures are used instead of mutable state,whenever possible. 1



2In particular, we are concerned with languages whose type-theoretic core combines subtyping and im-predicative polymorphism in the style of System F [Gir72, Rey74]. This combination of features places us inthe realm of partial type inference methods, since complete type inference for impredicative polymorphismalone is already known to be undecidable [Wel94], and the addition of subtyping does not seem to makethe problem any easier. (For the combination of subtyping with Hindley/Milner-style polymorphic typeinference, promising results have recently been reported [AW93, EST95, JW95, TS96, SOW97, FF97, Pot97,etc.], but practical checkers based on these results have yet to see widespread use.)How Much Inference Is Enough?The job of a partial type inference algorithm should be to eliminate especially those type annotations thatare both common and silly|i.e., those that can be neither justi�ed on the basis of their value as checkeddocumentation nor ignored because they are rare.Unfortunately, each of the characteristic features of the HOT programming style (polymorphic instanti-ation, anonymous function abstractions, and local variable bindings) does give rise to a certain number ofsilly annotations that would not be required if the same program were expressed in a �rst-order, imperativestyle. To get a rough idea of the actual numbers, we made some simple measurements of a sizable bodyof existing HOT code|about 160,000 lines of ML, written by several di�erent programming teams. Theresults of these measurements can be summarized as follows (they are reported in detail in Appendix A):� Polymorphic instantiation (i.e., type application) is ubiquitous, occurring in every third line of code,on average.� Anonymous function de�nitions occur anywhere from once per 10 lines to once per 100 lines of code,depending on style.� Local variable bindings occur once every 12 lines, but, in all but one of the programs we measured,local de�nitions of functions only occur once every 66 lines.These observations give a fairly clear indication of the properties that a type inference scheme should havein order to support a HOT programming style conveniently:1. To make �ne-grained polymorphism tolerable, type arguments in applications of polymorphic functionsmust usually be inferred. However, it is acceptable to require annotations on the bound variables oftop-level function de�nitions (since these usually provide useful documentation) and local functionde�nitions (since these are relatively rare).2. To make higher-order programming convenient, it is helpful, though not absolutely necessary, to inferthe types of parameters to anonymous function de�nitions.3. To support a mostly functional style (where the manipulation of pure data structures leads to manylocal variable bindings), local bindings should not normally require explicit annotations.Note that, even though we have motivated our design choices by an analysis of ML programming styles,it is not our intention to provide the same degree of type inference as is possible in languages based onHindley-Milner polymorphism. Rather, we want to exchange complete type inference for simpler methodsthat work well in the presence of more powerful type-theoretic features such as subtyping and impredicativepolymorphism.Local Type InferenceIn this paper, we propose two speci�c partial type inference techniques that, together, satisfy all three of therequirements listed above.1. An algorithm for local synthesis of type arguments that infers the \locally best possible" values fortypes omitted from polymorphic applications whenever such best values exist. The expected andactual types of the term arguments are compared to yield a set of subtyping constraints on the missingtype arguments; their values are then selected so as to satisfy these constraints while making the resulttype of the whole application as informative (small) as possible.



32. Bidirectional propagation of type information allows the types of parameters of anonymous functions tobe inferred. When an anonymous function appears as an argument to another function, the expecteddomain type is used as the expected type for the anonymous abstraction, allowing the type annotationson its parameters to be omitted. A similar, but even simpler, technique infers type annotations onlocal variable bindings.Both of these methods are local, in the sense that type information is propagated only between adjacent nodesin the syntax tree. Indeed, their simplicity|and, in the case of type argument synthesis, its completenessrelative to a simple declarative speci�cation|rests on this property.The remainder of the paper is organized as follows. In the next section, we de�ne a fully typed internallanguage. Sections 3 and 4 develop the techniques of local synthesis of type arguments and bidirectionalchecking in detail. Section 5 sketches some possible extensions. Section 6 surveys related work. Section 7o�ers evaluation and concluding remarks. Details of our measurements of ML programs appear in Ap-pendix A.2 Internal FormWhen discussing type inference, it is useful to think of a statically typed language in three parts:1. Syntax, typing rules, and semantics for a fully typed internal form.2. An external form in which some type annotations are made optional or omitted entirely. This is thelanguage that the programmer actually uses. (In some languages, the internal and external languagemay di�er in more than just type annotations, and type inference may perform nontrivial transfor-mations on program structure. For example, under certain assumptions ML's generic let-de�nitionmechanism can be viewed in this way.)3. Some speci�cation of a type inference relation between the external form and the internal one. (Theterms type inference, type reconstruction, and type synthesis have all been used for this relation, withslightly di�erent meanings. We choose \inference" as the most generic.)In explicitly typed languages, the external and internal forms are essentially the same and the type recon-struction relation is the identity. In implicitly typed languages, the external form allows all type annotationsto be omitted and type reconstruction promises to �ll in all missing type information. On the other hand,we can describe a language as partially typed if the internal and external forms are not the same, but thespeci�cation of type inference does not guarantee that omitted annotations can always be inferred.1Our internal language|the target for the type inference methods described in Sections 3 and 4|isbased on System F�, Cardelli and Wegner's core calculus of subtyping and impredicative polymorphism.We consider here a simpli�ed fragment of the full system, in which variables are all unbounded (i.e., allquanti�ers are of the form All(X)T, not All(X<:S)T). The treatment here here can be extended to deal withbounded quanti�ers (see Section 5 and [PT97a]), but the simple language presented here is enough to showall of the essential ideas and the technical development is easier to follow.2.1 SyntaxBesides the restriction to unbounded quanti�ers, we modify the usual de�nition of System F� [CW85] intwo signi�cant ways. First, we add a minimal type Bot. As we shall see in Section 3, our type inferencealgorithm keeps track of various type constraints by calculating the least upper bound and greatest lowerbound of pairs of types. The Bot type plays a crucial role in these calculations, since without it we could notguarantee that least upper-bounds and greatest lower-bounds always exist. Second, we extend abstractionand application so that several arguments (including both types and terms) may be passed at the same time.In other words, we favor a \fully uncurried" style of function de�nition and application (though currying is,1Another possible sense of the phrase partial type inference occurs when the speci�cation of type reconstruction is onlypartially implementable: the language de�nition promises to infer more than the compiler can actually do. We reject thisde�nition, since it leads to unportable programs.



4of course, still available). This bias will play an important role in our scheme for inferring type argumentsin Section 3. The syntax of types, terms, and typing contexts in the internal language is as follows:T ::= X type variableTop maximal typeBot minimal typeAll(X)T!T function typee ::= x variablefun[X](x:T)e abstractione[T](e) application� ::= � empty context�; x:T variable binding�; X type variable bindingWe use the meta-variables R, S, T, U, and V to range over types; e and f range over terms. We use thenotation X to denote the sequence X1,...,Xn, and similarly x:T to denote x1:T1,...,xn:Tn. We write �(x)for the type of x in �.We write S!T as an abbreviation for the monomorphic function type All()S!T. Similarly, we writefun(x:T)e as an abbreviation for the monomorphic function fun[](x:T)e.Types, terms, contexts, and judgements that di�er only in the names of bound variables are regardedas identical. Binders in contexts are assumed to have distinct names; when a new binding is added to acontext, we assume that it has been renamed so as to maintain this invariant. The rules for scoping ofbound variables are as usual (in All(X)S!T, the variables X are in scope in S and T). FV(T), the set of typevariables free in T, is de�ned is the usual way.2.2 SubtypingOur subtyping relation is quite simple because of the restriction to unbounded quanti�cation. In particular,the addition of the bottom type Bot in this context is straightforward. We write S <: T to mean \jSj = jTjand Si <: Ti for all 1 � i � jSj." X <: X (S-Refl)T <: Top (S-Top)Bot <: T (S-Bot)T <: R S <: UAll(X)R!S <: All(X)T!U (S-Fun)For simplicity, we use an algorithmic presentation of subtyping, in which the rules of transitivity and generalreexivity are omitted and recovered as properties of the de�nition:2.2.1 Lemma [Transitivity]: If S <: T and T <: U then S <: U.Proof: A simple induction on the derivations of S <: T and T <: U. The cases involving Top and Bot relyon the fact that R <: Bot implies R = Bot, and Top <: R implies R = Top. �2.2.2 Lemma [Reexivity]: T <: T, for all T.Proof: A simple induction on the structure of T. �



5We use the notation S _ T to denote the least upper bound of S and T, and S ^ T for the greatest lowerbound of S and T. T _ Top = TopTop _ T = TopT _ Bot = TBot _ T = TX _ X = XAll(X)R!S _ All(X)T!U = All(X)(R ^ T)!(S _ U)T ^ Top = TTop ^ T = TT ^ Bot = BotBot ^ T = BotX ^ X = XAll(X)R!S ^ All(X)T!U = All(X)(R _ T)!(S ^ U)It is easy to check that these de�nitions have the appropriate universal properties:2.2.3 Lemma:1. S <: (S _ T) and T <: (S _ T).2. (S ^ T) <: S and (S ^ T) <: T.Proof: We prove both parts simultaneously, using induction on the structure of S and T. �2.2.4 Lemma:1. If S <: U and T <: U then (S _ T) <: U.2. If U <: S and U <: T then U <: (S ^ T).Proof: We prove both parts simultaneously, using induction on the structure of U. �2.3 Explicit Typing RulesThe typing relation � ` e 2 T is essentially the standard one, except that, as in the de�nition of subtyping,we use an algorithmic presentation, omitting the usual rule of subsumption (\if e 2 S and S <: T, thene 2 T"); instead, the rules below calculate for each typable term a single manifest type, corresponding to itsminimal type in the system with subsumption. For subtyping, the choice of algorithmic presentation wasmade for the sake of simplicity. Here, it is actually crucial: our type inference methods depend on the factthat a typable term has a unique type, and that this type can easily be predicted by the programmer. (Notethat this stylistic choice does not change the set of typable terms.)The typing rule for variables is standard. � ` x 2 �(x) (Var)The rule for (multi-)abstractions combines the usual rules for term and type abstractions.�; X; x:S ` e 2 T� ` fun[X](x:S)e 2 All(X)S!T (Abs)Similarly, the rule for applications combines the usual application and polymorphic application rules. Wecalculate the type of the function and check that the provided term and type arguments are consistent withthe function type. The result type of the application is found by substituting the actual type arguments intothe function's result type.



6� ` f 2 All(X)S!R � ` e <: [T=X]S� ` f[T](e) 2 [T=X]R (App)(� ` e <: T here is an abbreviation for \� ` e 2 S and S <: T.")To �nish the de�nition of the typing relation, another rule is required. To see why, note that Bot <:All(X)S!T for any X, S, and T. This means that any expression of type Bot should be applicable to any setof well-formed type and expression arguments (if we did not allow for this behavior, we would lose the typesoundness property): � ` f 2 Bot � ` e 2 S� ` f[T](e) 2 Bot (App-Bot)Note that the above rule gives the expression f[T](e) result type Bot, the most informative result type forthe expression.2.3.1 Theorem [Uniqueness of manifest types]: If � ` e 2 S and � ` e 2 T, then S = T.The de�nitions of operational and denotational semantics for the internal language are standard, asare proofs of properties such as subject reduction and absence of runtime errors. Evaluation order may bechosen either call-by-name or call-by-value; function spaces may be interpreted as either total or partial. Theonly slightly unusual case is the type Bot, which can be interpreted as an empty type (in a total-functionsemantics) or a type containing only divergent terms (in a partial function semantics).3 Local Type Argument SynthesisIn the introduction, we identi�ed three categories of type annotations that are worth inferring automatically:type arguments in applications of polymorphic functions, annotations on bound variables in anonymousfunction abstractions, and annotations on local variable bindings. In this section, we address the �rst ofthese, leaving the second and third for Section 4.Our measurements of ML programs (presented in Appendix A) showed that type arguments to polymor-phic functions are inferred by the ML typechecker on at least one line in every three, in typical programs.Moreover, explicit type arguments rarely have any useful documentation value. We therefore believe thatit is essential to have some form of type argument synthesis in any language intended to support HOTprogramming. As an example, consider the polymorphic identity function id with type All(X)X!X. Ourgoal is to allow the programmer to apply the id function without explicitly supplying any type arguments:id(3) rather than id[Int](3).When considering the general problem of type argument synthesis, the �rst question we have to answer is:How do we decide where type arguments have been omitted (and therefore need to be synthesized)? In thevariant of F� we presented in Section 2, the answer is simple: we look for application nodes where the functionis polymorphic but there are no explicit type arguments. For example, the fact that id is polymorphic makesit clear that a type argument is missing in the application id(3). (An alternative approach is to requirean explicit marker at each point where a type argument is missing. We did not pursue this scheme, sincemarking all the positions where a type argument is required can be quite cumbersome. However, some ofthe partial type inference schemes proposed by Pfenning have used this scheme, with additional re�nementswhich allow the type argument markers themselves to be elided.)The second problem we have to address is the fact that, in general, there may be a number of di�erent typearguments that we can pick for a particular application. For example, both id[Int](x) and id[Real](x)are valid completions of the term id(x), where x 2 Int and Int is a subtype of Real. Fortunately, there isusually a good way to choose between all the alternatives: we pick the type arguments that yield the best(smallest) type for the result. In the case of id(x), we choose id[Int](x) since this has result type Int,which is more informative type than the result type Real of id[Real](x).Sadly, there are cases where there is no best result type. Suppose, for example, that f has typeAll(X)()!(X!X) (a function which takes a single type argument X and returns a function from X to X).



7Two possible completions of the term f() are f[Int]() and f[Real](), which have result types Int!Intand Real!Real. These two result types are incomparable in the subtyping relation, so there is no \best"result type available. In this case type argument synthesis will fail, since it is not possible to locally determinethe missing type arguments for f (in Section 4 we show how propagating additional contextual informationsometimes allows us to avoid this situation).3.1 Speci�cationThe syntax of the external language is identical to that of the internal language, since external-languageapplications can already be written without type arguments. All we need to do is to de�ne a three-placetype inference relation: � ` e 2 T) e0Intuitively, this relation can be read \In context �, type annotations can be added to the external languageterm e to yield the internal language term e0, which has type T."The speci�cation of the type inference relation is quite simple. For each typing rule in the internallanguage with conclusion � ` e 2 T, the type inference relation contains an analogous rule with conclusion� ` e 2 T ) e0, where e0 is derived in the obvious way from the fully typed subexpressions yielded bysubderivations. To these rules is added one additional rule, handling the case where type arguments areomitted: � ` f 2 All(X)T!R) f0� ` e 2 S) e0 jXj > 0 S <: [U=X]T8V: (S <: [V=X]T implies [U=X]R <: [V=X]R)� ` f(e) 2 [U=X]R) f0[U](e0) (App-InfSpec)The condition jXj > 0 says that type argument synthesis is only required in the case where the function f ispolymorphic but there are no explicit type arguments. (For simplicity, we don't synthesize type argumentsin the case where an application node provides some, but not all, of its required type arguments explicitly.This would be easy to do, but does not seem very useful in practice.)The type arguments U that we pick in the conclusion of our synthesis rule must satisfy a number ofconditions. Firstly, the types of the value parameters S must be subtypes of the function's parameter types[U=X]T. Secondly, the arguments U must be chosen in such a way that any other choice of arguments Vsatisfying the previous condition will yield a less informative result type, i.e., a supertype of [U=X]R.To state the formal properties of this technique, we need to relate terms in the internal language to termsin the external language. We say that a term e is a partial erasure of e0 if e can be obtained from e0 byerasing some type annotations (i.e., deleting type arguments from one or more applications).3.1.1 Theorem [Soundness]:If � ` e 2 T) e0, then e is a partial erasure of e0 and � ` e0 2 T.Proof: Straightforward from the de�nition. �Since we are dealing with a partial type inference technique, we cannot expect a completeness property atthis point. However, we can show that the type inference relation is \locally complete" in the sense that itsspeci�cation guarantees that it will �nd the best values for missing type arguments in a single application,whenever these exist.3.1.2 Theorem [Partial Completeness]: If � ` e 2 T (i.e., e is fully typed), then � ` e 2 T) e.Proof: Straightforward since, in inferring types for a fully typed program, the local type argument synthesisrule can never be used. �It should be emphasized that the App-InfSpec rule (together with the rest of the rules for the typingrelation of the internal language), constitutes a complete speci�cation of the type inference relation: it is allthat a programmer needs to understand in order to use the language. Only the compiler writer needs to gofurther into the development in the rest of the section, whose job is to show how the rule we have given canbe implemented.



83.2 Variable EliminationIn the constraint-generation algorithm that we present in the next section, it will sometimes be necessary toeliminate all occurrences of a certain set of variables from a given type by promoting or demoting the typeuntil we reach a supertype in which these variables do not occur. Formally, we write S *V T for the relation\T is the least supertype of S such that FV(T) \ V = ;" and S +V T for the dual relation \T is the greatestsubtype of S such that FV(T)\ V = ;." Fortunately, such types can always be found. For example, supposeV = fXg; then (X,Int)!X *V (Bot,Int)!Top.The variable-elimination-by-promotion relation can be computed as follows:Top *V Top (VU-Top)Bot *V Bot (VU-Bot)X 2 VX *V Top (VU-Var-1)X =2 VX *V X (VU-Var-2)S +V U T *V VAll(X)S!T *V All(X)U!V (VU-Fun)The relation S +V T is de�ned analogously: Top +V Top (VD-Top)Bot +V Bot (VD-Bot)X 2 VX +V Bot (VD-Var-1)X =2 VX +V X (VD-Var-2)S *V U T +V VAll(X)S!T +V All(X)U!V (VD-Fun)It is easy to check that *V and +V are total functions, for any given set V . (These functions are similar tothe ones used in [GP97], but somewhat simpler because of the presence of Bot in our type system.)3.2.1 Lemma [Soundness]:1. If S *V T then FV(T) \ V = ; and S <: T.2. If S +V T then FV(T) \ V = ; and T <: S.Proof: A simple simultaneous induction on the variable-elimination derivations. �3.2.2 Lemma [Completeness]:1. If S <: T and FV(T) \ V = ;, then S *V R with R <: T.2. If T <: S and FV(T) \ V = ;, then S +V R with T <: R.Proof: A simple simultaneous induction on the subtype derivations, using the fact that, for all R, X <: Rimplies R = X or R = Top, and R <: X implies R = Bot or R = X. �



93.3 Constraint GenerationNext, we introduce the constraint sets that will be manipulated by our algorithm. Each constraint has theform Si <: Xi <: Ti, recording a lower and upper bound for Xi. An X=V -constraint set C has the formfSi <: Xi <: Ti j (FV(Si) [ FV(Ti)) \ V = ;g:The empty X=V -constraint set, written ;, contains the trivial constraint Bot <: Xi <: Top for each variableXi. The singleton X=V -constraint set fS <: Xi <: Tg includes the constraint S <: Xi <: T for Xi and trivialconstraints for every other Xj . The meet of two X=V -constraints C and D, written C ^ D, is de�ned asfollows: fS _ U <: Xi <: T ^ V j S <: Xi <: T 2 C and U <: Xi <: V 2 DgWe write VC to abbreviate C1 ^ : : : ^ Cn.Our constraint generation rules have the formV `X S <: T) Cand de�ne a partial function that, given a set of type variables V , a set of unknowns X, and two types S andT, calculates the minimal X=V -constraint set C that guarantees S <: T.The set V allows us to avoid generating nonsensical constraint sets in which bound variables are men-tioned outside their scopes (this part of the constraint generation problem is similar to mixed-pre�x uni�-cation [Mil92]). For example, if we are interested in constraining X so that All(Y)()!(Y!Y) is a subtypeof All(Y)()!X, we should not return the constraint set fY!Y <: X <: Topg, since Y would be out of scope.Instead, we should return the constraint set fBot!Top <: X <: Topg, which is in fact the weakest constrainton X guaranteeing that All(Y)()!(Y!Y) is a subtype of All(Y)()!X.Our constraint generation algorithm is de�ned by the following collection of rules. In the de�nition, wesuppose that X \ V = ;. More importantly, we assume (and recursively maintain) the invariant that onlyone of S and T mentions the variables X (i.e. either FV(S) \ X = ; or FV(T) \ X = ;). This is crucial to thecompleteness of the algorithm, since it ensures we only have to solve a matching problem (modulo subtyping)rather than a uni�cation problem. V `X T <: Top) ; (CG-Top)V `X Bot <: T) ; (CG-Bot)Y 2 X S +V TV `X Y <: S) fBot <: Y <: Tg (CG-Upper)Y 2 X S *V TV `X S <: Y) fT <: Y <: Topg (CG-Lower)V `X Y <: Y) ; (CG-Refl)V [ fYg `X T <: R) C V [ fYg `X S <: U) DY \ V = ; Y \ X = ; FV(�) \ Y = ;V `X All(Y)R!S <: All(Y)T!U) (VC)^D (CG-Fun)Note that the C returned by the above algorithm is always an X=V -constraint set. Also, if V `X S <: T) Cand the variables X do not appear in S or T, then the constraint set C is always the empty constraint. Theconstraint generator in this case is e�ectively just the subtyping relation.



103.4 Soundness and Completeness of Constraint GenerationEach constraint set returned by the constraint generator characterizes a collection of substitutions associatingconcrete types with the names of the missing type parameters. An X=V -substitution � is a �nite map fromtype variables to types whose domain is X with FV(�Xi) \ V = ; for all Xi. We write �[Xi 7! T] for thesubstitution that behaves like � everywhere except at Xi, where its value is T.Suppose � is an X=V -substitution and X \ V = ;. We say that � satis�es an X=V -constraint set C,written � 2 C, i� Si <: �(Xi) <: Ti for each (Si <: Xi <: Ti) 2 C. A constraint set is satis�able if there is somesubstitution that satis�es it. Note that this condition can be checked very easily, by verifying that Si <: Tifor each (Si <: Xi <: Ti) 2 C.If C and D are two X=V -constraint sets such that � 2 C implies � 2 D for all �, we say that C is moredemanding than D. Note that the meet of constraint sets de�ned previously yields a greatest lower boundin this ordering and that the empty constraint set is maximal (i.e., least demanding).3.4.1 Proposition [Soundness]: Suppose that either FV(S)\ X = ; or FV(T)\ X = ;. If V `X S <: T) Cand � 2 C, then �S <: �T.Proof: By induction on the derivation of V `X S <: T) C.Case: V `X S <: Top) ;Immediate, since �Top = Top and �S <: Top for all �S.Case: V `X Bot <: T) ;Immediate, since �Bot = Bot and Bot <: �T for all �T.Case: V `X Y <: T) fBot <: Y <: Rg where Y 2 X and T +V RSince � 2 C we have �Y <: R. Using Lemma 3.2.1 we have R <: T. Moreover, since Y 2 X, we know from ourhypothesis that FV(T) \ X = ;. Thus, �T = T and �Y <: �T as required.Case: V `X S <: Y) fR <: Y <: Topg where Y 2 X and S *V RSince � 2 C we have R <: �Y. Using Lemma 3.2.1 we have S <: R. Moreover, since Y 2 X, we know from ourhypothesis that FV(S) \ X = ;. Thus, �S = S and �S <: �Y as required.Case: V `X Y <: Y) ;It must be the case that FV(Y) \ X = ;. Therefore, �Y = Y and the result follows immediately, since Y <: Yby the subtyping rule for variables.Case: V `X All(Y)R!R <: All(Y)U!U ) (VC) ^ D where V [ fYg `X U <: R ) C and V [ fYg `X R <:U) D and V 0 = V [ fYg and Y \ V = ; and Y \ X = ; and FV(�) \ Y = ;The side conditions on Y imply that �0 = �[Y 7! Y] is a valid X=(V [ fYg)-substitution and we can use theinduction hypothesis to prove that �0U <: �0R and �0R <: �0U. Using the subtyping rule for function types,we can prove that All(Y)�0R!�0R <: All(Y)�0U!�0U. The result now follows since All(Y)�0R!�0R =�(All(Y)R!R) and All(Y)�0U!�0U = �(All(Y)U!U). �3.4.2 Proposition [Completeness]: Let � be an X=V -substitution with X \ V = ;, and let S and T betypes such that either FV(S) \ X = ; or FV(T) \ X = ;. If �S <: �T, then V `X S <: T ) C for some C suchthat � 2 C.Proof: By induction on the structure of a S and T.Case: S = Y where Y 2 XWe have V `X Y <: T ) fBot <: Y <: Rg where T +V R. Now, since � is an X=V -substitution, we know thatFV(�Y) \ V = ; and therefore, using Lemma 3.2.2, we have �Y <: R. This ensures that � 2 fBot <: Y <: Rgas required.



11Case: T = Y where Y 2 XWe have V `X S <: Y ) fR <: Y <: Topg where S *V R. Now, since � is an X=V -substitution, we know thatFV(�Y) \ V = ; and therefore, using Lemma 3.2.2, we have R <: �Y. This ensures that � 2 fR <: Y <: Topg,as required.Case: T = TopImmediate, since V `X S <: Top) ; and � 2 ;.Case: S = BotImmediate, since V `X Bot <: T) ; and � 2 ;.Case: S = Y and T = YImmediate, since V `X Y <: Y) ; and � 2 ;.Case: S = All(Y)R!R and T = All(Y)U!USince we identify type expressions up to alpha-conversion, we can pick Y such that Y\ V = ;, Y\ X = ;, andFV(�)\Y = ;. Thus, � is a valid X=(V [fYg)-substitution and �S = All(Y)�R!�R and �T = All(Y)�U!�U.Now, since �S <: �T, it must be the case that �U <: �R and �R <: �U. Using the induction hypothesis,V [ fYg `X U <: R ) C and � 2 C. Similarly, V [ fYg `X R <: U ) D and � 2 D. So, by CG-Fun, we haveV `X All(Y)R!R <: All(Y)U!U) (VC)^D. Finally, by the fact that (VC)^D is a greatest lower bound,we have � 2 (VC)^D, as required. �3.5 Calculating Type ArgumentsHaving generated a set of constraints for the missing type parameters X, the �nal job of the local constraintsolver is to choose values for X that make the type of the whole application as informative as possible.Depending on where the variables X occur in R, this may involve choosing the smallest possible values forsome variables and the largest for others. For example, if R is X!Y and we have generated the constraint setfS <: X <: T; U <: Y <: Vg, then the smallest possible value for R is found by maximizing X and minimizingY|i.e., by taking the substitution [X 7! T; Y 7! U].It may also be the case that no substitution for the variables yields a minimal result type; for example, ifR is X!X and we have the constraint set fInt <: X <: Topg, then both Int!Int and Top!Top are solutionsbut neither is a subtype of the other. Local type argument synthesis fails in this case (as required by thespeci�cation in Section 3.1).We begin by formalizing the ways in which maximizing or minimizing X a�ects the �nal result type.1. We say that R is covariant in X if � ` [S=X]R <: [T=X]R whenever � ` S <: T.2. We say that R is contravariant in X if � ` [T=X]R <: [S=X]R whenever � ` S <: T.3. We say that R is invariant in X if � ` [S=X]R <: [T=X]R only when S = T.It is easy to check whether R is covariant, contravariant, or invariant in a given variable X by examiningwhere X occurs in R (to the right or left of arrows, etc.).We can now show how to choose values for the variables X that will minimize R (or else determine thatthis is not possible). Let C be a satis�able X=V -constraint set. The minimal substitution �CR can be de�nedas follows:For each (S <: Xi <: T) 2 C:if R is covariant in Xithen �CR(Xi) = Selse if R is contravariant in Xithen �CR(Xi) = Telse if R is invariant in Xi and S = Tthen �CR(Xi) = Selse �CR is unde�ned.



12It remains to verify that the substitution �CR chosen in this way is indeed the best possible. Let C be anX=V -constraint set, and � be a X=V -substitution. We say that � is minimal for C and R, written � 2 C + R,if � 2 C and, for all X=V -substitutions �0 with �0 2 C, we have �R <: �0R.3.5.1 Proposition:1. If the substitution �CR exists, then it is minimal for C and R.2. If �CR is unde�ned, then C and R have no minimal substitution.Proof:1. Suppose �CR exists and that �0 is another substitution with �0 2 C. We must show that �CRR <: �0R.Let n = jXj. We can construct a sequence of substitutions �0; : : : ; �n as follows:�0 = �CR�i = �i�1[Xi 7! �0(Xi)] if i � 1:Note that �n = �0. We now argue that �i�1R <: �iR for each i � 1. Let S <: Xi <: T be the constraintassociated with Xi in C.� If R is covariant in Xi, then, by de�nition, �i�1(Xi) = �CR(Xi) = S, and thus �i�1(Xi) <: �i(Xi).But this implies that �i�1R <: �iR, by the de�nition of covariance.� Similarly, if R is contravariant in Xi, then �i�1(Xi) = �CR(Xi) = T, and thus �i(Xi) <: �i�1(Xi),which implies that �i�1R <: �iR, by the de�nition of contravariance.� If R is invariant in Xi, then �i�1(Xi) = �CR(Xi) = S, and we also know that S = T. But sinceS <: �i(Xi) <: T, we have �i(Xi) = S, which, by the de�nition of invariance, yields �i�1R <: �iR.We have thus shown that �CRR = �0R <: �1R <: � � � <: �nR = �0R, and the desired result follows bytransitivity of subtyping.2. If �CR is unde�ned, then then either C is unsatis�able (in which case the result holds trivially) or elseC is satis�able and we must show that no substitution that satis�es it is minimal. So suppose, for acontradiction, that � is minimal for C and R. Since �CR is unde�ned, there is some Xi such that R isinvariant in Xi but (S <: Xi <: T) 2 C where S 6= T. Now, since � 2 C, we have that S <: �(Xi) <: T.Therefore, either the substitution �0 = �[Xi 7! S] or the substitution �0 = �[Xi 7! T] has the followingproperties: �0 2 C and, by the de�nition of invariance, �R 6<: �0R. This contradicts our assumptionthat � is minimal for C and R. �3.5.2 Corollary: The algorithmic rule� ` f 2 All(X)T!R � ` e 2 S jXj > 0; `X S <: T) C � 2 VC + R� ` f(e) 2 �R) f[�X](e) (App-InfAlg)is equivalent to the declarative rule given in Section 3.1.4 Bidirectional CheckingOur second type inference technique deals with the other kinds of undesirable type annotations identi�ed inthe introduction: annotations on bound variables in anonymous function abstractions and annotations onlocal variable bindings. We introduce a straightforward re�nement of the internal language typing relation inwhich the typechecker operates two distinct modes: synthesis mode, where typing information is propagatedupward from subexpressions, and checking mode, where information is propagated downward from enclosingexpressions. Synthesis mode corresponds to the original typing rules of the internal language, and is used



13when we do not know anything about the expected type of an expression (for top-level phrases, functionparts of application nodes, etc.). Checking mode is used when the surrounding context determines the typeof the expression and we only need to check that it does have that type; for example, in an application node,the type of the function being applied determines the expected types of all the arguments.For example, suppose f has type (Int!Int)!Int and consider the application f(fun(x:Int)x). Be-cause we know the type of f, we also know that the argument fun(x:Int)xmust have type Int!Int, whichdetermines the type annotation on the bound variable x|the type Int is the most speci�c (with respectto the subtype relation) that can validly be given to x. We therefore allow the annotation to be omitted,writing the whole application as f(fun(x)x). During typechecking, f's type is synthesized (by looking it upin the context) and then fun(x)x is processed in checking mode, with expected type Int!Int.The basic idea of bidirectional checking is well known as folklore. Similar ideas have been used, for ex-ample, in ML compilers and typecheckers based on attribute-grammars. However, this technique has usuallybeen combined with ML-style type inference (see, e.g., [AN91]); it is surprisingly powerful when used byitself as a local type inference method. Speci�c technical contributions of this paper are the formalization ofbidirectional checking in a setting with both subtyping and impredicative polymorphism and the combinationof this idea with the technique for local synthesis of type arguments presented in the previous section.4.1 External Language SyntaxThe external language for the system with bidirectional checking is identical to the one in the previoussection, except that we allow an additional form of abstraction in which all value type annotations areomitted: fun[X](x)e bare abstractionNote that we do not allow the type variable binders [X] to be inferred. Also, for simplicity, abstractionshave either full annotations or none (we could go further and allow some annotations to be included andothers omitted on the same abstraction).4.2 Type InferenceThe bidirectional checking algorithm is formalized by splitting the type inference relation � ` e 2 T ) e0into two separate forms: � ` e !2 T) e0 synthesis� ` e  2 T) e0 checkingThe �rst form is read in the same way as the type inference relation in Section 3.1: \In context �, typeannotations can be added to the external language term e to yield the internal language term e0, which hastype T." The second can be read \In context �, type annotations can be added to e to yield e0, which has atype smaller than T."In the rules that follow, we elide the \) e0" part of both judgements, since it is always obvious how tocalculate e0. The rules themselves are mostly straightforward re�nements of the typing rules for the internallanguage: the only real subtlety lies in determining when it is possible to switch from synthesis to checkingmode. Each of the original typing rules is split into separate cases for synthesis and checking modes. Forexample, the synthesis rule for variables is identical to the rule in the internal language,� ` x !2 �(x) (S-Var)while the checking rule must perform an additional subtype check.� ` �(x) <: T� ` x  2 T (C-Var)The synthesis rule for fully annotated abstractions is again identical to the internal language: we add the(explicitly given) annotations to the context and proceed in synthesis mode.



14�; X; x:S ` e !2 T� ` fun[X](x:S)e !2 All(X)S!T (S-Abs)There is no synthesis rule for unannotated function abstractions, since we cannot determine the missing typeannotations from the local type information available. However, in a checking context, we can determine theappropriate annotations: �; X; x:S ` e  2 T� ` fun[X](x)e  2 All(X)S!T (C-Abs-Inf)If we encounter a fully annotated abstraction in a checking context, we check that the provided annotationsare consistent with the type we are checking against:�; X ` T <: S �; X; x:S ` e  2 R� ` fun[X](x:S)e  2 All(X)T!R (C-Abs)The synthesis and checking rules for application nodes are again nearly identical: we synthesize the type ofthe function and then switch to checking mode for the arguments:� ` f !2 All(X)S!R � ` e  2 [T=X]S� ` f[T](e) !2 [T=X]R (S-App)In checking mode, we perform a �nal check that the actual result type is a subtype of the expected type.� ` f !2 All(X)S!R� ` [T=X]R <: U � ` e  2 [T=X]S� ` f[T](e)  2 U (C-App)Note that the above rules for function application embody a simple heuristic: always synthesize thetype of the function, and then use the resulting information to switch to checking mode for the argumentexpressions. The reason this heuristic works well is that the head of an application expression is almostalways a variable or another application expression, and we can easily synthesize the types of both kinds ofexpression. It is possible, of course, to come up with examples where it would be bene�cial to synthesizethe argument types �rst and then use the resulting information to avoid type annotations in the functionpart of an application expression. For example, we could infer that x has type Int in the expression(fun(x)e)(3), since the argument 3 has type Int. Unfortunately, this re�nement does not help inferthe types of polymorphic functions. For example, we cannot uniquely determine the type of x in theexpression (fun[X](x)e)[Int](3). (Note also that adding a second typing rule for application expressionswould introduce some non-determinism in the typing of expressions and require some backtracking in thetypechecker implementation.)To combine bidirectional checking and type argument synthesis, we also need synthesis and checkingversions of the \bare application" rule from Section 3.1.� ` f !2 All(X)T!R� ` e !2 S jXj > 0 � ` S <: [U=X]T8V: (� ` S<:[V=X]T implies � ` [U=X]R<:[V=X]R)� ` f(e) !2 [U=X]R (S-App-InfSpec)� ` f !2 All(X)T!R � ` e !2 SjXj > 0 � ` S <: [U=X]T � ` [U=X]R <: V� ` f(e)  2 V (C-App-InfSpec)



15Note that the checking version this rule is signi�cantly more permissive than the synthesis version, since itallows any type arguments U which satisfy the appropriate constraints: there is no need to try to minimizethe result type. This means that the checking rule will perform signi�cantly better on polymorphic functiontypes such as All(X)()!(X!X), where the result type mentions a polymorphic variable in both positiveand negative positions.The expected type Top does not give any useful information in a checking context: when it appears, wesimply revert to synthesis mode: � ` e !2 T� ` e  2 Top (C-Top)Finally, we need checking and synthesis rules corresponding to the typing rule for Bot:� ` f !2 Bot � ` e !2 S� ` f[T](e) !2 Bot (S-App-Bot)� ` f !2 Bot � ` e !2 S� ` f[T](e)  2 R (C-App-Bot)It is worth remarking that application expressions involving both type argument synthesis and anonymousfunction arguments (speci�cally, anonymous function arguments that are not thunks) are not handled wellby our type inference rules, since we force the argument expressions to be synthesized. (Fortunately, ourmeasurements of ML code in Appendix A show that application expressions of this form only occur aboutonce per 100 lines of code.)Appropriate re�nements of the soundness and partial completeness theorems of Section 3.1 can be shownto hold when bidirectional checking is added.4.2.1 Theorem [Soundness]:1. If � ` e !2 T) e0, then e is a partial erasure of e0 and � ` e0 2 T.2. If � ` e  2 T) e0, then e is a partial erasure of e0 and � ` e0 <: T.Proof: By induction on derivations, using universal properties of _. �4.2.2 Theorem [Partial Completeness]: If � ` e 2 T (i.e., e is fully typed), then1. � ` e !2 T) e2. � ` T <: U implies � ` e  2 U) e.Proof: By induction on derivations, using universal properties of _. �(We might expect that the following stronger version of Theorem 3.1.2(2) would also hold:If � ` e  2 T and � ` T <: U, then � ` e  2 U.Unfortunately, this is not the case. For example, the checking rule for fun does not apply if the typeconstraint is Top.)



164.3 Calculating Type ArgumentsThe algorithmic version of the S-App-InfSpec rule is similar to the algorithmic rule App-InfAlg, whichwe presented in Section 3.5. The algorithmic version of the C-App-InfSpec rule is di�erent, however, sincewe do not need to choose a substitution � which minimizes the result type of the expression:� ` f !2 All(X)T!R � ` e !2 S jXj > 0; `X S <: T) C ; `X R <: V) D � 2 (VC) ^ D� ` f(e)  2 V (C-App-InfAlg)The above rule simply chooses any � that satis�es (VC) ^ D. It is easy to calculate such a �:For each (S <: Xi <: T) 2 (VC) ^ D:if S <: T then �(Xi) = S else � is unde�ned.If the condition S <: T fails for any constraint S <: Xi <: T, then the constraint set is unsatis�able; otherwisewe arbitrarily choose the lower bound as the value for each variable.5 ExtensionsIn [PT97a], we show how to extend the local type argument synthesis technique described in Section 3 toan internal language where bounded quanti�cation is allowed (speci�cally, we treat Cardelli and Wegner'sKernel Fun [CW85] extended with Bot). All the properties presented here continue to hold for the extendedsystem (including the combination with the bidirectional propagation technique), but the algorithms involvedin generating constraint sets become somewhat more subtle, due principally to some surprising interactionsbetween bounded quanti�ers and the Bot type [Pie97]. (In particular, the intuitive property that \a typevariable has no subtypes except itself and Bot" fails to hold; for example, if the context contains X<:Bot,then we have X <: Y for any variable Y.) Moreover, we impose a slight restriction on the types of polymorphicfunctions for which argument types can be inferred, disallowing dependencies between type arguments in asingle application. It appears that this restriction could be relaxed if a more clever constraint solver wereemployed, but we do not see how to remove it completely.We have experimented with these and similar type inference techniques in our compiler for the Pictlanguage [PT97b]. Although these experiments do not yet cover the full language, they give some con�dencethat the methods do actually infer enough type annotations to be helpful. (Indeed, we converted around10,000 lines of library code from a version of Pict incorporating Cardelli's greedy algorithm to one usinga variant of the techniques presented here in a few hours.) Moreover, they provide an indication of howwell these techniques scale to languages with more features than the tiny core calculus presented here. Ingeneral, our experience has been quite encouraging: it has usually been quite easy to see how to extend thede�nitions here to the larger syntax and richer type system found in Pict.However, one important set of issues remains incompletely resolved. A signi�cant di�erence betweenPict's type system and the variants of F� studied here and in [PT97a] is that Pict includes type operators|formally, it is based on the higher-order extension F!� [Car90, CL91, PT94, HP95, PS94, Com94]. Ourtype argument synthesis technique depends on the fact that type operators like List are covariant in thesubtype relation; in the case of F!� , we must also recognize when user-de�ned type operators are co- orcontra-variant. The necessary extension of F!� with polarized type operators is signi�cantly more complexthan the form in which F!� is usually studied [PS94, Com94], and its meta-theoretic properties are a matterof current investigation [Ste97]. We are experimenting with strategies for simplifying the system and haveachieved some promising preliminary results.Another important avenue for further investigation is the possibility of combining these type inferencetechniques with overloading. There is reason to hope that the integration can be accomplished smoothly,since we have insisted that each typable term should have a unique manifest type.



176 Related WorkThere have been a number of proposals for partial type inference schemes treating just impredicative polymor-phism (without subtyping). One line of work has been explored by Pfenning [Pfe88, Pfe93], following earlierwork of Boehm [Boe85, Boe89]. Interestingly, the key algorithm here comes from a proof of undecidabilityof a certain style of partial type inference, where occurrences of type application must be marked but thetype argument itself need not be supplied, and where all other type annotations may be omitted. Boehmshowed that this form of type inference was just as hard as higher-order uni�cation, hence undecidable.Conversely, Huet's earlier work on e�cient semi-algorithms for higher-order uni�cation [Hue75] led directlyto a useful semi-algorithm for partial type inference [Pfe88]. Later improvements in this line of developmenthave included using a more re�ned algorithm for higher-order constraint solving [DHKP96], eliminating thetroublesome possibilities of nontermination or generation of non-unique solutions. Experience with relatedalgorithms in languages such as LEAP [PL91], Elf [Pfe89], and FX [JG89] has shown them to be quite wellbehaved in practice.A di�erent approach to partial type inference (still without subtyping) was initiated by L�aufer andOdersky [LO94], sparked by Perry's observation that �rst-class existential types can be added to ML byintegrating them with the datatype mechanism [Per90]. In essence, datatype constructors and destructorscan be regarded as explicit type annotations, marking where values must be injected into and projected fromdisjoint union types, where recursive types must be folded and unfolded, and (when existentials are added)where packing and unpacking must occur. This idea was extended to include �rst-class (impredicative)universal quanti�ers by Remy [R�em94]. Other, more recent, proposals by Odersky and L�aufer [OL96] andR�emy and Garrigue [GR97] conservatively extend ML-style type inference by allowing programmers toexplicitly annotate function arguments with types, which may (unlike the annotations that can be inferredautomatically) contain embedded universal quanti�ers, thus partly bridging the gap between ML and SystemF. This family of approaches to type inference has the advantage of relative simplicity and clean integrationwith the existing Hindley/Milner polymorphism of ML.We know of only one partial type inference scheme that works in the presence of both impredicativepolymorphism and subtyping: Cardelli's \greedy type inference algorithm" for F� [Car93]. The idea here isthat any type annotation may be omitted by the programmer: a fresh uni�cation variable � will be generatedfor each one by the parser. During typechecking, the subtype-checking algorithm may be asked to checkwhether some type S is a subtype T, where both S and T may contain uni�cation variables. Subtype-checkingproceeds as usual until a subgoal of the form � <: T or T <: � is encountered, at which point � is instantiatedto T, thus satisfying the immediate constraint in the simplest possible way. Of course, setting � to T maynot be the best possible choice, and this may cause later subtype-checks for types involving � to fail when adi�erent choice would have allowed them to succeed; but, again, practical experience with this algorithm inCardelli's implementation and in an early version of the Pict language [PT97b] shows that the algorithm'sgreedy choice is correct in nearly all cases.Unfortunately, there are some situations in which the greedy algorithm is almost guaranteed to guesswrong. For example, if f has type (S,T)!Int and T <: S then the expression fun(x) f(x,x) will fail totypecheck: the greedy algorithm �rst assigns x the indeterminate type �; after checking the �rst argumentto f it concludes that � must equal S. But then the second argument check fails, since we should havegiven x type T. In such cases, the algorithm's behavior can be quite puzzling to the programmer, yieldingmysterious errors far from the point where a suboptimal instantiation is made.Also, we should note that Cardelli's greedy algorithm lacks monotonicity: it is not the case that addingsome type annotations will always improve the chances that the algorithm will be able to �nd the rest.Formally, there is a fully typed term e, a partial erasure e0 of e, and a further erasure e00 of e0, such that eand e00 pass the type inference algorithm but e0 does not. (For the greedy algorithm, this failure was �rstnoticed by Dilip Sequeira.) While this kind of behavior has never been observed in practice, we would behappier to see it excluded in principle. It is currently an open question whether our proposed type inferencealgorithm behaves well in this respect.The di�culties with the greedy algorithm can be traced to the fact that there is no way of giving a robustexplanation of its behavior without describing the typing, subtyping, and uni�cation algorithms in completedetail, since the instantiations that they perform are highly sensitive to the precise order in which constraints



18are encountered during checking. This means that the language de�nition, to be complete, must describethe internal structure of the compiler in quite a bit of detail. Our goal in this paper has been to developpartial type inference methods that share the good behavior in common cases of the greedy algorithm, butthat are much more straightforward to explain to programmers.Although we focus here on the combination of subtyping and polymorphism, it is worth remarking thatthere are other ways of achieving a synthesis of object-oriented and HOT programming styles. The mostsuccessful design to date is Objective Caml, an object-oriented dialect of ML now in use in a number ofsoftware projects worldwide [RV97]. A crucial design choice in Objective Caml is the use of row-variablepolymorphism [Wan87, Wan88, R�em89, Wan94] instead of subsumption for the typing of objects and classes.In Objective Caml, an object with a large interface cannot simply be regarded as an object with a smallerinterface; however, it is straightforward to write functions that manipulate both kinds of objects by \quan-tifying over the di�erence" between their interfaces. The type inference algorithm aids the programmer byperforming this kind of generalization wherever possible.7 ConclusionsWe have identi�ed a promising class of local type inference methods and studied two representatives in detail.Restricting attention to local methods imposes several design constraints on both the internal language andon possible type inference algorithms:� Uni�cation or matching can be used only during the processing of single nodes in the syntax tree: typesinvolving uni�cation variables are never added to the context, passed down as checking constraints, orreturned as the results of type synthesis.� Polymorphic applications must be fully uncurried in order to obtain the bene�ts of type inference.Curried applications can still be used, but they are second-class in this respect. (This point is acorollary of the �rst.)� Expressions in the internal language must have unique manifest types that can easily be calculated bythe programmer, in order for the behavior of partial type inference to be predictable.� The type system of the internal language must be su�ciently complete and regular to permit \bestannotations" to be inferred. In the system studied here, this means in particular that the minimaltype Bot must be provided, with some attendant increase in the complexity of the internal language(particularly when the system is extended to include bounded quanti�cation). Similarly, type operatorslike List must be made covariant in the subtype relation in order to allow inference of type argumentsto nil and cons.One weakness of our proposal is the relative complexity of extending local type argument synthesis tohandle bounded quanti�cation. On the positive side, the strengths of our inference techniques include theirsimple descriptions, their predictability, their robustness in the face of extensions to the internal language,and their tendency to report errors close to the point where more type annotations are required (or wherean actual error is present in the program).AcknowledgementsThis paper synthesizes insights from conversations with more people than we can list|probably almosteveryone we know|but a few contributions were particularly direct: John Reynolds �rst acquainted us [BCP]with the idea of bidirectional typechecking, around 1988, while early discussions with Luca Cardelli helpedplant the ideas about type argument synthesis that eventually developed into the proposal in Section 3 in thispaper. Work with Dilip Sequeira on re�nements of Cardelli's greedy inference algorithm greatly improvedour understanding of its good and bad properties. Scott Smith, Frank Pfenning, Konstantin L�aufer, andDidier Remy gave us useful background on related work. Discussions with Robert Harper and commentsfrom the POPL referees helped us tighten the presentation.
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22data constructors and destructors instead of mutable state|each lead to an increase in the number of typeannotations; moreover, many of these annotations are silly.The use of �ne-grained polymorphism, in which individual functions (rather than whole modules, asin C++ or Pizza) are parameterized on type arguments, leads to type annotations whenever polymorphicfunctions are de�ned or used|e.g., the three occurrences of [X] in:let cons-twice =fun[X] (v:X, l:List(X))cons[X](v, cons[X](v, nil[X]))The abstraction on X is arguably reasonable (indeed, in many languages, it actually has behavioral signi�-cance), but the [X] arguments to nil and cons are silly.A higher-order programming style, in which small anonymous functions are passed as arguments toother functions, leads to an increase in the total number of functions. Moreover (unlike top-level functionde�nitions), the types of the parameters to these functions are mostly obvious from context. For example,suppose fold-range is a function of type (((Int,Int)!Int),Int,Int,Int)!Int; we might use it in anexpression likefold-range(fun(x:Int, y:Int) x+y,0, 1, 10)to calculate the sum of the numbers from 1 to 10. The two occurrences of Int are silly annotations, sincethey act only to lengthen the expression and obscure its behavior; it would be clearer to write:fold-range(fun(x,y) x+y,0, 1, 10)A mostly functional (or, in the extreme, purely functional) style, which favors the construction of newdata values rather than in-place mutation of existing ones, leads to an increase in the number of local variablebindings compared to an imperative style. An imperative program with one local declarationlet x : Int = 0;x := x + 1;x := x * 2;x := x - 3;return x;can become a functional program with four:let x : Int = 0 inlet y : Int = x + 1 inlet z : Int = y * 2 inlet r : Int = z - 3 inrAgain, the type annotations on these binders are all silly. (The annotation on the single binder in theimperative version is also silly, but this matters less if such declarations are relatively rare.)We chose the Objective Caml compiler as our experimental tool, because the front end is quite easy tounderstand and modify.3 We gathered raw data by instrumenting the compiler to produce a trace showingwhere the generalization and instantiation operations were being used during typechecking, where functionde�nitions were encountered, and so on for each of the quantities we were interested in measuring. Eachprogram was then compiled in the usual way and a small script was used to tabulate and summarize theresulting traces.4We measured several publicly available Objective Caml programs, amounting to about 160,000 lines ofcode plus about 30,000 lines in interface �les.3Although Objective Caml supports object-oriented idioms in addition to a \pure HOT style," this facility is relatively newand is not used heavily in the code we measured.4The raw traces from which the tables in this section were generated are available on-line throughhttp://www.cs.indiana.edu/hyplan/pierce/lti-stats.



23lines (.ml) lines (.mli)CamlTk 10080 4596Coq 69571 9054Ensemble 27747 6842MMM 15645 2967OCaml Libs 8521 4746OCaml Progs 27069 3872Camltk, written at Inria-Roquencourt, is a collection of mainly stub functions providing an interface to theTk toolkit. Coq, the largest single program we measured, is a theorem prover, also from INRIA. Ensembleis a toolkit for group communication in distributed systems, built at Cornell. MMM is a web browser, fromINRIA. Finally, we included the Objective Caml system itself, dividing it into libraries (the stdlib andotherlibs subdirectories of the distribution) and the compiler itself (plus debugger, etc.). We includedcomments in the line counts, since we are interested in the impact of the presence or absence of typeannotations on the full text that programmers actually read and write.The discussion above identi�ed three ways in which silly type annotations arise from features of the HOTprogramming style promoted by ML. The �rst was �ne-grained polymorphism, which encourages the useof large numbers of polymorphic functions. To estimate the impact of this feature in practice, we countedthe frequency of instantiations of polymorphic variables and constructors5 performed during typechecking:each instantiation would correspond to one or more type arguments in an explicitly typed language. Wecounted separately the instantiations arising from comparison functions (=, <, etc.), which are polymorphicin Objective Caml but could well be monomorphic in other languages.var. inst. constr. inst. comp.CamlTk 13.1 28.9 1.2Coq 38.8 32.1 2.1Ensemble 19.1 16.0 2.4MMM 14.8 20.4 1.4OCaml Libs 13.7 9.5 5.2OCaml Progs 16.9 9.8 1.9To highlight the impact of including or eliding type annotations associated with various language features,we express our results (here and in the tables that follow) as numbers of occurrences per hundred lines ofcode. For example, in CamlTk, an instantiation occurs, on average, every 8 lines (i.e., in 13.1% of the lines).Assuming 50 lines per screenful of text, this means that we might expect, on average, to see six or seven perdisplayed page.The frequencies of constructor instances in this table should be taken with a grain of salt, since theyinclude instantiations occurring during typechecking of patterns, which can probably be avoided in manycases. The high frequency of instantiation in Coq is a consequence of its extensive use of Objective Caml'sbuilt-in stream syntax.Another source of silly type annotations is type annotations on bound variables of anonymous functions.To gauge the importance of this e�ect, we counted the frequency of anonymous function de�nitions in each ofthe sample programs. (For simplicity, we did not count the number of arguments to each function de�nitionor the sizes of the type annotations that would have been required if they had been written explicitly.)anonymous functionsCamlTk 2.9Coq 12.4Ensemble 2.4MMM 2.8OCaml Libs 0.7OCaml Progs 3.1We see that the usage of anonymous functions varies according to programming style: the Objective Camllibraries use almost none, preferring direct recursive de�nitions, while application programs tend to make5The constructor instance count also includes instances arising from polymorphic record labels.



24reasonably frequent use of higher-order functions like map and fold. Coq uses a relatively high number ofanonymous functions|a consequence, again, of its extensive use of Objective Caml's stream syntax, whichis translated internally into calls to the lazy stream library involving large numbers of thunks.Two �nal sources of silly type annotations are variable bindings and local function de�nitions. Since allde�nitions, including function de�nitions, are translated internally into let-bindings, we divide this countinto three: local function de�nitions (probably silly), top-level function de�nitions (probably reasonable),and let-bindings of other kinds (probably silly).local fns toplevel fns other letsCamlTk 0.5 7.5 8.7Coq 1.5 7.0 10.5Ensemble 2.8 4.2 9.6MMM 1.0 3.8 8.8OCaml Libs 0.6 8.7 7.9OCaml Progs 0.5 3.9 6.9Let-bindings are fairly frequent, as might be expected. Local functions are much less frequent than top-levelde�nitions|but, especially in Ensemble, not as rare as we might have had hoped (given that we do notinfer these). It is also interesting to note, in passing, that library code|CamlTk and the Objective Camllibraries|tends to de�ne smaller functions than most of the application code.As we noted for anonymous functions, these numbers give only a rough measure of the \cost" of addingtype annotations, since more than one type annotation may be required for each let-binding. Also, smallchanges in programming style can make a large di�erence in the number and size of required annotations.For example, changing a Caml function de�nition from the formlet f = function <pat> ! <exp> | ...to the formlet f x:T = match x with <pat> ! <exp> | ...eliminates the need for explicit annotations in all of the patterns.We also gathered some measurements to help evaluate the limitations of our proposed inference tech-niques. In particular, there are some situations where either, but not both, can be used. This occurs when apolymorphic function or constructor is applied to an argument list that includes an anonymous abstraction.We break the measurements of these \hard applications" into two categories|one where some function ar-gument is really hard and the easier case where the function argument is actually a thunk (whose parameteris either _ or (), and which can therefore easily be synthesized).\hard" fn. args \hard" thunk argsCamlTk 1.7 0.0Coq 1.9 9.7Ensemble 1.1 0.1MMM 0.8 0.0OCaml Libs 0.4 0.0OCaml Progs 1.1 0.0Finally, we found it interesting to measure how often the generalization operation was used duringtypechecking: these would each correspond to one or more type abstractions in an explicitly typed language.As above, we distinguish between polymorphic top-level de�nitions and local de�nitions of polymorphicfunctions. top-level localCamlTk 0.4 0.1Coq 2.9 0.5Ensemble 2.2 0.8MMM 0.4 0.1OCaml Libs 2.0 0.1OCaml Progs 0.6 0.0



25There is actually considerable variation in the frequency of type generalization in the di�erent styles of coderepresented in the table|much more than the variation in numbers of instantiations. Also, the frequency ofgeneralization seems to have little correlation with the distinction between library and application code.


