
Combinators for Bi-Directional Tree Transformations:
A Linguistic Approach to the View Update Problem

J. NATHAN FOSTER

University of Pennsylvania

MICHAEL B. GREENWALD

Bell Labs, Lucent Technologies

JONATHAN T. MOORE

University of Pennsylvania

BENJAMIN C. PIERCE

University of Pennsylvania

ALAN SCHMITT

INRIA Rhône-Alpes

We propose a novel approach to the view update problem for tree-structured data: a domain-
specific programming language in which all expressions denote bi-directional transformations on
trees. In one direction, these transformations—dubbed lenses—map a “concrete” tree into a
simplified “abstract view”; in the other, they map a modified abstract view, together with the
original concrete tree, to a correspondingly modified concrete tree. Our design emphasizes both
robustness and ease of use, guaranteeing strong well-behavedness and totality properties for well-
typed lenses.

We begin by identifying a natural mathematical space of well-behaved bi-directional transfor-
mations over arbitrary structures, studying definedness and continuity in this setting. We then
instantiate this semantic framework in the form of a collection of lens combinators that can be
assembled to describe bi-directional transformations on trees. These combinators include familiar
constructs from functional programming (composition, mapping, projection, conditionals, recur-
sion) together with some novel primitives for manipulating trees (splitting, pruning, copying,
merging, etc.). We illustrate the expressiveness of these combinators by developing a number of
bi-directional list-processing transformations as derived forms. An extended example shows how
our combinators can be used to define a lens that translates between a native HTML representation
of browser bookmarks and a generic abstract bookmark format.

Categories and Subject Descriptors: D.3.2 [Programming Languages]: Language Classifica-
tions—Specialized application languages

General Terms: Languages

Additional Key Words and Phrases: Bi-directional programming, Harmony, XML, lenses, view
update problem

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2007 ACM XXX-XXX/XX/XXXX-XXXX $XX.XX

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year, Pages 1–??.

2 · J. N. Foster et. al.

1. INTRODUCTION

Computing is full of situations where some structure must be converted to a different
form—a view—in such a way that changes made to the view can be reflected as
updates to the original structure. This view update problem is a classical topic in
the database literature, but has so far been little studied by programming language
researchers.

This paper addresses a specific instance of the view update problem that arises
in a larger project called Harmony [Foster et al. 2006]. Harmony is a generic
framework for synchronizing tree-structured data—a tool for propagating updates
between different copies of tree-shaped data structures, possibly stored in different
formats. For example, Harmony can be used to synchronize the bookmark files
of several different web browsers, allowing bookmarks and bookmark folders to be
added, deleted, edited, and reorganized in any browser and propagated to the oth-
ers. The ultimate aim of the project is to provide a platform on which a Harmony
programmer can quickly assemble a high-quality synchronizer for a new type of
tree-structured data stored in a standard low-level format such as XML. Other
Harmony instances currently in daily use or under development include synchro-
nizers for calendars (Palm DateBook, ical, and iCalendar formats), address books,
slide presentations, structured documents, and generic XML and HTML.

Views play a key role in Harmony: to synchronize structures that may be stored
in disparate concrete formats, we define a single common abstract format and a
collection of lenses that transform each concrete format into this abstract one. For
example, we can synchronize a Mozilla bookmark file with an Internet Explorer
bookmark file by transforming each into an abstract bookmark structure and propa-
gating changed information between these. Afterwards, we need to take the updated
abstract structures and reflect the corresponding updates back into the original
concrete structures. Thus, each lens must include not one but two functions—one
for extracting an abstract view from a concrete one and another for putting an
updated abstract view back into the original concrete view to yield an updated
concrete view. We call these the get and putback components, respectively. The
intuition is that the mapping from concrete to abstract is commonly some sort of
projection, so the get direction involves getting the abstract part out of a larger
concrete structure, while the putback direction amounts to putting a new abstract
part into an old concrete structure. We show a concrete example of this process in
Section 2.

The difficulty of the view update problem springs from a fundamental tension
between expressiveness and robustness. The richer we make the set of possible
transformations in the get direction, the more difficult it becomes to define corre-
sponding functions in the putback direction in such as way that each lens is both
well behaved—its get and putback behaviors fit together in a sensible way—and
total—its get and putback functions are defined on all the inputs to which they may
be applied.

To reconcile this tension, a successful approach to the view update problem must
be carefully designed with a particular application domain in mind. The approach
described here is tuned to the kinds of projection-and-rearrangement transforma-
tions on trees and lists that we have found useful for implementing Harmony in-

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Combinators for Bi-Directional Tree Transformations · 3

stances. It does not directly address some well-known difficulties with view update
in the classical setting of relational databases—such as the difficulty of “inverting”
queries involving joins. (We do hope that our work will suggest new attacks on
these problems, however; a first step in this direction is described in [Bohannon
et al. 2006].)

A second difficulty concerns ease of use. In general, there are many ways to equip
a given get function with a putback function to form a well-behaved and total lens;
we need some means of specifying which putback is intended that is natural for the
application domain and that does not involve onerous proof obligations or checking
of side conditions. We adopt a linguistic approach to this issue, proposing a set
of lens combinators—a small domain-specific language—in which every expression
simultaneously specifies both a get function and the corresponding putback. More-
over, each combinator is accompanied by a type declaration, designed so that the
well-behavedness and (for non-recursive lenses) totality of composite lens expres-
sions can be verified by straightforward, compositional checks. Proving totality of
recursive lenses, like ordinary recursive programs, requires global reasoning that
goes beyond types.

The first step in our formal development (Section 3) is identifying a natural
mathematical space of well-behaved lenses over arbitrary data structures. There is
a good deal of territory to be explored at this semantic level. First, we must phrase
our basic definitions to allow the underlying functions in lenses to be partial, since
there will in general be structures to which a given lens cannot sensibly be applied.
The sets of structures to which we do intend to apply a given lens are specified
by associating it with a type of the form C ! A, where C is a set of concrete
“source structures” and A is a set of abstract “target structures.” Second, we
define a notion of well-behavedness that captures our intuitions about how the get
and putback parts of a lens should behave in concert. For example, if we use the get
part of a lens to extract an abstract view a from a concrete view c and then use the
putback part to push the very same a back into c, we should get c back. Third, we
deploy standard tools from domain theory to define monotonicity and continuity
for lens combinators parameterized on other lenses, establishing a foundation for
defining lenses by recursion. (Recursion is needed because the trees that our lenses
manipulate may in general have arbitrarily deep nested structure—e.g., when they
represent directory hierarchies, bookmark folders, etc.) Finally, to allow lenses to
be used to create new concrete structures rather than just updating existing ones
(needed, for example, when new records are added to a database in the abstract
view), we adjoin a special “missing” element to the structures manipulated by lenses
and establish suitable conventions for how it is treated.

With these semantic foundations in hand, we proceed to syntax. In Section 4,
we present a group of generic lens combinators (identities, composition, and con-
stants), which can work with any kind of data. In Section 5, we focus attention
on tree-structured data and present several more combinators that perform various
manipulations on trees (hoisting, splitting, mapping, etc.); we also show how to
assemble these primitives, along with the generic combinators from before, to yield
some useful derived forms. Section 6 introduces another set of generic combinators
implementing various sorts of bi-directional conditionals. Section 7 gives a more
ambitious illustration of the expressiveness of these combinators by implementing

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

4 · J. N. Foster et. al.

a number of bi-directional list-processing transformations as derived forms, includ-
ing lenses for projecting the head and tail of a list, mapping over a list, grouping
the elements of a list, concatenating two lists, and—our most complex example—
implementing a bi-directional filter lens whose putback function performs a rather
intricate “weaving” operation to recombine an updated abstract list with the con-
crete list elements that were filtered away by the get. This example also demon-
strates the use of the reasoning techniques developed in Section 3 for establishing
totality of recursive lenses. Section 8 further illustrates the use of our combinators
in real-world lens programming by walking through a substantial example derived
from the Harmony bookmark synchronizer.

Section 9 presents some first steps into a somewhat different region of the lens
design space: lenses for dealing with relational data encoded as trees. We define
three more primitives—a “flattening” combinator that transforms a list of (keyed)
records into a bush, a “pivoting” combinator that can be used to promote a key
field to a higher position in the tree, and a “transposing” combinator related to the
outer join operation on databases. The first two combinators play an important
role in Harmony instances for relational data such as address books encoded as
XML trees.

Section 10 surveys related work and Section 11 sketches directions for future
research.

To keep things moving, we defer all proofs to an electronic appendix, which is
available on both the Harmony and TOPLAS web pages.

2. A SMALL EXAMPLE

Suppose our concrete tree c is a simple address book:

c =

∣

∣

∣

∣

∣

∣

∣

∣

Pat !→

{∣

∣

∣

∣

Phone !→ 333-4444
URL !→ http://pat.com

∣

∣

∣

∣

}

Chris !→

{∣

∣

∣

∣

Phone !→ 888-9999
URL !→ http://chris.org

∣

∣

∣

∣

}

∣

∣

∣

∣

∣

∣

∣

∣

We draw trees sideways to save space. Each set of hollow curly braces corresponds
to a tree node, and each “X !→ ...” denotes a child labeled with the string X. The
children of a node are unordered. To avoid clutter, when an edge leads to an empty
tree, we usually omit the braces, the !→ symbol, and the final childless node—
e.g., “333-4444” above actually stands for “

{∣

∣333-4444 !→ {||}
∣

∣

}

.” When trees are
linearized in running text, we separate children with commas for easier reading.

Now, suppose that we want to edit the data from this concrete tree in a yet
simpler format where each name is associated directly with a phone number.

a =

{∣

∣

∣

∣

Pat !→ 333-4444
Chris !→ 888-9999

∣

∣

∣

∣

}

Why would we want this? Perhaps because the edits are going to be generated
by synchronizing this abstract tree with another replica of the same address book
in which no URL information is recorded. Or perhaps there is no synchronizer
involved and the edits are going to be performed by a human who is only interested
in phone information and doesn’t want to see URLs. Whatever the reason, we are
going to make our changes to the abstract tree a, yielding a new abstract tree a′ of

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Combinators for Bi-Directional Tree Transformations · 5

the same form but with modified content.1 For example, let us change Pat’s phone
number, drop Chris, and add a new friend, Jo.

a′ =

{∣

∣

∣

∣

Pat !→ 333-4321
Jo !→ 555-6666

∣

∣

∣

∣

}

Lastly, we want to compute a new concrete tree c′ reflecting the new abstract
tree a′. That is, we want the parts of c′ that were kept when calculating a (e.g.,
Pat’s phone number) to be overwritten with the corresponding information from
a′, while the parts of c that were filtered out (e.g., Pat’s URL) have their values
carried over from c.

c′ =

∣

∣

∣

∣

∣

∣

∣

∣

Pat !→

{∣

∣

∣

∣

Phone !→ 333-4321
URL !→ http://pat.com

∣

∣

∣

∣

}

Jo !→

{∣

∣

∣

∣

Phone !→ 555-6666
URL !→ http://google.com

∣

∣

∣

∣

}

∣

∣

∣

∣

∣

∣

∣

∣

We also need to “fill in” appropriate values for the parts of c′ (in particular, Jo’s
URL) that were created in a′ and for which c therefore contains no information.
Here, we simply set the URL to a constant default, though in general we might want
to compute it from other information.

Together, the transformations from c to a and from a′ plus c to c′ form a lens.
Our goal is to find a set of combinators that can be assembled to describe a wide
variety of lenses in a concise, natural, and mathematically coherent manner. To
whet the reader’s appetite, the lens expression that implements the transformations
above is map (focus Phone

{∣

∣URL !→ http://google.com
∣

∣

}

).

3. SEMANTIC FOUNDATIONS

Although many of our combinators work on trees, their semantic underpinnings can
be presented in an abstract setting parameterized by the data structures (which we
call “views”) manipulated by lenses.2 In this section—and in Section 4, where we
discuss generic combinators—we simply assume some fixed set V of views; from
Section 5 on, we will choose V to be the set of trees.

Basic Structures

When f is a partial function, we write f(a) ↓ if f is defined on argument a and
f(a) = ⊥ otherwise. We write f(a) % b for f(a) = ⊥ ∨ f(a) = b. We write dom(f)
for {s | f(s) ↓}, the set of arguments on which f is defined. When S ⊆ V, we write

1Note that we are interested here in the final tree a′, not the particular sequence of edit operations
that was used to transform a into a′. This is important in the context of Harmony, which is
designed to support synchronization of off-the-shelf applications, where in general we only have
access to the current states of the replicas, rather than a trace of modifications; the tradeoffs
between state-based and trace-based synchronizers are discussed in detail elsewhere [Pierce and
Vouillon 2004; Foster et al. 2006].
2We use the word “view” here in a slightly different sense than some of the database papers that
we cite, where a view is a query that maps concrete to abstract states—i.e., it is a function that,
for each concrete database state, picks out a view in our sense. Also, note that we use “view” to
refer uniformly to both concrete and abstract structures—when we come to programming with
lenses, the distinction will be merely a matter of perspective anyway, since the output of one lens
is often the input to another.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

6 · J. N. Foster et. al.

f(S) for {r | s ∈ S ∧ f(s) ↓ ∧ f(s) = r} and ran(f) for f(V). We take function
application to be strict: f(g(x)) ↓ implies g(x) ↓.

3.1 Definition [Lenses]: A lens l comprises a partial function l↗ from V to V,
called the get function of l, and a partial function l↘ from V × V to V, called the
putback function.

The intuition behind the notations l↗ and l↘ is that the get part of a lens “lifts”
an abstract view out of a concrete one, while the putback part “pushes down” a new
abstract view into an existing concrete view. We often say “put a into c (using l)”
instead of “apply the putback function (of l) to (a, c).”

3.2 Definition [Well-behaved lenses]: Let l be a lens and let C and A be sub-
sets of V. We say that l is a well behaved lens from C to A, written l ∈ C ! A, if
it maps arguments in C to results in A and vice versa

l↗(C) ⊆ A (Get)
l↘(A × C) ⊆ C (Put)

and its get and putback functions obey the following laws:

l↘ (l↗ c, c) % c for all c ∈ C (GetPut)
l↗ (l↘ (a, c)) % a for all (a, c) ∈ A × C (PutGet)

We call C the source and A the target in C ! A. Note that a given l may be a
well-behaved lens from C to A for many different Cs and As; in particular, every
l is trivially a well-behaved lens from ∅ to ∅, while the everywhere-undefined lens
belongs to C ! A for every C and A.

Intuitively, the GetPut law states that, if we get some abstract view a from a
concrete view c and immediately putback a (with no modifications) into c, we must
get back exactly c if both operations are defined. PutGet, on the other hand,
demands that the putback function must capture all of the information contained
in the abstract view: if putting a view a into a concrete view c yields a view c′,
then the abstract view obtained from c′ is exactly a.

An example of a lens satisfying PutGet but not GetPut is the following.
Suppose C = string× int and A = string, and define l by:

l↗ (s, n) = s l↘ (s′, (s, n)) = (s′, 0)

Then l↘ (l↗ (s, 1), (s, 1)) = (s, 0) .% (s, 1). Intuitively, the law fails because the
putback function has “side effects”: it modifies information in the concrete view
that is not reflected in the abstract view.

An example of a lens satisfying GetPut but not PutGet is the following. Let
C = string and A = string× int, and define l by :

l↗ s = (s, 0) l↘ ((s′, n), s) = s′

PutGet fails here because some information contained in the abstract view does
not get propagated to the new concrete view. For example, l↗ (l↘ ((s′, 1), s)) =
l↗ s′ = (s′, 0) .% (s′, 1).

The GetPut and PutGet laws reflect fundamental expectations about the be-
havior of lenses; removing either law significantly weakens the semantic foundation.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Combinators for Bi-Directional Tree Transformations · 7

We may also consider an optional third law, called PutPut:

l↘ (a′, l↘ (a, c)) % l↘ (a′, c) for all a, a′ ∈ A and c ∈ C.

This law states that the effect of a sequence of two putbacks is (modulo definedness)
just the effect of the second: the first gets completely overwritten. Alternatively,
a series of changes to an abstract view may be applied either incrementally or all
at once, resulting in the same final concrete view. We say that a well-behaved
lens that also satisfies PutPut is very well behaved. Both well-behaved and very
well behaved lenses correspond to familiar classes of “update translators” from the
classical database literature; see Section 10.

The foundational development in this section is valid for both well-behaved and
very well behaved lenses. However, when we come to defining our lens combinators
for tree transformations, we will not require PutPut because some of our lens
combinators—in particular, map, flatten, merge, and conditionals—fail to satisfy
it for reasons that seem pragmatically unavoidable (see Sections 5 and 9).

For now, a simple example of a lens that is well behaved but not very well
behaved is as follows. Consider the following lens, where C = string × int and
A = string. The second component of each concrete view intuitively represents a
version number.

l↗ (s, n) = s l↘ (s, (s′, n)) =

{

(s, n) if s = s′

(s, n+1) if s .= s′

The get function of l projects away the version number and yields just the “data
part.” The putback function overwrites the data part, checks whether the new
data part is the same as the old one, and, if not, increments the version num-
ber. This lens satisfies both GetPut and PutGet but not PutPut, as we have
l↘ (s, l↘ (s′, (c, n))) = (s, n + 2) .% (s, n + 1) = l↘ (s, (c, n)).

Another critical property of lenses is totality with respect to a given source and
target.

3.3 Definition [Totality]: A lens l ∈ C ! A is said to be total, written l ∈
C ⇐⇒ A, if C ⊆ dom(l↗) and A × C ⊆ dom(l↘).

The reasons for considering both partial and total lenses instead of building totality
into the definition of well-behavedness are much the same as the reasons for consid-
ering partial functions in conventional functional languages. In practice, we want
lenses to be total:3 to guarantee that Harmony synchronizers will work predictably,
lenses must be defined on the whole of the domains where they are used; the get
direction should be defined for any structure in the concrete set, and the putback
direction should be capable of putting back any possible updated version from the
abstract set.4 All of our primitive lenses are designed to be total, and all of our lens

3Indeed, well-behavedness is rather trivial in the absence of totality: for any function l↗ from C

to A, we can obtain a well-behaved lens by taking l↘ to be undefined on all inputs—or, slightly
less trivially, to be defined only on inputs of the form (l↗ c, c).
4Since we intend to use lenses to build synchronizers, the updated structures here will be results
of synchronization. A fundamental property of the core synchronization algorithm in Harmony is
that, if all of the updates between synchronizations occur in just one of the replicas, then the effect

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

8 · J. N. Foster et. al.

combinators map total lenses to total lenses—with the sole, but important, excep-
tion of lenses defined by recursion; as usual, recursive lenses must be constructed in
the semantics as limits of chains of increasingly defined partial lenses. The sound-
ness of the type annotations we give for our syntactic lens combinators guarantees
that every well-typed lens expression is well-behaved, but only recursion-free ex-
pressions can be shown total by completely compositional reasoning with types; for
recursive lenses, more global arguments are required, as we shall see.

Basic Properties

We now explore some simple but useful consequences of the lens laws. All the
proofs can be found in the electronic appendix.

3.4 Definition: Let f be a partial function from A × C to C and P ⊆ A × C.
We say that f is semi-injective on P if it is injective (in the standard sense) in the
first component of arguments drawn from P—i.e., if, for all views a, a′, c, and c′

with (a, c) ∈ P and (a′, c′) ∈ P , if f(a, c) ↓ and f(a′, c′) ↓, then a .= a′ implies
f(a, c) .= f(a′, c′).

3.5 Lemma: If l ∈ C ! A, then l↘ is semi-injective on {(a, c) | (a, c) ∈
A × C ∧ l↗ (l↘ (a, c)) ↓}.

The main application of this lemma is the following corollary, which provides an
easy way to show that a lens is not well behaved. We used it many times while
designing our combinators, to quickly generate and test candidates.

3.6 Corollary: If l ∈ C ⇐⇒ A, then l↘ is semi-injective on A × C.

An important special case arises when the putback function of a lens is completely
insensitive to its concrete argument.

3.7 Definition: A lens l is said to be oblivious if l↘ (a, c) = l↘ (a, c′) for all
a, c, c′ ∈ V.

Oblivious lenses have some special properties that make them simpler to reason
about than lenses in general. For example:

3.8 Lemma: If l is oblivious and l ∈ C1 ! A1 and l ∈ C2 ! A2, then l ∈
(C1 ∪ C2) ! (A1 ∪ A2).

3.9 Lemma: If l ∈ C ⇐⇒ A is oblivious, then l↗ is a bijection from C to A.

Conversely, every bijection between C and A induces a total oblivious lens from
C to A—that is, the set of bijections between subsets of V forms a subcategory of
the category of total lenses. Many of the combinators defined below actually live in
this simpler subcategory, as does much of the related work surveyed in Section 10.

of synchronization will be to propagate all these changes to the other replica. This implies that
the putback function in the lens associated with the other replica must be prepared to accept any
value from the abstract domain. In other settings, different notions of totality may be appropriate.
For example, Hu, Mu, and Takeichi [Hu et al. 2004] have argued that, in the context of interactive
editors, a reasonable definition of totality is that l↘ (a, c) should be defined whenever a differs
by at most one edit operation from l↗c.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Combinators for Bi-Directional Tree Transformations · 9

Recursion

Since we will be interested in lenses over trees, and since trees in many application
domains may have unbounded depth (e.g., a bookmark can be either a link or
a folder containing a list of bookmarks), we will often want to define lenses by
recursion. Our next task is to set up the necessary structure for interpreting such
definitions.

The development follows familiar lines. We introduce an information ordering
on lenses and show that the set of lenses equipped with this ordering is a complete
partial order (CPO). We then apply standard tools from domain theory to interpret
a variety of common syntactic forms from programming languages—in particular,
functional abstraction and application (“higher-order lenses”) and lenses defined
by single or mutual recursion.

We say that a lens l′ is more informative than a lens l, written l ≺ l′, if both the
get and putback functions of l′ have domains that are at least as large as those of l
and their results agree on their common domains:

3.10 Definition: l ≺ l′ iff dom(l↗) ⊆ dom(l′↗), dom(l↘) ⊆ dom(l′↘), l↗ c =
l′↗ c for all c ∈ dom(l↗), and l↘ (a, c) = l′ ↘ (a, c) for all (a, c) ∈ dom(l↘).

3.11 Lemma: ≺ is a partial order on lenses.

A cpo is a partially ordered set in which every increasing chain of elements has
a least upper bound in the set. If l0 ≺ l1 ≺ . . . ≺ ln ≺ . . . is an increasing chain,
we write

⊔

n∈ω ln (often shortened to
⊔

n ln) for its least upper bound. A cpo with
bottom is a cpo with an element ⊥ that is smaller than every other element. In
our setting, the bottom element ⊥l is the lens whose get and putback functions
are everywhere undefined. It is obviously the smallest lens according to ≺ and is
well-behaved at any lens type (it trivially satisfies all equations).

3.12 Lemma: Let l0 ≺ l1 ≺ . . . ≺ ln ≺ . . . be an increasing chain of lenses. The
lens l defined by

l↘ (a, c) = li ↘ (a, c) if li ↘ (a, c) ↓ for some i

l↗ c = li↗ c if li↗ c ↓ for some i

and undefined elsewhere is a least upper bound for the chain.

3.13 Corollary: Let l0 ≺ l1 ≺ . . . ≺ ln ≺ . . . be an increasing chain of lenses. For
every a, c ∈ V, we have:

(1) (
⊔

n ln)↗ c = v iff ∃i. li↗ c = v.

(2) (
⊔

n ln)↘ (a, c) = v iff ∃i. li ↘ (a, c) = v.

3.14 Lemma: Let l0 ≺ l1 ≺ . . . ≺ ln ≺ . . . be an increasing chain of lenses, and
let C0 ⊆ C1 ⊆ . . . and A0 ⊆ A1 ⊆ . . . be increasing chains of subsets of V. Then:

(1) Well-behavedness commutes with limits:
(∀i ∈ ω. li ∈ Ci ! Ai) implies

⊔

n ln ∈ (
⋃

i Ci) ! (
⋃

i Ai).

(2) Totality commutes with limits:
(∀i ∈ ω. li ∈ Ci ⇐⇒ Ai) implies

⊔

n ln ∈ (
⋃

i Ci) ⇐⇒ (
⋃

i Ai).

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

10 · J. N. Foster et. al.

3.15 Theorem: Let L be the set of well-behaved lenses from C to A. Then (L, ≺)
is a cpo with bottom.

When defining lenses, we will make heavy use of the following standard theorem
from domain theory (e.g., [Winskel 1993]). Recall that a function f between two
cpos is continuous if it is monotonic and if, for all increasing chains l0 ≺ l1 ≺ . . . ≺
ln ≺ . . . , we have f(

⊔

n ln) =
⊔

n f(ln). A fixed point of f is a function fix (f)
satisfying fix (f) = f(fix (f)).

3.16 Theorem [Fixed-Point Theorem]: Let f be a continuous function from
D to D, where D is a cpo with bottom. Define

fix (f) =
⊔

n

fn(⊥)

Then fix (f) is a fixed point, in fact the least fixed point, of f .

Theorem 3.15 tells us that we can apply Theorem 3.16 to continuous functions
from lenses to lenses—i.e., it justifies defining lenses by recursion. The following
corollary packages up this argument in a convenient form; we will appeal to it many
times in later sections to show that recursive derived forms are well behaved and
total.

3.17 Corollary: Suppose f is a continuous function from lenses to lenses.

(1) If l ∈ C ! A implies f(l) ∈ C ! A for all l, then fix (f) ∈ C ! A.

(2) Suppose ∅ = C0 ⊆ C1 ⊆ . . . and ∅ = A0 ⊆ A1 ⊆ . . . are increasing chains of
subsets of V. If l ∈ Ci ⇐⇒ Ai implies f(l) ∈ Ci+1 ⇐⇒ Ai+1 for all i and l,
then fix (f) ∈ (

⋃

i Ci) ⇐⇒ (
⋃

i Ai).

We can now apply standard domain theory to interpret a variety of constructs
for defining continuous lens combinators. We say that an expression e is continuous
in the variable x if the function λx.e is continuous. An expression is said to be con-
tinuous in its variables, or simply continuous, if it is continuous in every variable
separately. Examples of continuous expressions are variables, constants, tuples (of
continuous expressions), projections (from continuous expressions), applications of
continuous functions to continuous arguments, lambda abstractions (whose bod-
ies are continuous), let bindings (of continuous expressions in continuous bodies),
case constructions (of continuous expressions), and the fixed point operator itself.
Tupling and projection let us define mutually recursive functions: if we want to
define f as F (f, g) and g as G(f, g), where both F and G are continuous, we define
(f, g) = fix (λ(x, y).(F (x, y), G(x, y))).

When proving the totality of recursive lenses, we sometimes need to use a more
powerful induction scheme in which a lens is proved, simultaneously, to be total
on a whole collection of different types (any of which can be used in the induction
step). This is supported by a generalization of the proof technique in 3.17(2).

We specify a total type by a pair (C, A) of subsets of V, and say that a lens l has
this type, written l ∈ (C, A) iff l ∈ C ⇐⇒ A. We use the variable τ to range over
total types and T for sets of total types. We write (C, A) ⊆ (C ′, A′) iff C ⊆ C ′ and
A ⊆ A′ and write (C, A) ∪ (C ′, A′) for (C ∪ C ′, A ∪ A′).

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Combinators for Bi-Directional Tree Transformations · 11

3.18 Definition: The increasing chain τ0 ⊆ τ1 ⊆ . . . is an increasing instance of
the sequence T0, T1, . . . iff τi ∈ Ti for all i.

Note that T0, T1, . . . here is an arbitrary sequence of sets of total types—the
sequence need not be increasing. This is the trick that makes this proof technique
work: we start with a sequence of sets of total types T0, T1, . . . that, a priori, have
nothing to do with each other; we then show that some continuous function f on
lenses gets us from each Ti to Ti+1, in the sense that f takes any lens l that belongs
to all of the total types in Ti to a lens f(l) that belongs to all of the total types in
Ti+1. Finally, we identify an increasing chain of particular total types τ0 ⊆ τ1 ⊆ . . .
whose limit is the total type that we desire to show for the fixed point of f and
such that each τi belongs to Ti, and hence is a type for f i(⊥l).

Here is the generalization of Corollary 3.17(2) to increasing instances of sequences
of sets of total types. It will be used in Section 7.

3.19 Lemma: Suppose f is a continuous function from lenses to lenses and
T0, T1, . . . is a sequence of sets of total types with T0 = {(∅, ∅)}. If for all l and i
we have (∀τ ∈ Ti. l ∈ τ) implies (∀τ ∈ Ti+1. f(l) ∈ τ), then for every increasing
instance τ0 ⊆ τ1 ⊆ . . . of T0, T1, . . . we have fix (f) ∈

⋃

i τi.

Dealing with Creation

In practice, there will be cases where we need to apply a putback function, but
where no old concrete view is available, as we saw with Jo’s URL in Section 2. We
deal with these cases by enriching the universe V of views with a special placeholder
Ω, pronounced “missing,” which we assume is not already in V. (There are other,
formally equivalent, ways of handling missing concrete views. The advantages of
this one are discussed in Section 5.) When S ⊆ V, we write SΩ for S ∪ {Ω}.

Intuitively, l↘ (a, Ω) means “create a new concrete view from the information
in the abstract view a.” By convention, Ω is only used in an interesting way
when it is the second argument to the putback function: in all of the lenses defined
below, we maintain the invariants that (1) l↗Ω = Ω, (2) l↘ (Ω, c) = Ω for any
c, (3) l↗ c .= Ω for any c .= Ω, and (4) l↘ (a, c) .= Ω for any a .= Ω and any c
(including Ω). We write C !

Ω A for the set of well-behaved lenses from CΩ to AΩ

obeying these conventions and C ⇐⇒Ω A for the set of total lenses obeying these
conventions. For brevity in the lens definitions below, we always assume that c .= Ω
when defining l↗ c and that a .= Ω when defining l↘ (a, c), since the results in
these cases are uniquely determined by these conventions. A useful consequence of
these conventions is that a lens l ∈ C !

Ω A also has type C ! A.

3.20 Lemma: For any lens l and sets of views C and A: l ∈ C !
Ω A implies

l ∈ C ! A and (2) l ∈ C ⇐⇒Ω A implies l ∈ C ⇐⇒ A.

4. GENERIC LENSES

With these semantic foundations in hand, we are ready to move on to syntax. We
begin in this section with several generic lens combinators (we will usually say just
lenses from now on), whose definitions are independent of the particular choice of
universe V. Each definition is accompanied by a type declaration asserting its well-
behavedness under certain conditions—e.g., “the identity lens belongs to C !

Ω C
for any C”.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

12 · J. N. Foster et. al.

Many of the lens definitions are parameterized on one or more arguments. These
may be of various types: views (e.g., const), other lenses (e.g., composition), pred-
icates on views (e.g., the conditional lenses in Section 6), or—in some of the lenses
for trees in Section 5—edge labels, predicates on labels, etc.

Electronic Appendix A contains representative proofs that the lenses we define
are well behaved (i.e., that the type declaration accompanying its definition is
a theorem) and total, and that lenses that take other lenses as parameters are
continuous in these parameters and map total lenses to total lenses. Indeed, nearly
all of the lenses we define are very well behaved (if their lens arguments are), the
only exceptions being map, flatten, merge, and conditionals; we do not prove very
well behavedness, however, since we are mainly interested just in the well-behaved
case.

Identity

The simplest lens is the identity. It copies the concrete view in the get direction
and the abstract view in the putback direction.

id↗ c = c
id↘ (a, c) = a

∀C⊆V. id ∈ C ⇐⇒Ω C

Having defined id, we must prove that it is well behaved and total—i.e., that its
type declaration is a theorem. We state the properties explicitly as lemmas and
give proofs (in electronic Appendix A) for id and a few representative lenses. For
the rest, we elide both the statements of the properties, which can be read off from
each lens’s definition, and the proofs, which are largely calculational.

4.1 Lemma [Well-behavedness]: ∀C⊆V. id ∈ C !
Ω C

4.2 Lemma [Totality]: ∀C⊆V. id ∈ C ⇐⇒Ω C

For each lens definition, the statements of the totality lemma and well-
behavedness lemmas are almost identical, just replacing !

Ω by ⇐⇒Ω . In the case of
id, we could just as well combine the two into a single lemma, because every lens
with a total type is also well-behaved at that type. However, for lens definitions
that are parameterized on other lenses (like composition, just below), the totality
of the compound lens depends on the totality (not just well-behavedness) of its
argument lenses, while we can establish the well-behavedness of the composite even
if the arguments are only well-behaved and not necessarily total. Since we expect
this situation will be common in practice—programmers will always want to check
that their lenses are well-behaved, since the reasoning involved is simple and local,
but may not want to go to the trouble of setting up the more intricate global rea-
soning needed to prove that their recursive lens definitions are total—we state the
two lemmas (i.e., typings) separately.

Composition

The lens composition combinator l; k places l and k in sequence.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Combinators for Bi-Directional Tree Transformations · 13

(l; k)↗ c = k↗ (l↗ c)
(l; k)↘ (a, c) = l↘ (k↘ (a, l↗ c), c)

∀A, B, C⊆V. ∀l ∈ C !
Ω B. ∀k ∈ B !

Ω A. l; k ∈ C !
Ω A

∀A, B, C⊆V. ∀l ∈ C ⇐⇒Ω B. ∀k ∈ B ⇐⇒Ω A. l; k ∈ C ⇐⇒Ω A

The get direction applies the get function of l to yield a first abstract view, on which
the get function of k is applied. In the other direction, the two putback functions
are applied in turn: first, the putback function of k is used to put a into the concrete
view that the get of k was applied to, i.e., l↗ c; the result is then put into c using
the putback function of l. (If the concrete view c is Ω, then, l↗ c will also be Ω by
our conventions on the treatment of Ω, so the effect of (l; k)↘ (a, Ω) is to use k
to put a into Ω and then l to put the result into Ω.) We record two different type
declarations for composition: one for the case where the parameter lenses l and k
are only known to be well behaved, and another for the case where they are also
known to be total.

Once again, proofs that the composition operator has the types mentioned above
are given in electronic Appendix A.

4.3 Lemma [Well-behavedness]:
∀A, B, C⊆V. ∀l ∈ C !

Ω B. ∀k ∈ B !
Ω A. l; k ∈ C !

Ω A

4.4 Lemma [Totality]:
∀A, B, C⊆V. ∀l ∈ C ⇐⇒Ω B. ∀k ∈ B ⇐⇒Ω A. l; k ∈ C ⇐⇒Ω A

Besides well-behavedness and totality, we must also show that lens composition
is continuous in its arguments. This will justify using composition in recursive lens
definitions: in order for a recursive lens defined as fix (λl. l1; l2) (where l1 and l2
may both mention l) to be well formed, we need to apply Theorem 3.16, which
requires that λl. l1; l2 be continuous in l. The following lemma shows that this will
be the case whenever l1 and l2 are continuous in l.

4.5 Lemma [Continuity]: Let F and G be continuous functions from lenses to
lenses. Then the function λl. (F (l); G(l)) is continuous.

We have proved an analogous lemma for each of our lens combinators that takes
other lenses as parameters, so that the continuity of every lens expression will follow
from the continuity of its immediate constituents, but we will not bother to state
these continuity lemmas explicitly in what follows.

Constant

Another simple combinator is const v d, which transforms any view into the
constant view v in the get direction. In the putback direction, const simply restores
the old concrete view if one is available; if the concrete view is Ω, it returns a default
view d.

(const v d)↗ c = v
(const v d)↘ (a, c) = c if c .= Ω

d if c = Ω

∀C⊆V. ∀v∈V. ∀d∈C. const v d ∈ C ⇐⇒Ω {v}

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

14 · J. N. Foster et. al.

Note that the type declaration demands that the putback direction only be applied
to the abstract argument v.

We will define a few more generic lenses in Section 6; for now, though, let us
turn to some lens combinators that work on tree-structured data, so that we can
ground our definitions in specific examples.

5. LENSES FOR TREES

To keep the definitions of our lens primitives as straightforward as possible, we
work with an extremely simple form of trees: unordered, edge-labeled trees with
no repeated labels among the children of a given node. This model is a natural
fit for applications where the data is unordered, such as the keyed address books
described in Section 2. Unfortunately, unordered trees do not have all the structure
we need for other applications; in particular, we will need to deal with ordered data
such as lists and XML documents via an encoding (shown in Section 8). A more
direct treatment of ordered trees is a worthwhile topic for future work, but, in
the context of the Harmony system, where we are interested in both ordered and
unordered data, the choice of a simpler foundation seems to have been a good one:
the increase in complexity of lens programs that must manipulate ordered data in
encoded form is more than made up by the reduction in the complexity of the
definitions of lens primitives due to the simpler data model.

Notation

From this point on, we choose the universe V to be the set T of finite, unordered,
edge-labeled trees with labels drawn from some infinite set N of names—e.g., char-
acter strings—and with the children of a given node all labeled with distinct names.
Trees of this form (often extended with labels on internal nodes as well as on chil-
dren) are sometimes called deterministic trees or feature trees (e.g., [Niehren and
Podelski 1993]). The variables a, c, d, and t range over T ; by convention, we use a
for trees that are thought of as abstract and c or d for concrete trees.

A tree is essentially a finite partial function from names to other trees. It will be
more convenient, though, to adopt a slightly different perspective: we will consider
a tree t ∈ T to be a total function from N to TΩ that yields Ω on all but a finite
number of names. We write dom(t) for the domain of t—i.e., the set of the names
for which it returns something other than Ω—and t(n) for the subtree associated
to name n in t, or Ω if n .∈ dom(t).

Tree values are written using hollow curly braces. The empty tree is written {||}.
(Note that {||}, a node with no children, is different from Ω.) We often describe trees
by comprehension, writing

{∣

∣n !→ F (n) | n ∈ N
∣

∣

}

, where F is some function from N
to TΩ and N ⊆ N is some set of names. When t and t′ have disjoint domains,
we write t · t′ or

{∣

∣t t′
∣

∣

}

(the latter especially in multi-line displays) for the tree
mapping n to t(n) for n ∈ dom(t), to t′(n) for n ∈ dom(t′), and to Ω otherwise.

When p ⊆ N is a set of names, we write p for N\p, the complement of p.
We write t|p for the restriction of t to children with names from p—i.e., the tree
{∣

∣n !→ t(n) | n ∈ p ∩ dom(t)
∣

∣

}

—and t\p for
{∣

∣n !→ t(n) | n ∈ dom(t)\p
∣

∣

}

. When p is
just a singleton set {n}, we drop the set braces and write just t|n and t\n instead of
t|{n} and t\{n}. To shorten some of the lens definitions, we adopt the conventions
that dom(Ω) = ∅ and that Ω|p = Ω\p = Ω for any p.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Combinators for Bi-Directional Tree Transformations · 15

For writing down types,5 we extend these tree notations to sets of trees. If T ⊆ T
and n ∈ N , then

{∣

∣n !→ T
∣

∣

}

denotes the set of singleton trees {
{∣

∣n !→ t
∣

∣

}

| t ∈ T}.
If T ⊆ T and N ⊆ N , then

{∣

∣N !→ T
∣

∣

}

denotes the set of trees {t | dom(t) =

N and ∀n ∈ N. t(n) ∈ T} and
{∣

∣

∣N
?
!→ T

∣

∣

∣

}

denotes the set of trees {t | dom(t) ⊆

N and ∀n ∈ N. t(n) ∈ TΩ}. We write T1 · T2 for {t1 · t2 | t1 ∈ T1, t2 ∈ T2} and
T (n) for {t(n) | t ∈ T} \ {Ω}. If T ⊆ T , then doms(T) = {dom(t) | t ∈ T}. Note
that doms(T) is a set of sets of names, while dom(t) is a set of names.

A value is a tree of the special form
{∣

∣k !→ {||}
∣

∣

}

, often written just k. For instance,
the phone number

{∣

∣333-4444 !→ {||}
∣

∣

}

in the example of Section 2 is a value. We
write Val for the type whose denotation is the set of all values.

Hoisting and Plunging

Let’s warm up with some combinators that perform simple structural transforma-
tions on trees. The lens hoist n is used to shorten a tree by removing an edge at
the top. In the get direction, it expects a tree that has exactly one child, named n.
It returns this child, removing the edge n. In the putback direction, the value of the
old concrete tree is ignored and a new one is created, with a single edge n pointing
to the given abstract tree. (Later we will meet a derived form, hoist nonunique,
that works on bushier trees.)

(hoist n)↗ c = c(n)
(hoist n)↘ (a, c) =

{∣

∣n !→ a
∣

∣

}

∀C⊆T . ∀n∈N . hoist n ∈
{∣

∣n !→ C
∣

∣

}

⇐⇒Ω C

Conversely, the plunge lens is used to deepen a tree by adding an edge at the
top. In the get direction, a new tree is created, with a single edge n pointing to
the given concrete tree. In the putback direction, the value of the old concrete tree
is ignored and the abstract tree is required to have exactly one subtree, labeled n,
which becomes the result of the plunge.

(plunge n)↗ c =
{∣

∣n !→ c
∣

∣

}

(plunge n)↘ (a, c) = a(n)

∀C⊆T . ∀n∈N . plunge n ∈ C ⇐⇒Ω
{∣

∣n !→ C
∣

∣

}

Forking

The lens combinator xfork applies different lenses to different parts of a tree. More
precisely, it splits the tree into two parts according to the names of its immediate
children, applies a different lens to each, and concatenates the results. Formally,
xfork takes as arguments two sets of names and two lenses. The get direction of
xfork pc pa l1 l2 can be visualized as in Figure 1 (the concrete tree is at the bottom).
The triangles labeled pc denote trees whose immediate children have labels in pc;

5Note that, although we are defining a syntax for lens expressions, the types used to classify these
expressions are semantic—they are just sets of lenses or views. We are not (yet—see Section 11)
proposing an algebra of types or an algorithm for mechanically checking membership of lens
expressions in type expressions.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

16 · J. N. Foster et. al.

!!!!!!!
""

""
""

"

pa pa

!!!!!!!
pa

!!

""
""

""
"

pa

""

!!!!!!!
pc

(l1↗)
##

""
""

""
"

pc

(l2↗)
##

!!!!!!!
""

""
""

"

pc pc

$$ %%

Fig. 1. The get direction of xfork

dotted arrows represent splitting or concatenating trees. The result of applying
l1↗ to c|pc (the tree formed by dropping the immediate children of c whose names
are not in pc) must be a tree whose top-level labels are in the set pa; similarly, the
result of applying l2↗ to c\pc must be in pa. That is, the lens l1 may change the
names of immediate children of the tree it is given, but it must map the part of the
tree with immediate children belonging to pc to a tree with children belonging to
pa. Likewise, l2 must map the part of the tree with immediate children belonging
to pc to a tree with children in pa. Conversely, in the putback direction, l1 must
map from pa to pc and l2 from pa to pc. Here is the full definition:

(xfork pc pa l1 l2)↗ c = (l1↗ c|pc) · (l2↗ c\pc)
(xfork pc pa l1 l2)↘ (a, c) = (l1 ↘ (a|pa, c|pc)) · (l2 ↘ (a\pa, c\pc))

∀pc, pa⊆N . ∀C1⊆T |pc. ∀A1⊆T |pa. ∀C2⊆T \pc. ∀A2⊆T \pa.
∀l1 ∈ C1 !

Ω A1. ∀l2 ∈ C2 !
Ω A2.

xfork pc pa l1 l2 ∈ (C1 · C2) !
Ω (A1 · A2)

∀pc, pa⊆N . ∀C1⊆T |pc. ∀A1⊆T |pa. ∀C2⊆T \pc. ∀A2⊆T \pa.
∀l1 ∈ C1 ⇐⇒Ω A1. ∀l2 ∈ C2 ⇐⇒Ω A2.

xfork pc pa l1 l2 ∈ (C1 · C2) ⇐⇒Ω (A1 · A2)

We rely here on our convention that Ω|p = Ω\p = Ω to avoid explicitly splitting
out the Ω case in the putback direction.

We have now defined enough basic lenses to implement several useful derived
forms for manipulating trees.

In many uses of xfork, the sets of names specifying where to split the concrete
tree and where to split the abstract tree are identical. We can define a simpler fork
as:

fork p l1 l2 = xfork p p l1 l2

∀p⊆N . ∀C1, A1⊆T |p. ∀C2, A2⊆T \p. ∀l1 ∈ C1 !
Ω A1. ∀l2 ∈ C2 !

Ω A2.
fork p l1 l2 ∈ (C1 · C2) !

Ω (A1 · A2)

∀p⊆N . ∀C1, A1⊆T |p. ∀C2, A2⊆T \p. ∀l1 ∈ C1 ⇐⇒Ω A1. ∀l2 ∈ C2 ⇐⇒Ω A2.
fork p l1 l2 ∈ (C1 · C2) ⇐⇒Ω (A1 · A2)

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Combinators for Bi-Directional Tree Transformations · 17

We can use fork to define a lens that discards all of the children of a tree whose
names do not belong to some set p:

filter p d = fork p id (const {||} d)

∀C⊆T . ∀p⊆N . ∀d ∈ C\p.
filter p d ∈ (C|p · C\p) ⇐⇒Ω C|p

In the get direction, this lens takes a concrete tree, keeps the children with names
in p (using id), and throws away the rest (using const {||} d). The tree d is
used when putting an abstract tree back into a missing concrete tree, providing a
default for information that does not appear in the abstract tree but is required in
the concrete tree. The type of filter follows directly from the types of the three
primitive lenses used to define it: const {||} d, with type C\p ⇐⇒Ω {{||}}, the lens
id, with type C|p ⇐⇒Ω C|p, and fork (with the observation that C|p = C|p · {||}).

Let us see how filter behaves in an example. Let the concrete tree c =
{∣

∣name !→ Pat, phone !→ 333-4444
∣

∣

}

, and lens l = filter {name} {||}. We calcu-
late l↗ c, underlining the next term to be simplifed at each step.

l↗ c = (fork {name} id (const{||} d))↗
{∣

∣name !→ Pat, phone !→ 333-444
∣

∣

}

by the definition of l
= id↗

{∣

∣name !→ Pat
∣

∣

}

· (const {||} d)↗
{∣

∣phone !→ 333-4444
∣

∣

}

by the definition of fork and splitting c using {name}
=
{∣

∣name !→ Pat
∣

∣

}

· {||} =
{∣

∣name !→ Pat
∣

∣

}

= a

by the definitions of id and const

Now suppose that we update this tree, a, to
{∣

∣name !→ Patty
∣

∣

}

. Let us calculate the
result of putting back a into c. To save space, we write k for (const {||} {||}).

l↘ (a, c)
= (fork {name} id k)↘

({∣

∣name !→ Pat
∣

∣

}

,
{∣

∣name !→ Pat, phone !→ 333-4444
∣

∣

})

by the definition of l
= id↘

({∣

∣name !→ Patty
∣

∣

}

,
{∣

∣name !→ Pat
∣

∣

})

· k↘
(

{||},
{∣

∣phone !→ 333-4444
∣

∣

})

by the definition of fork and splitting a and c using {name}
=
{∣

∣name !→ Patty, phone !→ 333-4444
∣

∣

}

by the definition of id and const

Note that the putback function restores the filtered part of the concrete tree and
propagates the change made to the abstract tree. In the case of creation—i.e., if
we put back an abstract tree using Ω— then the default argument to const is
concatenated to the abstract tree to form the result, since there is no filtered part
of the concrete tree to restore.

Another way to thin a tree is to explicitly specify a child that should be removed
if it exists:

prune n d = fork {n}
(

const {||}
{∣

∣n !→ d
∣

∣

})

id

∀C⊆T . ∀n∈N . ∀d∈C(n).
prune n d ∈ (C|n · C\n) ⇐⇒Ω C\n

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

18 · J. N. Foster et. al.

This lens is similar to filter, except that (1) the name given is the child to be
removed rather than a set of children to keep, and (2) the default tree is the one to
go under n if the concrete tree is Ω.

Conversely, we can grow a tree in the get direction by explicitly adding a child.
The type annotation disallows changes in the newly added tree, so it can be dropped
in the putback.

add n t = xfork {} {n} (const t {||}; plunge n) id

∀n∈N . ∀C⊆T \n. ∀t ∈ T .
add n t ∈ C ⇐⇒Ω

{∣

∣n !→ {t}
∣

∣

}

· C

Let us explore the behavior of add through an example. Let c =
{∣

∣a !→ {||}
∣

∣

}

and
l = add b

{∣

∣x !→ {||}
∣

∣

}

. To save space, write k for const
{∣

∣x !→ {||}
∣

∣

}

{||} and p for
plunge b. We calculate l↗ c directly, underlining the term to be simplifed at each
step.

l↗ c = (xfork {} {b} (k; p) id)↗ c

by the definition of l
= (k; p)↗ {||} · id↗

{∣

∣a !→ {||}
∣

∣

}

by the definition of xfork and splitting c using {}
= p↗ (k↗ {||}) ·

{∣

∣a !→ {||}
∣

∣

}

by the definitions of the composition and id

=
(

p↗
{∣

∣x !→ {||}
∣

∣

}

)

·
{∣

∣a !→ {||}
∣

∣

}

by the definition of k

=
{∣

∣

∣a !→ {||}, b !→
{∣

∣x !→ {||}
∣

∣

}

∣

∣

∣

}

by the definition of p

Now suppose we modify this tree by renaming the child a to c, obtaining a =
{∣

∣c !→ {||}, b !→
{∣

∣x !→ {||}
∣

∣

}∣

∣

}

. The result of the putback function, l↘ (a, c), is calcu-
lated as follows:

l↘ (a, c) = (xfork {} {b} (k; p) id)↘ (a, c)

by the definition of l

=
(

(k; p)↘
({∣

∣

∣b !→
{∣

∣x !→ {||}
∣

∣

}

∣

∣

∣

}

, {||}
))

·
(

id↘
({∣

∣c !→ {||}
∣

∣

}

,
{∣

∣a !→ {||}
∣

∣

})

)

by the definition of xfork, splitting a using {b} and c using {}

=

(

(k; p)↘
({∣

∣

∣b !→
{∣

∣x !→ {||}
∣

∣

}

∣

∣

∣

}

, {||}
)

)

·
{∣

∣c !→ {||}
∣

∣

}

by the definition of id

=

(

k↘

(

p↘
({∣

∣

∣b !→
{∣

∣x !→ {||}
∣

∣

}

∣

∣

∣

}

, k↗ {||}
)

, {||}

))

·
{∣

∣c !→ {||}
∣

∣

}

by the definition of composition

=
(

k↘
({∣

∣x !→ {||}
∣

∣

}

, {||}
)

)

·
{∣

∣c !→ {||}
∣

∣

}

by the definition of p
= {||} ·

{∣

∣c !→ {||}
∣

∣

}

=
{∣

∣c !→ {||}
∣

∣

}

by the definition of k

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Combinators for Bi-Directional Tree Transformations · 19

Another derived lens focuses attention on a single child n:

focus n d = (filter {n} d); (hoist n)

∀n∈N . ∀C⊆T \n.∀d∈C. ∀D⊆T .
focus n d ∈ (C ·

{∣

∣n !→ D
∣

∣

}

) ⇐⇒Ω D

In the get direction, focus filters away all other children, then removes the edge
n and yields n’s subtree. As usual, the default tree is only used in the case of
creation, where it is the default for children that have been filtered away. The type
of focus follows from the types of the lenses from which it is defined, observing
that filter {n} d ∈ (C · {|n !→ D|}) ⇐⇒Ω {|n !→ D|} and that hoist n ∈ {|n !→
D|} ⇐⇒Ω D.

The hoist primitive defined earlier requires that the name being hoisted be the
unique child of the concrete tree. It is often useful to relax this requirement, hoisting
one child out of many. This generalized version of hoist is annotated with the set
p of possible names of the grandchildren that will become children after the hoist,
which must be disjoint from the names of the existing children.

hoist nonunique n p = xfork {n} p (hoist n) id

∀n∈N . ∀p⊆N . ∀D⊆T \{n}∪p. ∀C⊆T |p.
hoist nonunique n p ∈ (

{∣

∣n !→ C
∣

∣

}

· D) ⇐⇒Ω (C · D)

A last derived lens renames a single child.

rename m n = xfork {m} {n} (hoist m; plunge n) id

∀m, n∈N . ∀C⊆T . ∀D⊆T \{m,n}.
rename m n ∈ (

{∣

∣m !→ C
∣

∣

}

· D) ⇐⇒Ω (
{∣

∣n !→ C
∣

∣

}

· D)

In the get direction, rename splits the concrete tree in two. The first tree has a
single child m (which is guaranteed to exist by the type annotation) and is hoisted
up, removing the edge named m, and then plunged under n. The rest of the
original tree is passed through the id lens. Similarly, the putback direction splits
the abstract view into a tree with a single child n, and the rest of the tree. The
tree under n is put back using the lens (hoist m; plunge n), which first removes
the edge named n and then plunges the resulting tree under m. Note that the type
annotation on rename demands that the concrete view have a child named m and
that the abstract view have a child named n. In Section 6 we will see how to wrap
this lens in a conditional to obtain a lens with a more flexible type.

Mapping

So far, all of our lens combinators do things near the root of the trees they are given.
Of course, we also want to be able to perform transformations in the interior of
trees. The map combinator is our fundamental means of doing this. When combined
with recursion, it also allows us to iterate over structures of arbitrary depth.

The map combinator is parameterized on a single lens l. In the get direction, map
applies l↗ to each subtree of the root and combines the results together into a

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

20 · J. N. Foster et. al.

new tree. (Later in this section, we will define a more general combinator, called
wmap, that can apply a different lens to each subtree. Defining map first lightens
the notational burden in the explanations of several fine points about the behavior
and typing of both combinators.) For example, the lens map l has the following
behavior in the get direction when applied to a tree with three children:

∣

∣

∣

∣

∣

∣

n1 !→ t1
n2 !→ t2
n3 !→ t3

∣

∣

∣

∣

∣

∣

becomes

∣

∣

∣

∣

∣

∣

n1 !→ l↗ t1
n2 !→ l↗ t2
n3 !→ l↗ t3

∣

∣

∣

∣

∣

∣

The putback direction of map is more interesting. In the simple case where a
and c have equal domains, its behavior is straightforward: it uses l↘ to combine
concrete and abstract subtrees with identical names and assembles the results into
a new concrete tree, c′:

(map l)↘

∣

∣

∣

∣

∣

∣

n1 !→ t1
n2 !→ t2
n3 !→ t3

∣

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

∣

n1 !→ t′1
n2 !→ t′2
n3 !→ t′3

∣

∣

∣

∣

∣

∣

 =

∣

∣

∣

∣

∣

∣

n1 !→ l↘ (t1, t′1)
n2 !→ l↘ (t2, t′2)
n3 !→ l↘ (t3, t′3)

∣

∣

∣

∣

∣

∣

In general, however, the abstract tree a in the putback direction need not have
the same domain as c (i.e., the edits that produced the new abstract view may
have involved adding and deleting children); the behavior of map in this case
is a little more involved. Observe, first, that the domain of c′ is determined
by the domain of the abstract argument to putback. Since we aim at build-
ing total lenses, we may suppose that (map l)↗ ((map l)↘ (a, c)) is defined, in
which case dom((map l)↗ ((map l)↘ (a, c))) = dom(a) by rule PutGet, and
dom((map l)↘ (a, c)) = dom(a) as (map l)↗ does not change the domain of the
tree. This means we can simply drop children that occur in dom(c) but not in
dom(a). Children bearing names that occur both in dom(a) and dom(c) are dealt
with as described above. This leaves the children that only appear in dom(a), which
need to be passed through l so that they can be included in c′; to do this, we need
some concrete argument to pass to l↘. There is no corresponding child in c, so
instead these abstract trees are put into the missing tree Ω—indeed, this case is
precisely why we introduced Ω. Formally, the behavior of map is defined as follows.
(It relies on the convention that c(n) = Ω if n .∈ dom(c); the type declaration also
involves some new notation, explained below.)

(map l)↗ c =
{∣

∣n !→ l↗ c(n) | n ∈ dom(c)
∣

∣

}

(map l)↘ (a, c) =
{∣

∣n !→ l↘ (a(n), c(n)) | n ∈ dom(a)
∣

∣

}

∀C, A⊆T with C = C!, A = A!, doms(C) = doms(A).
∀l ∈ (

⋂

n∈N . C(n) !
Ω A(n)).

map l ∈ C !
Ω A

∀C, A⊆T with C = C!, A = A!, doms(C) = doms(A).
∀l ∈ (

⋂

n∈N . C(n) ⇐⇒Ω A(n)).
map l ∈ C ⇐⇒Ω A

Because of the way that it takes the tree apart, transforms the pieces, and reassem-
bles them, the typing of map is a little subtle. For example, in the get direction, map

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Combinators for Bi-Directional Tree Transformations · 21

does not modify the names of the immediate children of the concrete tree, and in
the putback direction, the names of the abstract tree are left unchanged; we might
therefore expect a simple typing rule stating that, if l ∈ (

⋂

n∈N C(n) !
Ω A(n))—

i.e., if l is a well-behaved lens from the concrete subtree type C(n) to the abstract
subtree type A(n) for each child n—then map l ∈ C !

Ω A. Unfortunately, for arbi-
trary C and A, the map lens is not guaranteed to be well-behaved at this type. In
particular, if doms(C), the set of domains of trees in C, is not equal to doms(A),
then the putback function can produce a tree that is not in C, as the following
example shows. Consider the sets of trees

C =
{{∣

∣x !→ m
∣

∣

}

,
{∣

∣y !→ n
∣

∣

}}

A = C ∪
{{∣

∣x !→ m, y !→ n
∣

∣

}}

and observe that with trees

a =
{∣

∣x !→ m, y !→ n
∣

∣

}

c =
{∣

∣x !→ m
∣

∣

}

we have map id↘ (a, c) = a, a tree that is not in C. This shows that the type of
map must include the requirement that doms(C) = doms(A). (Recall that, for any
type T , the set doms(T) is a set of sets of names.)

A related problem arises when the sets of trees A and C have dependencies
between the names of children and the trees that may appear under those names.
Again, one might naively expect that, if l has type C(m) !

Ω A(m) for each name
m, then map l would have type C !

Ω A. Consider, however, the set

A = {{|x !→ m, y !→ p|}, {|x !→ n, y !→ q|}} ,

in which the value m only appears under x when p appears under y, and the set

C = {{|x !→ m, y !→ p|}, {|x !→ m, y !→ q|}, {|x !→ n, y !→ p|}, {|x !→ n, y !→ q|}} ,

where both m and n appear with both p and q. When we consider just the
projections of C and A at specific names, we obtain the same sets of subtrees:
C(x) = A(x) = {{|m|}, {|n|}} and C(y) = A(y) = {{|p|}, {|q|}}. The lens id has type
C(x) !

Ω A(x) and C(y) !
Ω A(y) (and C(z) = ∅ !

Ω ∅ = A(z) for all other names z).
But it is clearly not the case that map id ∈ C !

Ω A.
To avoid this error, but still give a type for map that is precise enough to derive

interesting types for lenses defined in terms of map, we require that the source and
target sets in the type of map be closed under the “shuffling” of their children.
Formally, if T is a set of trees, then the set of shufflings of T , denoted T!, is

T! =
⋃

D∈doms(T)

{|n !→ T (n) | n ∈ D|}

where {|n !→ T (n) | n ∈ D|} is the set of trees with domain D whose children under
n are taken from the set T (n). We say that T is shuffle closed iff T = T!. In the
example above, A! = C! = C—i.e., C is shuffle closed, but A is not.

Alternatively, every shuffle-closed set T can be identified with a set of set of
names D and a function f from names to types, such that t ∈ T iff dom(t) ∈ D
and t(n) ∈ f(n) for every name n ∈ dom(t). Formally, the shuffle closed set T is
defined as follows:

T =
⋃

d∈D

{|n !→ f(n) | n ∈ d|}

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

22 · J. N. Foster et. al.

In the situations where map is used, shuffle closure is typically easy to check. For
example, the restriction on tree grammars embodied by W3C Schema implies shuffle
closure (informally, the restriction on W3C Schema is analogous to imposing shuffle
closure on the schemas along every path, not just at the root). Additionally, any
set of trees whose elements each have singleton domains is shuffle closed. Also, for
every set of trees T , the encoding introduced in Section 7 of lists with elements in T
is shuffle closed, which justifies using map (with recursion) to implement operations
on lists. Furthermore, types of the form {|n !→ T | n ∈ N|} with infinite domain
but with the same structure under each edge, which are heavily used in database
examples (where the top-level names are keys and the structures under them are
records) are shuffle closed.

Another point to note about map is that it does not obey the PutPut law.
Consider a lens l and (a, c) ∈ dom(l↘) such that l↘ (a, c) .= l↘ (a, Ω). We have

(map l)↘
({∣

∣n !→ a
∣

∣

}

, ((map l)↘
(

{||},
{∣

∣n !→ c
∣

∣

})

)
)

= (map l)↘
({∣

∣n !→ a
∣

∣

}

, {||}
)

=
{∣

∣n !→ l↘ (a, Ω)
∣

∣

}

whereas
{∣

∣n !→ l↘ (a, c)
∣

∣

}

= (map l)↘
({∣

∣n !→ a
∣

∣

}

,
{∣

∣n !→ c
∣

∣

})

.

Intuitively, there is a difference between, on the one hand, modifying a child n and,
on the other, removing it and then adding it back: in the first case, any information
in the concrete view that is “projected away” in the abstract view will be carried
along to the new concrete view; in the second, such information will be replaced
with default values. This difference seems pragmatically reasonable, so we prefer
to keep map and lose PutPut.6

A final point of interest is the relation between map and the missing tree Ω. The
putback function of most lens combinators only results in a putback into the missing
tree if the combinator itself is called on Ω. In the case of map l, calling its putback
function on some a and c where c is not the missing tree may result in the application
of the putback of l to Ω if a has some children that are not in c. In an earlier variant
of map, we dealt with missing children by providing a default concrete child tree,
which would be used when no actual concrete tree was available. However, we
discovered that, in practice, it is often difficult to find a single default concrete tree
that fits all possible abstract trees, particularly because of xfork (where different
lenses are applied to different parts of the tree) and recursion (where the depth
of a tree is unknown). We tried parameterizing this default concrete tree by the
abstract tree and the lens, but noticed that most primitive lenses ignore the concrete
tree when defining the putback function, as enough information is available in the
abstract tree. The natural choice for a concrete tree parameterized by a and l
was thus l↘ (a, Ω), for some special tree Ω. The only lens for which the putback
function needs to be defined on Ω is const, as it is the only lens that discards

6Alternatively, we could use a refinement of the type system to track when PutPut does hold,
annotating some of the lens combinators with extra type information recording the fact that they
are oblivious, and then give map two types: the one we gave here plus another saying “when map

is applied to an oblivious lens, the result is very well behaved.”

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Combinators for Bi-Directional Tree Transformations · 23

information. This led us to the present design, where only the const lens (along
with other lenses defined from it, such as focus) expects a default tree d. This
approach is much more convenient to program with than the others we tried, since
one only provides defaults at the exact points where information is discarded.

We now define a more general form of map that is parameterized on a total
function from names to lenses rather than on a single lens.

(wmap m)↗ c =
{∣

∣n !→ m(n)↗ c(n) | n ∈ dom(c)
∣

∣

}

(wmap m)↘ (a, c) =
{∣

∣n !→ m(n)↘ (a(n), c(n)) | n ∈ dom(a)
∣

∣

}

∀C, A⊆T with C = C!, A = A!, doms(C) = doms(A).
∀m ∈ (Πn∈N . C(n) !

Ω A(n)).
wmap m ∈ C !

Ω A

∀C, A⊆T with C = C!, A = A!, doms(C) = doms(A).
∀m ∈ (Πn∈N . C(n) ⇐⇒Ω A(n)).

wmap m ∈ C ⇐⇒Ω A

In the type annotation, we use the dependent type notation m ∈ Πn. C(n) !
Ω A(n)

to mean that m is a total function mapping each name n to a well-behaved lens
from C(n) to A(n). Although m is a total function, we will often describe it by
giving its behavior on a finite set of names and adopting the convention that it
maps every other name to id. For example, the lens wmap {x !→ plunge a} maps
plunge a over trees under x and id over the subtrees of every other child. We can
also easily define map as a derived form: map l = wmap (λn ∈ N . l).

Since the typing of wmap is rather subtle, it is worth stating its well-behavedness
lemma explicitly (and, in the appendix, giving the proof).

5.1 Lemma [Well-behavedness]:
∀C, A⊆T with C = C!, A = A!, doms(C) = doms(A).
∀m ∈ (Πn∈N . C(n) !

Ω A(n)).
wmap m ∈ C !

Ω A

Copying and Merging

We next consider two lenses that duplicate information in one direction and re-
integrate (by performing equality checks) in the other.

A view of some underlying data structure may sometimes require that two distinct
subtrees maintain a relationship, such as equality. For example, under the subtree
representing a manager, Alice, an employee-manager database may list the name
and ID number of every employee in Alice’s group. If Bob is managed by Alice,
then Bob’s employee record will also list his name and ID number (as well as other
information including a pointer to Alice, as his manager). If Bob’s name changes
at a later date, then we expect that it will be updated (identically) under both his
record and Alice’s record. If the concrete representation contains his name in only
a single location, we need to duplicate the information in the get direction. To do
this we need a lens that copies a subtree and then allows us to transform the copy
into the shape that we want.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

24 · J. N. Foster et. al.

In the get direction, (copy m n) takes a tree, c, that has no child labeled n. If
c(m) exists, then (copy m n) duplicates c(m) by setting both a(m) and a(n) equal
to c(m). In the putback direction, copy simply discards a(n). The type of copy
ensures that no information is lost, because a(m) = a(n).

(copy m n)↗ c = c ·
{∣

∣n !→ c(m)
∣

∣

}

(copy m n)↘ (a, c) = a\n

∀m, n∈N . ∀C⊆T \{m,n}. ∀D⊆T .
copy m n ∈ (C ·

{∣

∣m !→ DΩ

∣

∣

}

) ⇐⇒Ω (C · {
{∣

∣m !→ d, n !→ d
∣

∣

}

| d ∈ DΩ})

Because we want copy to be a total lens, the equality constraint in the abstract
type of copy is essential to ensure well-behavedness. To see why, consider what
would happen if the putback function were defined even when a(m) and a(n) were
not equal and copy↘ removed either a(m) or a(n). Then there would be no way
for a subequent application of the get function to restore the discarded information.
Consequently, PutGet would be violated.

Unfortunately, because of this constraint, the set of lenses that can be validly
composed to the right of a copy is also restricted—the composed lenses must respect
the equality. As an example of what can go wrong, consider (copy a b; prune b {||})
and suppose that we want to assign it a lens typing with concrete component
{∣

∣a !→ D
∣

∣

}

. A simple calculation shows that get function behaves like id: the lens
first copies a to b and then prunes away b. We run into problems, however, if
we evaluate (copy a b; prune b {||})↘

({∣

∣a !→ d1

∣

∣

}

,
{∣

∣a !→ d2

∣

∣

})

with d1 .= d2. Un-
winding the composition, we evaluate (copy a b)↘ with an abstract argument
{∣

∣a !→ d1, b !→ d2

∣

∣

}

. As argued above, the copy lens cannot be both defined and
well-behaved on such an abstract argument because the copied data is not identical.
As the example demonstrates, the lenses composed after a copy must preserve the
equality of the copied data. Otherwise we cannot ensure that the type requirement
a(m) = a(n) will be satisfied.

In our intended application, using lenses to build synchronizers for tree-structured
data, we have not found a need for copy. This is not surprising, because if a con-
crete representation demands that some invariant hold within the data structure,
we assume that (1) each application will locally maintain the invariants in its own
representation, and (2) the function of a synchronizer is to simply propagate changes
from one well-formed replica to another. Moreover, if one field in a concrete rep-
resentation is derivable from another (or a set of other fields), then we need not
expose both fields in the abstract view. Instead, we can merge the fields (see below).
Any change to the merged field will be pushed back down to all the derived fields
in the concrete view. Thus, merge, the inverse of copy makes more sense for the
views manipulated by a data synchronizer.

By contrast, some have argued for the need for more powerful forms of copy in
settings such as editing a user-friendly view of a structured document [Hu et al.
2004; Mu et al. 2004a]. Consider a situation where a user edits a view of a document
in which a table of contents is automatically generated from the section headings
appearing in the source text (i.e., the concrete view is just some structured text,
while the abstract view contains the text plus the table of contents). One might

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Combinators for Bi-Directional Tree Transformations · 25

feel that adding a new section to the text in the abstract view should cause an
entry to be added to the table of contents, and similarly that adding an entry to
the table of contents should create an empty section in the text. Such function-
ality is not consistent with our PutGet law: both adding a section heading and
adding an entry in the table of contents will result in the same concrete document
after a putback; such a putback function is not injective and cannot participate in
a lens in our sense. However, in contexts where this kind of behavior is a pri-
mary goal, system designers may be willing to weaken the promises they make to
programmers by guaranteeing weaker properties than PutGet. For example, Mu
et al [2004a] only require their bidirectional transformations to obey a PutGet-
Put law. PutGetPut is weaker than PutGet in two ways. First, it does not
require that l↗(l↘(a, c)) equals a. Rather, it requires that, if c′ = l↘(a, c) and
a′ = l↗(c′), then a′ should “contain the same information as a,” in the sense that
l↘(a′, c′) = c′. Second, PutGetPut allows get to be undefined over parts of the
range of putback—PutGetPut is only required to hold when the get is defined,
but no requirements are made on how broadly get must be defined. (Given that
their setting is interactive, it is reasonable to say, as they do, that if get after some
putback is undefined, then the system can signal the user that the modification to
a was illegal and cancel it). Hu et al [2004] go a step further and weaken both
PutGet and GetPut by only requiring PutGet when a is l↗(c) and by only
requiring GetPut when c is l↘(a, c′) for some a and c′.

Conversely, sometimes a concrete representation requires equality between two
distinct subtrees. The following merge lens is one way to preserve this invari-
ant when the abstract view is updated. In the get direction, merge takes a tree
with two equal branches and deletes one of them. In the putback direction, merge
copies the updated value of the remaining branch to both branches in the concrete
view.

(merge m n)↗ c = c\n

(merge m n)↘ (a, c) =

{

a ·
{∣

∣n !→ a(m)
∣

∣

}

if c(m) = c(n)
a ·

{∣

∣n !→ c(n)
∣

∣

}

if c(m) .= c(n)

∀m, n∈N . ∀C⊆T \{m,n}. ∀D⊆T .
merge m n ∈ (C ·

{∣

∣m !→ DΩ, n !→ DΩ

∣

∣

}

) ⇐⇒Ω (C ·
{∣

∣m !→ DΩ

∣

∣

}

)

There is some freedom in the type of merge. On one hand, we can give it a
precise type that expresses the intended equality constraint in the concrete view;
the lens is well-behaved and total at that type. Alternatively, we can give it a
more permissive type (as we do) by ignoring the equality constraint—even if the
two original branches are unequal, merge is still defined and well-behavedness is
preserved. This is possible because the old concrete view is an argument to the
putback function, and can be tested to see whether the two branches were equal or
not in c. If not, then the value in a does not overwrite the value in the deleted
branch, allowing merge to obey PutGet.

Unlike copy, merge turns out to be quite useful in our synchronization framework.
For example, our bookmark synchronizer must deal with the fact that the XML
representation of Apple Safari bookmark files includes the URL data for every link

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

26 · J. N. Foster et. al.

twice. By merging the appropriate children, we record this dependency and ensure
that updates to the URL fields are consistently propagated to both locations.

6. CONDITIONALS

Conditional lens combinators, which can be used to selectively apply one lens or an-
other to a view, are necessary for writing many interesting derived lenses. Whereas
xfork and its variants split their input trees into two parts, send each part through
a separate lens, and recombine the results, a conditional lens performs some test
and sends the whole tree(s) through one or the other of its sub-lenses.

The requirement that makes conditionals tricky is totality: we want to be able
to take a concrete view, put it through a conditional lens to obtain some abstract
view, and then take any other abstract view of suitable type and push it back down.
But this will only work if either (1) we somehow ensure that the abstract view is
guaranteed to be sent to the same sub-lens on the way down as we took on the
way up, or else (2) the two sub-lenses are constrained to behave coherently. Since
we want reasoning about well-behavedness and totality to be compositional in the
absence of recursion (i.e., we want the well-behavedness and totality of composite
lenses to follow just from the well-behavedness and totality of their sub-lenses, not
from special facts about the behavior of the sub-lenses), the second is unacceptable.

Interestingly, once we adopt the first approach, we can give a complete charac-
terization of all possible conditional lenses: we argue that every binary conditional
operator that yields well-behaved and total lenses is an instance of the general cond
combinator presented below. Since this general cond is a little complex, however,
we start by discussing two particularly useful special cases.

Concrete Conditional

Our first conditional, ccond, is parameterized on a predicate C1 on views and two
lenses, l1 and l2. In the get direction, it tests the concrete view c and applies the
get of l1 if c satisfies the predicate and l2 otherwise. In the putback direction, ccond
again examines the concrete view, and applies the putback of l1 if it satisfies the
predicate and the putback of l2 otherwise. This is arguably the simplest possible way
to define a conditional: it fixes all of its decisions in the get direction, so the only
constraint on l1 and l2 is that they have the same target. (Since we are interested
in using ccond to define total lenses, this condition can actually be rather hard to
achieve in practice.)

(ccond C1 l1 l2)↗ c =

{

l1↗ c if c ∈ C1

l2↗ c if c .∈ C1

(ccond C1 l1 l2)↘ (a, c) =

{

l1 ↘ (a, c) if c ∈ C1

l2 ↘ (a, c) if c .∈ C1

∀C, C1, A⊆V. ∀l1 ∈ C∩C1 !
Ω A. ∀l2 ∈ C\C1 !

Ω A.
ccond C1 l1 l2 ∈ C !

Ω A

∀C, C1, A⊆V. ∀l1 ∈ C∩C1 ⇐⇒Ω A. ∀l2 ∈ C\C1 ⇐⇒Ω A.
ccond C1 l1 l2 ∈ C ⇐⇒Ω A

One subtlety in the definition is worth noting: we arbitrarily choose to putback Ω
using l2 (because Ω .∈ C1 for any C1 ⊆ V). We could equally well arrange the

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Combinators for Bi-Directional Tree Transformations · 27

definition so as to send Ω through l1. In fact, l1 need not be well-behaved (or
even defined) on Ω; we can construct a well-behaved, total lens using ccond when
l1 ∈ C ∩ C1 ⇐⇒ A and l2 ∈ C \ C1 ⇐⇒Ω A.

Abstract Conditional

A quite different way of defining a conditional lens is to make it ignore its con-
crete argument in the putback direction, basing its decision whether to use l1↘
or l2↘ entirely on its abstract argument. This obliviousness to the concrete ar-
gument removes the need for any side conditions relating the behavior of l1 and
l2—everything works fine if we putback using the opposite lens from the one that
we used to get—as long as, when we immediately put the result of get, we use the
same lens that we used for the get. Requiring that the sources and targets of l1 and
l2 be disjoint guarantees this.

(acond C1 A1 l1 l2)↗ c =

{

l1↗ c if c ∈ C1

l2↗ c if c .∈ C1

(acond C1 A1 l1 l2)↘ (a, c) =

l1 ↘ (a, c) if a ∈ A1 ∧ c ∈ C1

l1 ↘ (a, Ω) if a ∈ A1 ∧ c .∈ C1

l2 ↘ (a, c) if a .∈ A1 ∧ c .∈ C1

l2 ↘ (a, Ω) if a .∈ A1 ∧ c ∈ C1

∀C, A, C1, A1⊆V. ∀l1 ∈ C∩C1 !
Ω A∩A1. ∀l2 ∈ (C\C1) !

Ω (A\A1).
acond C1 A1 l1 l2 ∈ C !

Ω A

∀C, A, C1, A1⊆V. ∀l1 ∈ C∩C1 ⇐⇒Ω A∩A1. ∀l2 ∈ (C\C1) ⇐⇒Ω (A\A1).
acond C1 A1 l1 l2 ∈ C ⇐⇒Ω A

In Section 5, we defined the lens rename m n, whose type demands that each
concrete tree have a child named m and that every abstract tree have a child named
n. Using this conditional, we can write a more permissive lens that renames a child
if it is present and otherwise behaves like the identity.

rename if present m n = acond ({|m !→ T |} · T \{m,n}) ({|n !→ T |} · T \{m,n})
(rename m n)
id

∀n, m ∈ N . ∀C⊆T . ∀D, E⊆(T \{m,n}).
rename if present m n ∈ (

{∣

∣m !→ C
∣

∣

}

· D) ∪ E ⇐⇒Ω (
{∣

∣n !→ C
∣

∣

}

· D) ∪ E

General Conditional

The general conditional, cond, is essentially obtained by combining the behaviors
of ccond and acond. The concrete conditional requires that the targets of the two
lenses be identical, while the abstract conditional requires that they be disjoint.
Here, we let them overlap arbitrarily, behaving like ccond in the region where they
do overlap (i.e., for arguments (a, c) to putback where a is in the intersection of
the targets) and like acond in the regions where the abstract argument to putback
belongs to just one of the targets. To this we can add one additional observation:
that the use of Ω in the definition of acond is actually arbitrary. All that is
required is that, when we use the putback of l1, the concrete argument should come

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

28 · J. N. Foster et. al.

from (C1)Ω, so that l1 is guaranteed to do something reasonable with it. These
considerations lead us to the following definition.

(cond C1 A1 A2 f21 f12 l1 l2)↗ c =

{

l1↗ c if c ∈ C1

l2↗ c if c .∈ C1

(cond C1 A1 A2 f21 f12 l1 l2)↘ (a, c) =

l1 ↘ (a, c) if a ∈ A1∩A2 ∧ c ∈ C1

l2 ↘ (a, c) if a ∈ A1∩A2 ∧ c .∈ C1

l1 ↘ (a, c) if a ∈ A1\A2 ∧ c ∈ (C1)Ω

l1↘(a, f21(c)) if a ∈ A1\A2 ∧ c .∈ (C1)Ω

l2 ↘ (a, c) if a ∈ A2\A1 ∧ c .∈ C1

l2↘(a, f12(c)) if a ∈ A2\A1 ∧ c ∈ C1

∀C, C1, A1, A2 ⊆ V. ∀l1 ∈ (C∩C1) !
Ω A1. ∀l2 ∈ (C\C1) !

Ω A2.
∀f21 ∈ (C\C1) → (C∩C1)Ω. ∀f12 ∈ (C∩C1) → (C\C1)Ω.

cond C1 A1 A2 f21 f12 l1 l2 ∈ C !
Ω (A1∪A2)

∀C, C1, A1, A2 ⊆ V. ∀l1 ∈ (C∩C1) ⇐⇒Ω A1. ∀l2 ∈ (C\C1) ⇐⇒Ω A2.
∀f21 ∈ (C\C1) → (C∩C1)Ω. ∀f12 ∈ (C∩C1) → (C\C1)Ω.

cond C1 A1 A2 f21 f12 l1 l2 ∈ C ⇐⇒Ω (A1∪A2)

When a is in the targets of both l1 and l2, cond↘ chooses between them based
solely on c (as does ccond, whose targets always overlap). If a lies in the range
of only l1 or l2, then cond’s choice of lens for putback is predetermined (as with
acond, whose targets are disjoint). Once l↘ is chosen to be either l1↘ or l2↘, if
the old value of c is not in ran(l↘)Ω, then we apply a “fixup function,” f21 or f12,
to c to choose a new value from ran(l↘)Ω. Ω is one possible result of the fixup
functions, but in general we can compute a more interesting value, as we will see
in the list filter lens, defined in Section 7.

We argued above that cond captures all the power of ccond and acond—indeed,
because of the fixup functions f12 and f21, it captures even more. We now argue,
informally, that this is the maximum generality possible—i.e., that any well-behaved
and total lens combinator that behaves like a binary conditional can be obtained
as a special case of cond. Of course, the argument hinges on what we mean when
we say “l behaves like a conditional.” We would like to capture the intuition that l
should, in each direction, “test its input(s) and decide whether to behave like l1 or
l2.” In the get direction, there is little choice about how to say this: since there is
just one argument, the test just amounts to testing membership in a set (predicate)
C1. In the putback direction, there is some apparent flexibility, since the test might
investigate both arguments. However, the requirements of well-behavedness (and
the feeling that a conditional lens should be “parametric” in l1 and l2, in the
sense that the choice between l1 and l2 should not be made by investigating their
behavior) actually eliminate most of this flexibility. If, for example, the abstract
input a falls in a ∈ A1∩A2, then the choice of whether to apply l1↘ or l2↘ is fully
determined by c: if c ∈ C1, then it may be that a = l1↗ c; in this case, using l1↘
guarantees that l↘ (a, c) = c, as required by GetPut, whereas l2↘ gives us no
such guarantee; conversely, if c ∈ C\C1, we must use l2.

Similarly, if a ∈ A1\A2, then we have no choice but to use l1, since l2’s type does
not promise that applying it to an argument of this type will yield a result in C1.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Combinators for Bi-Directional Tree Transformations · 29

Similarly, if a ∈ A2\A1, then we must use l2. However, here we do have a little
genuine freedom: if a ∈ A1\A2 while c ∈ C\C1, then, by the type of l2, there is
no danger that a = l2↗ c. In order to apply l1, we need some element of (C1)Ω

to use as the concrete argument, but it does not matter which one we pick; and
conversely for l2. The fixup functions f21 and f12 cover all possible (deterministic)
ways of making this choice based on the given c. It is possible to be slightly more
general by making f21 and f12 take both a and c as arguments, but pragmatically
there seems little point in doing this, since either l1↘ or l2↘ is going to be called
on their result, and these functions can just as well take a into account.

7. DERIVED LENSES FOR LISTS

XML and many other concrete data formats make heavy use of ordered lists. We
describe in this section how we can represent lists as trees, using a standard cons-
cell encoding, and introduce some derived lenses to manipulate them. We begin
with very simple lenses for projecting the head and tail of a list. We then define
recursive lenses implementing some more complex operations on lists: mapping,
reversal, grouping, concatenating, and filtering. We give the proofs of the well-
behavedness and totality lemmas (in Appendix A) for these recursive lenses to
demonstrate how the reasoning principles developed in Section 3 can be applied to
practical examples.

Encoding

7.1 Definition: A tree t is said to be a list iff either it is empty or it has exactly
two children, one named *h and another named *t, and t(*t) is also a list. We use
the lighter notation [t1 . . . tn] for the tree

∣

∣

∣

∣

∣

∣

∣

∣

*h !→ t1

*t !→

∣

∣

∣

∣

∣

∣

*h !→ t2

*t !→

{∣

∣

∣

∣

. . . !→

{∣

∣

∣

∣

*h !→ tn

*t !→ {||}

∣

∣

∣

∣

}∣

∣

∣

∣

}

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

In types, we write [] for the set {{||}} containing only the empty list, C ::D for the
set

{∣

∣*h !→ C, *t !→ D
∣

∣

}

of “cons-cell trees” whose head belongs to C and whose
tail belongs to D, and [C] for the set of lists with elements in C—i.e., the smallest
set of trees satisfying [C] = [] ∪ (C :: [C]). We sometimes refine this notation
to describe lists of specific lengths, writing [Di..j] for the set of lists of Ds whose
length is at least i and at most j, and writing [Di] for the set of lists whose length
is exactly i (i.e., [Di..i]). Given two list values, l1 and l2, the set of lists denoted
by the interleaving l1&l2 consists of all the lists formed by interleaving the elements
of l1 with the elements of l2 in an arbitrary fashion. For example, [a, b]&[c] is
the set {[a, b, c], [a, c, b], [c, a, b]}. We lift the interleaving operator to list
types in the obvious way: the interleaving of two list types, [B] and [C], is the
union of all the interleavings of lists belonging to [B] with lists belonging to [C].
Similarly, we lift the usual append operator, written ++, to list types: [C]++[D]
denotes the set of lists obtained by appending any element of [C] to any element
of [D].

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

30 · J. N. Foster et. al.

Head and Tail Projections

Our first list lenses extract the head or tail of a cons cell.

hd d = focus *h
{∣

∣*t !→ d
∣

∣

}

∀C, D⊆T . ∀d∈D. hd d ∈ (C ::D) ⇐⇒Ω C

tl d = focus *t
{∣

∣*h !→ d
∣

∣

}

∀C, D⊆T . ∀d∈C. tl d ∈ (C ::D) ⇐⇒Ω D

The lens hd expects a default tree, which it uses in the putback direction as the
tail of the created tree when the concrete tree is missing; in the get direction,
it returns the tree under *h. The lens tl works analogously. Note that the
types of these lenses apply to both homogeneous lists (the type of hd implies
∀C⊆T . ∀d∈[C]. hd d ∈ [C] ⇐⇒Ω C) as well as cons cells whose head and tail have
unrelated types; both possibilities are used in the type of the bookmark lens in Sec-
tion 8. The types of hd and tl follow from the type of focus.

List Map

The list map lens applies a lens l to each element of a list:

list map l = wmap {*h !→ l, *t !→ list map l}

∀C, A⊆T . ∀l ∈ C !
Ω A. list map l ∈ [C] !

Ω

[A]

∀C, A⊆T . ∀l ∈ C ⇐⇒Ω A. list map l ∈ [C] ⇐⇒Ω [A]

The get direction applies l to the subtree under *h and recurses on the subtree
under *t. The putback direction uses l↘ on corresponding pairs of elements from
the abstract and concrete lists. The result has the same length as the abstract list;
if the concrete list is longer, the extra tail is thrown away. If it is shorter, each
extra element of the abstract list is putback into Ω.

Since list map is our first recursive lens, it is worth noting how recursive calls
are made in each direction. The get function of the wmap lens simply applies l to the
head and list map l to the tail until it reaches a tree with no children. Similarly,
in the putback direction, wmap applies l to the head of the abstract tree and either
the head of the concrete tree (if it is present) or Ω, and it applies list map l to the
tail of the abstract tree and the tail of the concrete tree (if it is present) or Ω. In
both directions, the recursive calls continue until the entire tree—concrete (for the
get) or abstract (for the putback)—has been traversed. (The recursion is controlled
by the abstract argument in the putback direction because the map combinator uses
the children of the abstract tree to determine how many times to call its argument
lens.)

Because list map is defined recursively, proving it is well behaved requires just
a little more work than than for non-recursive derived lenses: we need to show that
it has a particular type assuming that the recursive use of list map has the same
type. This is no surprise: exactly the same reasoning process is used in typing
recursive functional programs.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Combinators for Bi-Directional Tree Transformations · 31

Recall that the type of wmap requires that both sets of trees in its type be shuffle
closed. To prove that list map is well-behaved and total, we will need a lemma
showing that cons-cell and list types are shuffle closed.

7.2 Lemma: Let S, T⊆T . Then

(1) (S ::T) = (S ::T)!

(2) [T] = [T]!.

With these pieces in hand, the well-behavedness lemma follows by a straightfor-
ward calculation using the type of wmap.

7.3 Lemma [Well-behavedness]:
∀C, A⊆T . ∀l ∈ C !

Ω A. list map l ∈ [C] !
Ω

[A]

The proof of totality for list map is more interesting. We use Corollary 3.17(2),
which requires that we (1) identify two chains of types, ∅ = C0 ⊆ C1 ⊆ . . . and
∅ = A0 ⊆ A1 ⊆ . . . , and (2) from k ∈ Ci ⇐⇒Ω Ai, prove that f(k) ∈ Ci+1 ⇐⇒Ω Ai+1

for all i. We can then conclude that fix (f) ∈
⋃

i Ci ⇐⇒Ω
⋃

i Ai. For list map we
choose increasing chains of types as follows:

Ci = ∅ ⊆ [] ⊆ C ::[] ⊆ C ::C ::[] ⊆ . . .
Ai = ∅ ⊆ [] ⊆ A ::[] ⊆ A ::A ::[] ⊆ . . .

The full argument is given in the proof of Lemma 7.4 in Appendix A.

7.4 Lemma [Totality]: ∀C, A⊆T . ∀l ∈ C ⇐⇒Ω A. list map l ∈ [C] ⇐⇒Ω [A]

Reverse

Our next lens reverses the elements of a list. The algorithm we use to implement
list reversal runs in quadratic time—we reverse the tail of the list and then use an
auxiliary lens to rotate the head to the end of the reversed tail. Before presenting
the list reverse lens, we describe this auxiliary lens, called rotate.

rotate = acond ([] ∪ (D ::[])) ([] ∪ (D ::[]))
id
(rename *h tmp;
hoist nonunique *t {*h, *t};
fork {*h} id (rename tmp *h; rotate; plunge *t))

∀D⊆T . rotate ∈ [D] ⇐⇒Ω [D]

In the get direction, rotate has two cases. If the list is empty or a singleton, the
acond applies id, which returns the original empty or singleton list unmodified.
Otherwise, it (1) renames the head to tmp; (2) hoists up the tail, which yields
children *h and *t since the list is neither empty nor a singleton; and (3) splits the
tree in two using fork, applying the id lens to the part of the tree consisting of
the single child *h (i.e., the second element in the original list), and puts the tmp
element at the end of the list. To do this, it first renames tmp back to *h, yielding
a list whose head is the head of the original list and whose tail is the tail of the tail
of the original list. The recursive call to rotate puts the head of this list to the
end of the list, yielding the original list with two differences: the first element is at

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

32 · J. N. Foster et. al.

the end and the second element not present. Finally, the resulting list is plunged
under *t, and (after the fork) the result is concatenated with the original second
element.

The putback direction also has two cases, corresponding to the two arms of the
acond lens. It first checks whether the abstract view is the empty list or a singleton
list. If so, then it applies the id lens, which returns the abstract list unchanged.
Otherwise, it applies the three steps given above in reverse order: it first splits the
abstract and concrete lists as in the get direction, passing the head through the id
lens and partially rotating the tail. To do this, it hoists the tail tag, recursively
applies rotate (bringing the last element to the head of this list), and renames
*h to tmp. The result after the fork is the original list (under the names *h and
*t) without its original last element concatenated with the last element under the
name tmp. Next the lens hoist nonunique plunges the *h and *t children under
*t. Finally, tmp is renamed back to *h. This has the effect of bringing the last
element of the abstract list to the head of the result and shifting the position of
every other element by one.

The well-behavedness proof is a simple calculation, using Corollary 3.17(1) and
the types of the lenses that make up rotate.

7.5 Lemma [Well-behavedness]: ∀D⊆T . rotate ∈ [D] !
Ω

[D]

The totality lemma is proved using Corollary 3.17(2), after establishing, by in-
duction on i, that rotate ∈ [Di] ⇐⇒Ω [Di].

7.6 Lemma [Totality]: ∀D⊆T . rotate ∈ [D] ⇐⇒Ω [D]

Using rotate, the definition of list reverse is straightforward:

list reverse = wmap {*t !→ list reverse}; rotate

∀D⊆T . list reverse ∈ [D] ⇐⇒Ω [D]

In the get direction, we simply reverse the tail and rotate the head element to the
end of the list. In the putback direction, we perform these steps in reverse order,
first rotating the last element of the list to the head and then reversing the tail.
Note also that list reverse behaves like the identity when it is applied to the
empty list, i.e., {||}, since the get and putback components of wmap and rotate each
map {||} to {||}.

The algorithm for computing the reversal of a list shown here runs in quadratic
time. Interestingly, we have not been able to code the familiar, linear-time algorithm
as a derived lens (of course, we could introduce a primitive lens for reversing lists
that uses the efficient implementation internally, but it is more interesting to try
to write the efficient version using our combinators). One difficulty arises if we use
an accumulator to store the result: the putback function of such a transformation
would be non-injective and so could not satisfy PutGet. To see this, consider
putting the tree containing [c] under the accumulator child and [b a] as the rest
of the list. This will yield the same result, [a b c], as putting back a tree containing
[] under the accumulator child and [a b c] as the rest of the list.

The well-behavedness lemma follows straightforwardly from the types of wmap
and rotate, using Corollary 3.17(1).

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Combinators for Bi-Directional Tree Transformations · 33

7.7 Lemma [Well-behavedness]: ∀D⊆T . list reverse ∈ [D] !
Ω

[D]

For the totality lemma, we use Corollary 3.17(2), after proving, by induction on
i, that list reverse ∈ [Di] ⇐⇒Ω [Di] for all i.

7.8 Lemma [Totality]: ∀D⊆T . list reverse ∈ [D] ⇐⇒Ω [D]

Grouping

Next we give the definition of a “grouping” lens that, in the get direction, takes a
list of Ds and produces a list of lists of Ds where the elements have been grouped
in pairs. It is used in our bookmark synchronizer as part of a transformation that
takes dictionaries of user preferences stored in the particular XML format used by
Apple’s Safari browser and yields trees in a simplified abstract format. When the
concrete list has an even number of elements, the behavior group lens is simple—
e.g., it maps [d1, d2, d3, d4, d5, d6] to [[d1, d2], [d3, d4], [d5, d6]]. When
there are an odd number of elements in the list, group places the final odd element
in a singleton list–e.g., it maps [d1, d2, d3] to [[d1, d2], [d3]]. The typing for
group, given below, describes both the odd and even case.

Because it explicitly destroys and builds up cons cells, the definition of group is
a little bit longer than the lenses we have seen so far. We explain the behavior of
each part of the lens in detail below.

group =
acond [][]
id
(acond (D ::[]) ((D ::[]) ::[])

(plunge *h; add *t [])
(rename *h tmp;
hoist nonunique *t {*h, *t};
fork {*t}

(map group)
(xfork {*h } {*t} (add *t {||}; plunge *t) (rename tmp *h);
plunge *h)))

∀D⊆T group ∈ [D] ⇐⇒Ω [D ::D ::[]]++([] ∪ ((D ::[]) ::[]))

The get component of group has two cases, one for each branch of the two acond
conditionals. If the concrete list is empty, then group behaves like the first branch,
which is the identity. Otherwise, if the concrete list is a singleton, then group
behaves like the second branch, which plunges the singleton list under *h and adds
a child *t leading to the empty list. That is, it transforms singleton lists c into the
singleton list containing c,

{∣

∣*h !→ c, *t !→ {||}
∣

∣

}

. Otherwise, if neither of the two
previous cases apply, then group behaves like the third branch. There are three
steps. First, it renames the head element, storing it away under a child named tmp.
Next, it hoists up the tail of the list, yielding a tree with children tmp, *h, and *t
(since the list is neither empty nor a singleton). In the third step, it recursively
groups the tail, massages the other tree into a list of length two, and yields the
cons cell made up of these trees as the result.

More specifically, in the third step of the final case, group splits the tree into a
tree with a single child *t and a tree containing the *h and tmp children. It then

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

34 · J. N. Foster et. al.

recursively groups the tail using (map group). The other tree is split yet again, into
*h and tmp. The tree with *h is made into a singleton list by adding a child *t
leading to the empty view, and then plunged under *t. The tree containing tmp is
turned into the head of a cons cell by renaming tmp back to *h. After the xfork,
these two trees are plunged under *h. Thus,

{∣

∣tmp !→ di, *h !→ dj

∣

∣

}

is transformed
into the tree

{∣

∣*h !→ [di, dj]
∣

∣

}

. The final result is obtained by merging the grouped
tail with this head element.

Since each lens used in group is oblivious,7 the putback function is symmetric,
with three cases corresponding to the branches of the acond. Its behavior can be
calculated by evaluating the compositions in reverse order.

The well-behavedness of group follows from Corollary 3.17(1) and a simple, com-
positional argument using the types of each lens appearing in its definition.

7.9 Lemma [Well-behavedness]:
∀D⊆T group ∈ [D] !

Ω

[D ::D ::[]]++([] ∪ ((D ::[]) ::[]))

We prove the totality lemma using Corollary 3.17(2), using the increasing chains
of types:

Ci = ∅ ⊆ [] ⊆ D ::[] ⊆ D :: (D ::[]) ⊆ . . .
Ai = ∅ ⊆ [] ⊆ (D ::[]) ::[] ⊆ (D ::D ::[]) ::[] ⊆ . . .

whose limit is the total type we want to show for group.

7.10 Lemma [Totality]:
∀D⊆T group ∈ [D] ⇐⇒Ω [D ::D ::[]]++([] ∪ ((D ::[]) ::[]))

Concatenation

The concat lens takes a tree t as an argument. It transforms lists containing
two sublists of Ds and concatenates them into a single list using a single element
t to track the position where the first list ends and the second begins. For ex-
ample, given the tree [[C, h, r, i, s], [S, m, i, t, h]], the get component of
(concat

{∣

∣" " !→ {||}
∣

∣

}

) produces the single list [C, h, r, i, s, " ", S, m, i, t, h].
Conversely, the putback function takes a list containing exactly one t and splits
the list in two, producing lists containing the elements to the left and right of t
respectively. The definition is as follows.

concat t = acond ([] ::[D] ::[]) (t ::[D])
(wmap {*h !→ const t [], *t !→ hd []})
(fork {*t} id (hoist *h; rename *t tmp);
fork {*h} id (rename tmp *h; concat t; plunge *t))

∀D⊆T , t ∈ T . with t .∈ D. concat t ∈ [D] ::[D] ::[] ⇐⇒Ω [D]++(t ::[D])

7Although group uses the const lens indirectly, via add, it is semantically oblivious. Recall that
(add n {||}) expands into (xfork {}{n} (const {||} {||}; plunge n) id). The type annotation on add

ensures that the putback function is only ever applied to abstract trees that have a child n leading
to {||}. From this, a simple argument shows that both arguments to const↘ are always {||}. As a
result, in this case, the behavior of const↘ does not depend on its concrete argument—the lens
is oblivious.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Combinators for Bi-Directional Tree Transformations · 35

In the get direction, there are two cases, one for each branch of the acond. If the
concrete list is of the form ([] :: l :: []), where l ∈ [D], then concat t produces
the result (t++l) by applying (const t []) to the head and (hd []) to extract l
from the tail. Otherwise, the first element of the concrete list is non-empty and
the acond selects the second branch. The first fork splits the outermost cons cell
according to {*t}. The id lens is applied to the tail component, which has the form
{∣

∣*t !→ (l2 ::[])
∣

∣

}

. The other component has the form
{∣

∣*h !→
{∣

∣*h !→ d, *t !→ l1
∣

∣

}∣

∣

}

.
The edge labeled *h is clipped out using hoist, yielding children *h and *t (i.e.,
the head and tail of the first sublist) and the *t child is renamed to tmp. These two
steps yield a tree

{∣

∣*h !→ d, tmp !→ l1
∣

∣

}

. The second fork splits the tree according
to {*h}. The id lens is applied to the tree

{∣

∣*h !→ d
∣

∣

}

. The other part of the tree is
{∣

∣tmp !→ l1, *t !→ (l2 ::[])
∣

∣

}

. By renaming tmp to *h, recursively concatenating, and
plunging the result under *t, we obtain the tree

{∣

∣*t !→ (l1++(t :: l2))
∣

∣

}

. Combining
these two results into a single tree, we obtain the list (d :: l1)++(t :: l2).

The putback function is oblivious; its behavior is symmetric to the get function.
Once again, the well-behavedness lemma for concat t follows by a simple, com-

positional calculation, using Corollary 3.17(1).

7.11 Lemma [Well-behavedness]:
∀D⊆T , t ∈ T . with t .∈ D. concat t ∈ [D] ::[D] ::[] !

Ω

[D]++(t ::[D])

The totality lemma follows from Corollary 3.17(2), using the increasing chains of
types:

Ci = ∅ ⊆ [] ::[D] ::[] ⊆ (D ::[]) ::[D] ::[] ⊆ (D ::D ::[]) ::[D] ::[] ⊆ . . .
Ai = ∅ ⊆ []++(t ::[D]) ⊆ (D ::[])++(t ::[D]) ⊆ (D ::D ::[])++(t ::[D]) ⊆ . . .

whose limit is the total type we want to show for concat t.

7.12 Lemma [Totality]:
∀D⊆T , t ∈ T . with t .∈ D. concat t ∈ [D] ::[D] ::[] ⇐⇒Ω [D]++(t ::[D])

Filter

Our most interesting derived list processing lens, list filter, is parameterized
on two sets of views, D and E, which we assume to be disjoint and non-empty.
In the get direction, it takes a list whose elements belong to either D or E and
projects away those that belong to E, leaving an abstract list containing only Ds;
in the putback direction, it restores the projected-away Es from the concrete list.
Its definition utilizes our most complex lens combinators—wmap and two forms of
conditionals—and recursion, yielding a lens that is well-behaved and total on lists
of arbitrary length.

In the get direction, the desired behavior of list filter D E (for brevity, let
us call it l) is clear. In the putback direction, things are more interesting because
there are many ways that we could restore projected elements from the concrete
list. The lens laws impose some constraints on the behavior of l↘. The GetPut
law forces the putback function to restore each of the filtered elements when the
abstract list is put into the original concrete list. For example (letting d and e
be elements of D and E) we must have l↘ ([d], [e d]) = [e d]. The PutGet
law forces the putback function to include every element of the abstract list in the

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

36 · J. N. Foster et. al.

resulting concrete list in the same order, and these elements must be the only Ds
in the result; there is, however, no restriction on the Es when the abstract tree is
not the filtered concrete tree.

In the general case, where the abstract list a is different from the filtered concrete
list l↗ c, there is some freedom in how l↘ behaves. First, it may selectively restore
only some of the elements of E from the concrete list (or indeed, even less intuitively,
it might add some new elements of E that it somehow makes up). Second, it may
interleave the restored Es with the Ds from the abstract list in any order, as long
as the order of the Ds is preserved from a. From these possibilities, the behavior
that seems most natural to us is to overwrite elements of D in c with elements of
D from a, element-wise, until either c or a runs out of elements of D. If c runs
out first, then l↘ appends the rest of the elements of a at the end of c. If a runs
out first, then l↘ restores the remaining Es from the end of c and discards any
remaining Ds in c (as it must to satisfy PutGet).

These choices lead us to the following specification for a single step of the putback
part of a recursively defined lens implementing l. If the abstract list a is empty,
then we restore all the Es from c. If c is empty and a is not empty, then we return
a. If a and c are both cons cells whose heads are in D, then we return a cons cell
whose head is the head of a and whose tail is the result obtained by recursing on
the tails of both a and c. Otherwise (i.e., c has type E :: ([D]&[E])) we restore the
head of c and recurse on a and the tail of c. Translating this into lens combinators
leads to the definition below of a recursive lens inner filter, which filters lists
containing at least one D, and a top-level lens list filter that handles arbitrary
lists of Ds and Es.

inner filter D E =
ccond (E :: ([D1..ω]&[E]))

(tl anyE ; inner filter D E)
(wmap {*h !→ id,

*t !→ (cond [E] [] [D1..ω] fltrE (λc. c++[anyD])
(const [] [])
(inner filter D E))})

list filter D E =
cond [E] [] [D1..ω] fltrE (λc. c++[anyD])

(const [] [])
(inner filter D E)}

∀D, E⊆T . with D ∩ E = ∅ and D .= ∅ and E .= ∅.
inner filter D E ∈ [D1..ω]&[E] ⇐⇒Ω [D1..ω]
list filter D E ∈ [D]&[E] ⇐⇒Ω [D]

The “choice operator” anyD denotes an arbitrary element of the (non-empty) set
D.8 The function fltrE is the usual list-filtering function, which for present purposes

8We are dealing with countable sets of finite trees here, so this construct poses no metaphysical
conundrums; alternatively, but less readably, we could just as well pass list filter an extra
argument d ∈ D.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Combinators for Bi-Directional Tree Transformations · 37

we simply assume has been defined as a primitive. (In our actual implementation,
we use list filter↗; but for expository purposes, and to simplify the totality
proofs, we avoid this extra bit of recursiveness.) Finally, the function λc. c++[anyD]
appends some arbitrary element of D to the right-hand end of a list c. These “fixup
functions” are applied in the putback direction by the cond lens.

The behavior of the get function of list filter can be described as follows. If
c ∈ [E], then the outermost cond selects the const [] [] lens, which produces
[]. Otherwise the cond selects inner filter, which uses a ccond instance to test
if the head of the list is in E. If this test succeeds, it strips away the head using tl
and recurses; if not, it retains the head and filters the tail using wmap.

In the putback direction, if a = [] then the outermost cond lens selects the
const[] [] lens, with c as the concrete argument if c ∈ [E] and (fltrE c) otherwise.
This has the effect of restoring all of the Es from c. Otherwise, if a .= [] then the
cond instance selects the putback of the inner filter lens, using c as the concrete
argument if c contains at least one D, and (λc. c++[anyD]) c, which appends a
dummy value of type D to the tail of c, if not. The dummy value, anyD, is required
because inner filter expects a concrete argument that contains at least one D.
Intuitively, the dummy value marks the point where the head of a should be placed.

To illustrate how all this works, let us step through some examples in detail. In
each example, the concrete type is [D]&[E] and the abstract type is [D]. We
will write di and ej to stand for elements of D and E respectively. To shorten the
presentation, we will write l for list filter D E (i.e., for the cond lens that it is
defined as) and i for inner filter D E. In the first example, the abstract tree a
is [d1], and the concrete tree c is [e1 d2 e2]. At each step, we underline the term
that is simplified in the next step.

l↘ (a, c) = i↘ (a, c)

by the definition of cond, as a ∈ [D1..ω] and c ∈ ([D]&[E]) \ [E]

= (tl anyE ; i)↘ (a, c)

by the definition of ccond, as c ∈ E :: ([D1..ω]&[E])

= (tl anyE)↘
(

i↘
(

a, (tl anyE)↗ c
)

, c
)

by the definition of composition

= (tl anyE)↘
(

i↘ (a, [d2 e2]), c
)

reducing (tl anyE)↗ c

= (tl anyE)↘
(

wmap {*h !→ id, *t !→ l}↘ (a, [d2 e2]), c
)

by the definition of ccond, as [d2 e2] .∈ E :: ([D1..ω]&[E])

= (tl anyE)↘
(

d1 :: (l↘ ([], [e2])), c
)

by the definition of wmap with id↘ (d1, d2) = d1

= (tl anyE)↘
(

d1 :: ((const [] [])↘ ([], [e2])), c
)

by the definition of cond, as [] ∈ [] and [e2] ∈ [E]

= (tl anyE)↘ (d1 ::[e2], c)

by the definition of const
= [e1 d1 e2] by the definition of tl.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

38 · J. N. Foster et. al.

Our next two examples illustrate how the “fixup functions” supplied to the cond
lens are used. The first function, fltrE , is used when the abstract list is empty and
the concrete list is not in [E]. Let a = [] and c = [d1 e1].

l↘ (a, c) = (const [] [])↘
(

[], fltrE[d1 e1]
)

by the definition of cond, as a = [] but c .∈ [E]

= (const [] [])↘ ([], [e1])

by the definition of fltrE
= [e1] by definition of const.

The other fixup function, (λc. c++[anyD]), inserts a dummy D element when
list filter is called with a non-empty abstract list and a concrete list whose
elements are all in E. Let a = [d1] and c = [e1] and assume that anyD = d0.

l↘ (a, c) = i↘
(

a, (λc. c++[anyD]) c
)

by the definition of cond, as a ∈ [D1..ω] and c ∈ [E]

= i↘ (a, [e1 d0])

by the definition of (λc. c++[anyD])
= (tl anyE ; i)↘ (a, [e1 d0])

by the definition of ccond, as [e1 d0] ∈ E :: ([D1..ω]D&[E])

= (tl anyE)↘
(

i↘
(

a, (tl anyE)↗ [e1 d0]
)

, [e1 d0]
)

by the definition of composition

= (tl anyE)↘
(

i↘ (a, [d0]), [e1 d0]
)

reducing (tl anyE)↗ [e1 d0]

= (tl anyE)

↘
(

wmap {*h !→ id, *t !→ l}↘ (a, [d0]), [e1 d0]
)

by the definition of ccond, as [d0] .∈ E :: ([D1..ω]&[E])

= (tl anyE)↘
(

d1 :: (l↘ ([], [])), [e1 d0]
)

by the definition of wmap with id↘ (d1, d0) = d1

= (tl anyE)↘
(

d1 :: ((const [] [])↘ ([], [])), [e1 d0]
)

by the definition of cond, as [] ∈ [] and [] ∈ [E]

= (tl anyE)↘ (d1 ::[], [e1 d0])

by the definition of const
= [e1 d1] by the definition of tl.

The well-behavedness proof for inner filter is straightforward: we simply de-
cide on a type for the recursive use of inner filter and then show that, under this
assumption, the body of the lens has this type. Since list filter is not recursive,
both its well-behavedness and totality lemmas both follow straightforwardly from
the types of the lenses that are used in its definition.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Combinators for Bi-Directional Tree Transformations · 39

7.13 Lemma [Well-behavedness]:
∀D, E⊆T . with D ∩ E = ∅ and D .= ∅ and E .= ∅.

inner filter D E ∈ [D1..ω]&[E] !
Ω

[D1..ω]
list filter D E ∈ [D]&[E] !

Ω

[D]

The totality proof for inner filter, on the other hand, is somewhat challeng-
ing, involving detailed reasoning about the behavior of particular subterms under
particular conditions. The proof uses Lemma 3.19, with sequences of sets of total
types

T0 = {(∅, ∅)}
Ti+1 = {([D1..x]&[E0..y], [D1..x]) | x + y = i}.

The complete argument is given in electronic Appendix A.

7.14 Lemma [Totality]:
∀D, E⊆T . with D ∩ E = ∅ and D .= ∅ and E .= ∅.

inner filter D E ∈ [D1..ω]&[E] ⇐⇒Ω [D1..ω]
list filter D E ∈ [D]&[E] ⇐⇒Ω [D]

8. EXTENDED EXAMPLE: A BOOKMARK LENS

In this section, we develop a larger and more realistic example of programming
with our lens combinators. The example comes from a demo application of our data
synchronization framework, Harmony, in which bookmark information from diverse
browsers, including Internet Explorer, Mozilla, Safari, Camino, and OmniWeb, is
synchronized by transforming each format from its concrete native representation
into a common abstract form. We show here a slightly simplified form of the Mozilla
lens, which handles the HTML-based bookmark format used by Netscape and its
descendants.

The overall path taken by the bookmark data through the Harmony system can
be pictured as follows.

HTML html
reader

concrete
view

HTML

put
bookmarkhtml

writer
viewview abstractconcrete newnew

HTML
new

view
abstract

abstract
view

other

bookmark
get

sync

We first use a generic HTML reader to transform the HTML bookmark file into
an isomorphic concrete tree. This concrete tree is then transformed, using the get
direction of the bookmark lens, into an abstract “generic bookmark tree.” The
abstract tree is synchronized with the abstract bookmark tree obtained from some
other bookmark file, yielding a new abstract tree, which is transformed into a new
concrete tree by passing it back through the putback direction of the bookmark

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

40 · J. N. Foster et. al.

ALink1 = {|name %→ Val url %→ Val |}
ALink = {|link %→ ALink1 |}
AFolder1 = {|name %→ Val contents %→ AContents|}
AFolder = {|folder %→ AFolder1 |}
AContents = [AItem]

AItem = ALink ∪ AFolder

Fig. 2. Abstract Bookmark Types

lens (supplying the original concrete tree as the second argument). Finally, the
new concrete tree is written back out to the filesystem as an HTML file. We now
discuss these transformations in detail.

Abstractly, the type of bookmark data is a name pointing to a value and a
contents, which is a list of items. An item is either a link, with a name and a
url, or a folder, which has the same type as bookmark data. Figure 2 formalizes
these types.

Concretely, in HTML (see Figure 3), a bookmark item is represented by a <dt>
element containing an <a> element whose href attribute gives the link’s url and
whose content defines the name. The <a> element also includes an add_date at-
tribute, which we have chosen not to reflect in the abstract form because it is not
supported by all browsers. A bookmark folder is represented by a <dd> element
containing an <h3> header (giving the folder’s name) followed by a <dl> list con-
taining the sequence of items in the folder. The whole HTML bookmark file follows
the standard <head>/<body> form, where the contents of the <body> have the for-
mat of a bookmark folder, without the enclosing <dd> tag. (HTML experts will
note that the use of the <dl>, <dt>, and <dd> tags here is not actually legal HTML.
This is unfortunate, but the conventions established by early versions of Netscape
have become a de-facto standard.)

The generic HTML reader and writer know nothing about the specifics of the
bookmark format; they simply transform between HTML syntax and trees in a
mechanical way, mapping an HTML element named tag, with attributes attr1 to
attrm and sub-elements subelt1 to subeltn,

<tag attr1="val1" ... attrm="valm">
subelt1 ... subeltn

</tag>

into a tree of this form:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

tag !→

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

attr1 !→ val1
...

attrm !→ valm

* !→

subelt1
...

subeltn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Note that the sub-elements are placed in a list under a distinguished child named
*. This preserves their ordering from the original HTML file. (The ordering of
sub-elements is sometimes important—e.g., in the present example, it is important

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Combinators for Bi-Directional Tree Transformations · 41

<html>
<head> <title>Bookmarks</title> </head>
<body>
<h3>Bookmarks Folder</h3>
<dl>
<dt> <a href="www.google.com"

add_date="1032458036">Google </dt>
<dd>
<h3>Conferences Folder</h3>
<dl>
<dt> <a href="www.cs.luc.edu/icfp"

add_date="1032528670">ICFP </dt>
</dl>

</dd>
</dl>

</body>
</html>

Fig. 3. Sample Bookmarks (HTML)

{html -> {* ->

[{head -> {* -> [{title -> {* ->

[{PCDATA -> Bookmarks}]}}]}}

{body -> {* ->

[{h3 -> {* -> [{PCDATA -> Bookmarks Folder}]}}

{dl -> {* ->

[{dt -> {* ->

[{a -> {* -> [{PCDATA -> Google}]

add_date -> 1032458036

href -> www.google.com}}]}}

{dd -> {* ->

[{h3 -> {* -> [{PCDATA ->

Conferences Folder}]}}

{dl -> {* ->

[{dt -> {* ->

[{a ->

{* -> [{PCDATA -> ICFP}]

add_date -> 1032528670

href -> www.cs.luc.edu/icfp

}}]}}]}}]}}]}}]}}]}}

Fig. 4. Sample Bookmarks (concrete tree)

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

42 · J. N. Foster et. al.

Val = {|N |}
PCDATA = {|PCDATA %→ Val |}

CLink = <dt> CLink1 ::[] </dt>

CLink1 = <a add date href> PCDATA ::[]

CFolder = <dd> CContents </dd>

CContents = CContents1 ::CContents2 ::[]
CContents1 = <h3> PCDATA ::[] </h3>

CContents2 = <dl> [CItem] </dl>

CItem = CLink ∪ CFolder

CBookmarks = <html> CBookmarks1 ::CBookmarks2 ::[] </html>

CBookmarks1 = <head> (<title> PCDATA </title> ::[]) </head>
CBookmarks2 = <body> CContents </body>

Fig. 5. Concrete Bookmark Types

{name -> Bookmarks Folder

contents ->

[{link -> {name -> Google

url -> www.google.com}}

{folder ->

{name -> Conferences Folder

contents ->

[{link ->

{name -> ICFP

url -> www.cs.luc.edu/icfp}}]}}]}

Fig. 6. Sample Bookmarks (abstract tree)

to maintain the ordering of the items within a bookmark folder. Since the HTML
reader and writer are generic, they always record the ordering from the the original
HTML in the tree, leaving it up to whatever lens is applied to the tree to throw away
ordering information where it is not needed.) A leaf of the HTML document—i.e.,
a “parsed character data” element containing a text string str—is converted to
a tree of the form {PCDATA -> str}. Passing the HTML bookmark file shown in
Figure 3 through the generic reader yields the tree in Figure 4.

Figure 5 shows the type CBookmarks of concrete bookmark structures. For
readability, the type relies on a notational shorthand that reflects the structure of
the encoding of HTML as trees. We write <tag attr1 . . . attrn> C </tag> for
{tag !→ {attr1 !→ Val . . . attrn !→ Val * !→ C}}. Recall that Val is the set of
all values (trees with a single childless child). For elements with no attributes, this
degenerates to simply <tag> C </tag> = {tag !→ {* !→ C}}.

The transformation between this concrete tree and the abstract bookmark tree
shown in Figure 6 is implemented by means of the collection of lenses shown in
Figure 7. Most of the work of these lenses (in the get direction) involves stripping
out various extraneous structure and then renaming certain branches to have the
desired “field names.” Conversely, the putback direction restores the original names
and rebuilds the necessary structure.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Combinators for Bi-Directional Tree Transformations · 43

To aid in checking well-behavedness, we annotate each lens with its source and
target type, writing ∈ C l !

Ω A. (This infix notation—where l is written between
its source and target types, instead of the more conventional l ∈ C !

Ω A—looks
strange in-line, but it works well for multi-line displays such as Figure 7.) and
annotate each composition with a suitable “cut type,” writing l ; : B k instead of
just l; k.

It is then straightforward to check, using the type annotations supplied, that
bookmarks ∈ CBookmarks !

Ω AFolder1. (We omit the proof of totality, since we
have already seen more intricate totality arguments in Section 7).

In practice, composite lenses are developed incrementally, gradually massaging
the trees into the correct shape. Figure 8 shows the process of developing the
link lens by transforming the representation of the HTML under a <dt> element
containing a link into the desired abstract form. At each level, tree branches are
relabeled with rename, undesired structure is removed with prune, hoist, and/or
hd, and then work is continued deeper in the tree via wmap.

The putback direction of the link lens restores original names and structure
automatically, by composing the putback directions of the constituent lenses of
link in turn. For example, Figure 9 shows an update to the abstract tree of
the link in Figure 8. The concrete tree beneath the update shows the result of
applying putback to the updated abstract tree. The putback direction of the hoist
PCDATA lens, corresponding to moving from step viii to step vii in Figure 8, puts
the updated string in the abstract tree back into a more concrete tree by replacing
Search-Engine with {|PCDATA -> Search-Engine|}. In the transition from step vi
to step v, the putback direction of prune add date {|$today|} utilizes the concrete
tree to restore the value, add date -> 1032458036, projected away in the abstract
tree. If the concrete tree had been Ω—i.e., in the case of a new bookmark added
in the new abstract tree—then the default argument {|$today|} would have been
used to fill in today’s date. (Formally, the whole set of lenses is parameterized on
the variable $today, which ranges over names.)

The get direction of the folder lens separates out the folder name and its con-
tents, stripping out undesired structure where necessary. Finally, we use wmap to
iterate over the contents.

The item lens processes one element of a folder’s contents; this element might
be a link or another folder, so we want to either apply the link lens or the folder
lens. Fortunately, we can distinguish them by whether they are contained within a
<dd> element or a <dt> element; we use the wmap operator to wrap the call to the
correct sublens. Finally, we rename dd to folder and dt to link.

The main lens is bookmarks, which (in the get direction) takes a whole concrete
bookmark tree, strips off the boilerplate header information using a combination of
hoist, hd, and tl, and then invokes folder to deal with the rest. The huge default
tree supplied to the tl lens corresponds to the head tag of the HTML document,
which is filtered away in the abstract bookmark format. This default tree would
be used to recreate a well-formed head tag if it was missing in the original concrete
tree.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

44 · J. N. Foster et. al.

link = ∈ {|* %→Clink1 ::[]|}
hoist *; : CLink1 ::[]
hd []; : CLink1
hoist a; : {|* %→PCDATA ::[], add_date %→Val ,

href %→Val |}
rename * name; : {|name %→PCDATA ::[], add_date %→Val ,

href %→Val |}
rename href url; : {|name %→PCDATA ::[], add_date %→Val ,

url %→Val |}
prune add date {$today}; : {|name %→PCDATA ::[], url %→Val |}
wmap {name -> (hd []; : PCDATA

hoist PCDATA)} "
Ω

{|name %→Val , url %→Val |} = ALink1

folder = ∈ {|* %→CContents|}
hoist *; : CContents
xfork {*h} {name}

(hoist *h; : {|h3 %→{|* %→PCDATA ::[]|}|}
rename h3 name)

(hoist *t; : CContents2 ::[]
hd []; : {|dl %→{|* %→[CItem]|}|}
rename dl contents) : {|name %→{|* %→PCDATA ::[]|},

contents %→{|* %→[CItem]|}|}
wmap {name -> (hoist *; : PCDATA ::[]

hd []; : PCDATA
hoist PCDATA)

contents -> (hoist *; : [CItem]

list_map item)}

"
Ω

{|name %→Val ,
contents %→[AItem]|} = AFolder1

item = ∈ CItem
wmap {dd -> folder, dt -> link }; : {|dd %→AFolder1 |} ∪ {|dt %→ALink1 |}
rename_if_present dd folder; : {|folder %→AFolder1 |} ∪ {|dt %→ALink1 |}

rename_if_present dt link : "
Ω

AFolder ∪ ALink = AItem

bookmarks = ∈ CBookmarks
hoist html; : {|* %→CBookmarks1 ::CBookmarks2 ::[]|}
hoist *; : CBookmarks1 ::CBookmarks2 ::[]
tl {|head %→ {|* %→ [{|title %→ {|* %→

[{|PCDATA %→ Bookmarks|}]|}|}]|}|}; : CBookmarks2 ::[]
hd []; : CBookmarks2
hoist body; : {|* %→CContents|}

folder "
Ω

AFolder1

Fig. 7. Bookmark lenses

9. LENSES FOR RELATIONAL DATA

We close our technical development by presenting a few additional lenses that we
use in Harmony to deal with preparing relational data—trees (or portions of trees)
consisting of “lists of records”—for synchronization. These lenses do not constitute
a full treatment of view update for relational data, but may be regarded as a
small step in that direction. (A later and more comprehensive proposal is reported

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Combinators for Bi-Directional Tree Transformations · 45

Step Lens expression Resulting abstract tree (from ’get’)
i: id {* ->

[{a -> {* -> [{PCDATA -> Google}]
add_date -> 1032458036
href -> www.google.com}}]}}

ii: hoist * [{a -> {* -> [{PCDATA -> Google}]
add_date -> 1032458036
href -> www.google.com}}]

iii: hoist *;
hd []

{a -> {* -> [{PCDATA -> Google}]
add_date -> 1032458036
href -> www.google.com}}

iv: hoist *;
hd [];
hoist a;

{* -> [{PCDATA -> Google}]
add_date -> 1032458036
href -> www.google.com}

v: hoist *;
hd [];
hoist a;
rename * name;
rename href url

{name -> [{PCDATA -> Google}]
add_date -> 1032458036
url -> www.google.com}

vi: hoist *;
hd [];
hoist a;
rename * name;
rename href url;
prune add_date {$today}

{name -> [{PCDATA -> Google}]
url -> www.google.com}

vii: hoist *;
hd [];
hoist a;
rename * name;
rename href url;
prune add_date {$today};
wmap { name -> (hd {}) }

{name -> {PCDATA -> Google}
url -> www.google.com}

viii: hoist *;
hd [];
hoist a;
rename * name;
rename href url;
prune add_date {$today};
wmap { name -> (hd {}; hoist PCDATA) }

{name -> Google
url -> www.google.com}

Fig. 8. Building up a link lens incrementally.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

46 · J. N. Foster et. al.

{link -> {name -> Google

url -> www.google.com}}
updated to...

{link -> {name -> Search-Engine

url -> www.google.com}}

yields (after putback)...

{dt -> {* ->

[{a -> {* -> [{PCDATA -> Search-Engine}]

add_date -> 1032458036

href -> www.google.com}}]}}

Fig. 9. Update of abstract tree, and resulting concrete tree

in [Bohannon et al. 2006]). In particular, the join lens performs a transformation
related to the outer join operation in database query languages.

Flatten

The most critical (and complex) of these lenses is flatten, which takes an ordered
list of “keyed records” and flattens it into a bush, as in the following example:

flatten↗

{∣

∣

∣

∣

Pat !→

{∣

∣

∣

∣

Phone !→333-4444

URL !→http://pat.com

∣

∣

∣

∣

}∣

∣

∣

∣

}

{∣

∣

∣

∣

Chris !→

{∣

∣

∣

∣

Phone !→888-9999

URL !→http://x.org

∣

∣

∣

∣

}∣

∣

∣

∣

}

=

∣

∣

∣

∣

∣

∣

∣

∣

Pat !→

[{∣

∣

∣

∣

Phone !→333-4444

URL !→http://pat.com

∣

∣

∣

∣

}]

Chris !→

[{∣

∣

∣

∣

Phone !→888-9999

URL !→http://x.org

∣

∣

∣

∣

}]

∣

∣

∣

∣

∣

∣

∣

∣

The importance of this transformation in the setting of the Harmony system is
that it makes the “intended alignment” of the data structurally obvious. This frees
Harmony’s synchronization algorithm from needing to understand that, although
the data is presented in an ordered fashion, order is actually not significant here.
Synchronization simply proceeds child-wise—i.e., the record under Pat is synchro-
nized with the corresponding record under Pat from the other replica, and similarly
for Chris. If one of the replicas happens to place Chris before Pat in its concrete,
ordered form, exactly the same thing happens.

The flatten lens handles concrete lists in which the same key appears more
than once by placing all the records with the same key (in the same order as they
appear in the concrete view) in the list under that key in the abstract view:

flatten↗

{∣

∣

∣

∣

Pat!→

{∣

∣

∣

∣

Phone!→333-4444

URL!→http://pat.com

∣

∣

∣

∣

}∣

∣

∣

∣

}

{∣

∣

∣

∣

Chris!→

{∣

∣

∣

∣

Phone!→888-9999

URL!→http://x.org

∣

∣

∣

∣

}∣

∣

∣

∣

}

{∣

∣

∣

∣

Pat!→

{∣

∣

∣

∣

Phone!→123-4321

URL!→http://p2.com

∣

∣

∣

∣

}∣

∣

∣

∣

}

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Pat!→

{∣

∣

∣

∣

Phone!→333-4444

URL!→http://pat.com

∣

∣

∣

∣

}

{∣

∣

∣

∣

Phone!→123-4321

URL!→http://p2.com

∣

∣

∣

∣

}

Chris!→

[{∣

∣

∣

∣

Phone!→888-9999

URL!→http://x.org

∣

∣

∣

∣

}]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Combinators for Bi-Directional Tree Transformations · 47

In the putback direction, flatten distributes elements of each list from the abstract
bush into the concrete list, maintaining their original concrete positions. If there
are more abstract elements than concrete ones, the extras are simply appended at
the end of the resulting concrete list in some arbitrary order, using the auxiliary
function listify:

listify({||}) = []
listify(t) =

{∣

∣k !→ tk1

∣

∣

}

:: · · · ::
{∣

∣k !→ tkn

∣

∣

}

:: listify(t\k)
where k = anydom(t) and t(k) = [tk1, . . . , tkn]

In the type of flatten, we write AListK(D) for the set of lists of “singleton
views” of the form

{∣

∣k !→ d
∣

∣

}

, where k ∈ K is a key and d ∈ D is the value of
that key—i.e., AListK(D) is the smallest set of trees satisfying AListK(D) =
[] ∪ ({

{∣

∣k !→ D
∣

∣

}

| k ∈ K} ::AListK(D)).

flatten↗ c =

{||} if c = []
a′ +

{∣

∣k !→ d :: []
∣

∣

}

if c =
{∣

∣k !→ d
∣

∣

}

:: c′

and flatten↗ c′ = a′ with k .∈ dom(a′)
a′ +

{∣

∣k !→ d :: s
∣

∣

}

if c =
{∣

∣k !→ d
∣

∣

}

:: c′

and flatten↗ c′ = a′ +
{∣

∣k !→ s
∣

∣

}

flatten↘ (a, c) =

listify(a) if c = [] or c = Ω
{∣

∣k !→ d′
∣

∣

}

:: r if c =
{∣

∣k !→ d
∣

∣

}

:: c′

and a(k) = d′ :: []
and r = flatten↘ (a\k, c′)

{∣

∣k !→ d′
∣

∣

}

:: r if c =
{∣

∣k !→ d
∣

∣

}

:: c′

and a(k) = d′ :: s with s .= []
and r = flatten↘

(

a\k +
{∣

∣k !→ s
∣

∣

}

, c′
)

r if c =
{∣

∣k !→ d
∣

∣

}

:: c′

and k .∈ dom(a)
and r = flatten↘ (a, c′)

∀K⊆N . ∀D⊆T .

flatten ∈ AListK(D) ⇐⇒Ω
{∣

∣

∣K
?
!→ [D1..ω]

∣

∣

∣

}

This definition can be simplified if we assume that all the ks in the concrete list
are pairwise different—i.e., that they are truly keys. In this case, the abstract
view need not be a bush of lists: each k can simply point directly to its associated
subtree from the concrete list. In practice, this assumption is often reasonable: the
concrete view is a (linearized) database and the ks are taken from a key field in
each record. However, the type of this “disjoint flatten” becomes more complicated
to write down, since it must express the constraint that, in the concrete list, each
k occurs at most once. Since we eventually intend to implement a mechanical
typechecker for our combinators, we prefer to use the more complex definition with
the more elementary type.

An obvious question is whether either variant of flatten can be expressed in
terms of more primitive combinators plus recursion, as we did for the list mapping,

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

48 · J. N. Foster et. al.

reversing, and filtering derived forms in Section 7. We feel that this ought to be
possible, but we have not yet succeeded in doing it.

One final point about flatten is that it does not obey PutPut. Let

a1 =
{∣

∣a !→ [{||}], b !→ [{||}]
∣

∣

}

a2 =
{∣

∣b !→ [{||}]
∣

∣

}

c =
[

a, b
]

.

If flatten were very well behaved then we would have

flatten↘ (a1, flatten↘ (a2, c)) = flatten↘ (a1, c).

However, the left hand side of the equality is [b, a] but the right hand side is
[a, b].

Pivot

The lens pivot n rearranges the structure at the top of a tree, transforming
{∣

∣

∣

∣

n !→ k
t

∣

∣

∣

∣

}

to
{∣

∣k !→ t
∣

∣

}

. Intuitively, the value k (i.e.,
{∣

∣k !→ {||}
∣

∣

}

) under n represents

a key k for the rest of the tree t. The get function of pivot returns a tree where
k points directly to t. The putback function performs the reverse transformation,
ignoring the old concrete tree.

We use pivot heavily in Harmony instances where the data being synchronized
is relational (sets of records) but its concrete format is ordered (e.g., XML). We
first apply pivot within each record to bring the key field to the outside. Then we
apply flatten to smash the list of keyed records into a bush indexed by the keys.
As an example, consider the following transformation on a concrete piece of data
where l = list map (pivot Name):

l↗

∣

∣

∣

∣

∣

∣

Name !→Pat

Phone !→333-4444

URL !→http://pat.com

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Name !→Chris

Phone !→888-9999

URL !→http://x.org

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Name !→Pat

Phone !→123-4321

URL !→http://p2.com

∣

∣

∣

∣

∣

∣

=

{∣

∣

∣

∣

Pat !→

{∣

∣

∣

∣

Phone !→333-4444

URL !→http://pat.com

∣

∣

∣

∣

}∣

∣

∣

∣

}

{∣

∣

∣

∣

Chris !→

{∣

∣

∣

∣

Phone !→888-9999

URL !→http://x.org

∣

∣

∣

∣

}∣

∣

∣

∣

}

{∣

∣

∣

∣

Pat !→

{∣

∣

∣

∣

Phone !→123-4321

URL !→http://p2.com

∣

∣

∣

∣

}∣

∣

∣

∣

}

which, as we saw above, can then be flattened into:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Pat !→

{∣

∣

∣

∣

Phone !→333-4444

URL !→http://pat.com

∣

∣

∣

∣

}

{∣

∣

∣

∣

Phone !→123-4321

URL !→http://p2.com

∣

∣

∣

∣

}

Chris !→

[{∣

∣

∣

∣

Phone !→888-9999

URL !→http://x.org

∣

∣

∣

∣

}]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

In the type of pivot, we extend our conventions about values (i.e., the fact that we
write k instead of

{∣

∣k !→ {||}
∣

∣

}

) to types. If K ⊆ N is a set of names, then
{∣

∣n !→ K
∣

∣

}

means {
{∣

∣n !→ k
∣

∣

}

| k ∈ K}—i.e., {
{∣

∣n !→
{∣

∣k !→ {||}
∣

∣

}∣

∣

}

| k ∈ K}.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Combinators for Bi-Directional Tree Transformations · 49

(pivot n)↗ c =
{∣

∣k !→ t
∣

∣

}

if c =

{∣

∣

∣

∣

n !→ k
t

∣

∣

∣

∣

}

(pivot n)↘ (a, c) =

{∣

∣

∣

∣

n !→ k
t

∣

∣

∣

∣

}

if a =
{∣

∣k !→ t
∣

∣

}

∀n∈N . ∀K⊆N . ∀C⊆(T \n).
pivot n ∈ (

{∣

∣n !→ K
∣

∣

}

· C) ⇐⇒Ω {
{∣

∣k !→ C
∣

∣

}

| k ∈ K}

Join

Our final lens combinator, based on an idea by Daniel Spoonhower [2004], is inspired
by the full outer join operator from databases. For example, applying the get
component of l = (join addr phone) to a tree containing a collection of addresses
and a collection of phone numbers (both keyed by names) yields a tree where the
address and phone information is collected under each name.

l↗

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

addr !→

∣

∣

∣

∣

∣

∣

Chris !→Paris
Kim !→Palo Alto
Pat !→Philadelphia

∣

∣

∣

∣

∣

∣

phone !→

∣

∣

∣

∣

∣

∣

Chris !→111-1111
Pat !→222-2222
Lou !→333-3333

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Chris !→

{∣

∣

∣

∣

addr !→Paris
phone !→111-2222

∣

∣

∣

∣

}

Kim !→
{∣

∣addr !→Palo Alto
∣

∣

}

Pat !→

{∣

∣

∣

∣

addr !→Philadelphia
phone !→222-2222

∣

∣

∣

∣

}

Lou !→
{∣

∣phone !→333-3333
∣

∣

}

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Note that no information is lost in this transformation: names that are missing
from either the addr or phone collection are mapped to views with just a phone
or addr child. In the putback direction, join performs the reverse transformation,
splitting the addr and phone information associated with each name into separate
collections. (The transformation is bijective—since no information is lost by get,
the putback function can ignore its concrete argument.)

(join m n)↗ c =

{∣

∣

∣

∣

k !→

{∣

∣

∣

∣

m !→ c(m)(k)
n !→ c(n)(k)

∣

∣

∣

∣

}

| k ∈ dom(c(m)) ∪ dom(c(n))

∣

∣

∣

∣

}

(join m n)↘ (a, c) =

{∣

∣

∣

∣

m !→
{∣

∣k !→ a(k)(m) | k ∈ dom(a)
∣

∣

}

n !→
{∣

∣k !→ a(k)(n) | k ∈ dom(a)
∣

∣

}

∣

∣

∣

∣

}

∀K⊆N . ∀T⊆T .

join m n ∈

∣

∣

∣

∣

∣

∣

m !→
{∣

∣

∣K
?
!→ T

∣

∣

∣

}

n !→
{∣

∣

∣K
?
!→ T

∣

∣

∣

}

∣

∣

∣

∣

∣

∣

⇐⇒Ω
{∣

∣

∣

∣

∣

K
?
!→

{∣

∣

∣

∣

∣

m !→ T

n
?
!→ T

∣

∣

∣

∣

∣

}

∪

{∣

∣

∣

∣

∣

m
?
!→ T

n !→ T

∣

∣

∣

∣

∣

}∣

∣

∣

∣

∣

}

10. RELATED WORK

Our lens combinators evolved in the setting of the Harmony data synchronizer. The
overall architecture of Harmony and the role of lenses in building synchronizers for
various forms of data are described elsewhere [Foster et al. 2006; Pierce et al. 2003],
along with a detailed discussion of related work on synchronization.

Our foundational structures—lenses and their laws—are not new: closely related
structures have been studied for decades in the database community. However,
our treatment of these structures is arguably simpler (transforming states rather
than “update functions”) and more refined (treating well-behavedness as a form of

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

50 · J. N. Foster et. al.

type assertion). Our formulation is also novel in addressing the issues of totality,
offering programmers a static guarantee that lenses cannot fail at run time, and
of continuity, supporting a rich variety of surface language structures including
definition by recursion.

The idea of defining programming languages for constructing bi-directional trans-
formations of various sorts has also been explored previously in diverse communities.
We appear to be the first to take totality as a primary goal (while connecting the
language with a formal semantic foundation, choosing primitives that can be com-
bined into composite lenses whose totality is guaranteed by construction), and the
first to emphasize types—i.e., compositional reasoning about well-behavedness and
totality—as an organizing design principle.

Foundations of View Update

The foundations of view update translation were studied intensively by database
researchers in the late ’70s and ’80s. This thread of work is closely related to our
semantics of lenses in Section 3. We discuss here the main similarities and differ-
ences between our work and these classical approaches to view update—in particu-
lar Dayal and Bernstein’s notion [1982] of “correct update translation,” Bancilhon
and Spyratos’s [1981] notion of “update translation under a constant complement,”
Gottlob, Paolini, and Zicari’s “dynamic views” [1988], and the basic view update
and “relational triggers” mechanisms offered by commercial database systems such
as Oracle [Fogel and Lane 2005; Lorentz 2005]

The view update problem concerns translating updates on a view into “reason-
able” updates on the underlying database. It is helpful to structure the discussion
by breaking this broad problem statement down into more specific questions. First,
how is a “reasonable” translation of an update defined? Second, what should we
do about the possibility that, for some update, there may be no reasonable way of
translating its effect to the underlying database? And third, how do we deal with
the possibility that there are many reasonable translations from which we must
choose? We consider these questions in order.

One can imagine many possible ways of assigning a precise meaning to “reason-
able update translation,” but in fact there is a remarkable degree of agreement
in the literature, with most approaches adopting one of two basic positions. The
stricter of these is enunciated in Bancilhon and Spyratos’s [1981] notion of comple-
ment of a view, which must include at least all information missing from the view.
When a complement is fixed, there exists at most one update of the database that
reflects a given update on the view while leaving the complement unmodified—i.e.,
that “translates updates under a constant complement.” The constant complement
approach has influenced numerous later works in the area, including recent papers
by Lechtenbörger [2003] and Hegner [2004].

The other, more permissive, definition of “reasonable” is elegantly formulated by
Gottlob, Paolini, and Zicari, who call it “dynamic views” [1988]. They present a
general framework and identify two special cases, one being formally equivalent to
Bancilhon and Spyratos’s constant complement translators and the other—which
they advocate on pragmatic grounds—being their own dynamic views.

Our notion of lenses adopts the same, more permissive, attitude towards reason-
able behavior of update translation. Indeed, modulo some technical refinements, we

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Combinators for Bi-Directional Tree Transformations · 51

have sketched that the correspondence is tight: the set of all well-behaved lenses is
isomorphic to the set of dynamic views in the sense of Gottlob, Paolini, and Zicari.
Moreover, the set of very well-behaved lenses is isomorphic to the set of translators
under constant complement in the sense of Bancilhon and Spyratos.9

Dayal and Bernstein’s [1982] seminal theory of “correct update translation” also
adopts the more permissive position on “reasonableness.” Their notion of “exactly
performing an update” corresponds, intuitively, to our PutGet law.

The pragmatic tradeoffs between these two perspectives on reasonable update
translations are discussed by Hegner [1990; 2004], who introduces the term closed
view for the stricter constant complement approach and open view for the looser
approach adopted by dynamic views and in the present work. Hegner himself
works in a closed-world framework, but notes that both choices may have pragmatic
advantages in different situations, open-world being useful when the users are aware
that they are actually using a view as a convenient way to edit an underlying
database, while closed-world is preferable when users should be isolated from the
existence of the underlying database, even at the cost of offering them a more
restricted set of possible updates.

Hegner [2004] also formalizes an additional condition on reasonableness (which
has also been noted by others—e.g., [Dayal and Bernstein 1982]): monotonicity of
update translations, in the sense that an update that only adds records from the
view should be translated just into additions to the database, and that an update
that adds more records to the view should be translated to a larger update to the
database (and similarly for deletions).

Commercial databases such as Oracle [Fogel and Lane 2005; Lorentz 2005], SQL
Server [Microsoft 2005], and DB2 [International Business Machines Corporation
2004] typically provide two quite different mechanisms for updating through views.
First, some very simple views—defined using select, project, and a very restricted
form of join (where the key attributes in one relation are a subset of those in the
other)—are considered inherently updatable. For these, the notion of reasonableness
is essentially the constant complement position. Alternatively, programmers can
support updates to arbitrary views by adding relational triggers that are invoked

9To be precise, we need an additional condition regarding partiality. The frameworks of Bacilhon
and Spyratos and of Gottlob, Paolini, and Zicari are both formulated in terms of translating
update functions on A into update functions on C, i.e., their putback functions have type (A −→
A) −→ (C −→ C), while our lenses translate abstract states into update functions on C, i.e.,
our putback functions have type (isomorphic to) A −→ (C −→ C). Moreover, in both of these
frameworks, “update translators” (the analog of our putback functions) are defined only over some
particular chosen set U of abstract update functions, not over all functions from A to A, and these
update functions may be composed. Update translators return total functions from C to C. Our
putback functions, on the other hand, are slightly more general as they are defined over all abstract
states and return partial functions from C to C. Finally, the get functions of lenses are allowed
to be partial, whereas the corresponding functions (called views) in the other two frameworks are
assumed to be total. In order to make the correspondences tight, our sets of well-behaved and
very well behaved lenses need to be restricted to subsets that are also total in a suitable sense and
the set of dynamic views should already include every abstract update functions that are needed
and not rely on composition.

A related observation is that, if we restrict both get and putback to be total functions (i.e.,
putback must be total with respect to all abstract update functions), then our lens laws (including
PutPut) characterize the set C as isomorphic to A × B for some B.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

52 · J. N. Foster et. al.

whenever an update is attempted on the view and that can execute arbitrary code
to update the underlying database. In this case, the notion of reasonableness is left
entirely to the programmer.

The second question posed at the beginning of the section was how to deal with
the possibility that there are no reasonable translations for some update. The
simplest response is just to let the translation of an update fail, if it sees that
its effect is going to be unreasonable; this is Dayal and Bernstein’s approach, for
example. Its advantage is that we can determine reasonableness on a case-by-case
basis, allowing translations that usually give reasonable results but that might fail
under rare conditions. The disadvantage is that we lose the ability to perform
updates to the view offline—we need the concrete database in order to tell whether
an update is going to be allowed. Another possibility is to restrict the set of
operations to just the ones that can be guaranteed to correspond to reasonable
translations; this is the position taken by most papers in the area. A different
approach—the one we have taken in this work—is to restrict the view schema so
that arbitrary (schema-respecting) updates are guaranteed to make sense.

The third question posed above was how to deal with the possibility that there
may be multiple reasonable translations for a given update.

One attractive idea is to somehow restrict the set of reasonable translations so
that this possibility does not arise—i.e., so that every translatable update has a
unique translation. For example, under the constant complement approach, for
a particular choice of complement, there will be at most one translation. Heg-
ner’s additional condition of monotonicity [2004] ensures that (at least for updates
consisting of only inserts or only deletes), the translation of an update is unique,
independent of the choice of complement.

Another possibility is to place an ordering on possible translations of a given
update and choose one that is minimal in this ordering. This idea plays a central
role, for example, in Johnson, Rosebrugh, and Dampney’s account of view update in
the Sketch Data Model [2001]. Buneman, Khanna, and Tan [2002] have established
a variety of intractability results for the problem of inferring minimal view updates
in the relational setting for query languages that include both join and either project
or union.

The key idea in the present work is to allow the programmer to describe the
update policy at the same time as the view definition, by enriching the relational
primitives with enough annotations to select among a variety of reasonable update
policies.

In the literature on programming languages, laws similar to our lens laws (but
somewhat simpler, dealing only with total get and putback functions) appear in
Oles’ category of “state shapes” [Oles 1985] and in Hofmann and Pierce’s work on
“positive subtyping” [1995].

Languages for Bi-Directional Transformations

At the level of syntax, different forms of bi-directional programming have been
explored across a surprisingly diverse range of communities, including program-
ming languages, databases, program transformation, constraint-based user inter-
faces, and quantum computing. One useful way of classifying these languages is by

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Combinators for Bi-Directional Tree Transformations · 53

the “shape” of the semantic space in which their transformations live. We identify
three major classes:

—Bi-directional languages, including ours, form lenses by pairing a get function of
type C → A with a putback function of type A × C → C. In general, the get
function can project away some information from the concrete view, which must
then be restored by the putback function.

—In bijective languages, the putback function has the simpler type A → C, being
given no concrete argument to refer to. To avoid loss of information, the get and
putback functions must form a (perhaps partial) bijection between C and A.

—Reversible languages go a step further, demanding only that the work performed
by any function to produce a given output can be undone by applying the function
“in reverse” working backwards from this output to produce the original input.
Here, there is no separate putback function at all: instead, the get function itself
is constructed so that each step can be run in reverse.

In the first class, the work that is fundamentally most similar to ours is
Meertens’s formal treatment of constraint maintainers for constraint-based user
interfaces [1998]. Meertens’s semantic setting is actually even more general: he
takes get and putback to be relations, not just functions, and his constraint main-
tainers are symmetric: get relates pairs from C × A to elements of A and putback
relates pairs in A × C to elements of C; the idea is that a constraint maintainer
forms a connection between two graphical objects on the screen so that, whenever
one of the objects is changed by the user, the change can be propagated by the
maintainer to the other object such that some desired relationship between the ob-
jects is always maintained. Taking the special case where the get relation is actually
a function (which is important for Meertens because this is the case where composi-
tion [in the sense of our ; combinator] is guaranteed to preserve well-behavedness),
yields essentially our very well behaved lenses. Meertens proposes a variety of com-
binators for building constraint maintainers, most of which have analogs among
our lenses, but does not directly deal with definition by recursion; also, some of his
combinators do not support compositional reasoning about well-behavedness. He
considers constraint maintainers for structured data such as lists, as we do for trees,
but here adopts a rather different point of view from ours, focusing on constraint
maintainers that work with structures not directly but in terms of the “edit scripts”
that might have produced them. In the terminology of synchronization, he switches
from a state-based to an operation-based treatment at this point.

Recent work of Mu, Hu, and Takeichi on “injective languages” for view-update-
based structure editors [2004a] adopts a similar perspective. Although their trans-
formations obey our GetPut law, their notion of well-behaved transformations is
informed by different goals than ours, leading to a weaker form of the PutGet
law. A primary concern is using the view-to-view transformations to simultane-
ously restore invariants within the source view as well as update the concrete view.
For example, an abstract view may maintain two lists where the name field of each
element in one list must match the name field in the corresponding element in the
other list. If an element is added to the first list, then not only must the change
be propagated to the concrete view, it must also add a new element to the second
list in the abstract view. It is easy to see that PutGet cannot hold if the abstract

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

54 · J. N. Foster et. al.

view, itself, is—in this sense—modified by the putback. Similarly, they assume that
edits to the abstract view mark all modified fields as “updated.” These marks are
removed when the putback lens computes the modifications to the concrete view—
another change to the abstract view that must violate PutGet. Consequently, to
support invariant preservation within the abstract view, and to support edit lists,
their transformations only obey a much weaker variant of PutGet (described above
in Section 5).

Another paper by Hu, Mu, and Takeichi [2004] applies a bi-directional program-
ming language quite closely related to ours to the design of “programmable editors”
for structured documents. As in [Mu et al. 2004a], they support preservation of
local invariants in the putback direction. Here, instead of annotating the abstract
view with modification marks, they assume that a putback or a get occurs after
every modification to either view. They use this “only one update” assumption to
choose the correct inverse for the lens that copied data in the get direction—because
only one branch can have been modified at any given time. Consequently, they can
putback the data from the modified branch and overwrite the unmodified branch.
Here, too, the notion of well-behavedness needs to be weakened, as described in
Section 5.

The TRIP2 system (e.g., [Matsuoka et al. 1992]) uses bidirectional transforma-
tions specified as collections of Prolog rules as a means of implementing direct-
manipulation interfaces for application data structures. The get and putback com-
ponents of these mappings are written separately by the user.

Languages for Bijective Transformations

An active thread of work in the program transformation community concerns pro-
gram inversion and inverse computation—see, for example, Abramov and Glück
[2000; 2002] and many other papers cited there. Program inversion [Dijkstra 1979]
derives the inverse program from the forward program. Inverse computation [Mc-
Carthy 1956] computes a possible input of a program from a particular output. One
approach to inverse computation is to design languages that produce easily invert-
ible expressions—for example, languages that can only express injective functions,
where every program is trivially invertible.

In the database community, Abiteboul, Cluet, and Milo [1997] defined a declar-
ative language of correspondences between parts of trees in a data forest. In turn,
these correspondence rules can be used to translate one tree format into another
through non-deterministic Prolog-like computation. This process assumes an iso-
morphism between the two data formats. The same authors [1998] later defined a
system for bi-directional transformations based around the concept of structuring
schemas (parse grammars annotated with semantic information). Thus their get
functions involved parsing, whereas their putbacks consisted of unparsing. Again, to
avoid ambiguous abstract updates, they restricted themselves to lossless grammars
that define an isomorphism between concrete and abstract views.

Ohori and Tajima [1994] developed a statically-typed polymorphic record calculus
for defining views on object-oriented databases. They specifically restricted which
fields of a view are updatable, allowing only those with a ground (simple) type to
be updated, whereas our lenses can accommodate structural updates as well.

A related idea from the functional programming community, called views [Wadler

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Combinators for Bi-Directional Tree Transformations · 55

1987], extends algebraic pattern matching to abstract data types using programmer-
supplied in and out operators.

Languages for Reversible Transformations

Our work is the first of which we are aware in which totality and compositional
reasoning about totality are taken as primary design goals. Nevertheless, in all
of the languages discussed above there is an expectation that programmers will
want their transformations to be “total enough”—i.e., that the sets of inputs for
which the get and putback functions are defined should be large enough for some
given purpose. In particular, we expect that putback functions should accept a
suitably large set of abstract inputs for each given concrete input, since the whole
point of these languages is to allow editing through a view. A quite different
class of languages have been designed to support reversible computation, in which
the putback functions are only ever applied to the results of the corresponding get
functions. While the goals of these languages are quite different from ours—they
have nothing to do with view update—there are intriguing similarities in the basic
approach.

Landauer [1961] observed that non-injective functions were logically irreversible,
and that this irreversibility requires the generation and dissipation of some heat
per machine cycle. Bennet [1973] demonstrated that this irreversibility was not in-
evitable by constructing a reversible Turing machine, showing that thermodynam-
ically reversible computers were plausible. Baker [1992] argued that irreversible
primitives were only part of the problem; irreversibility at the “highest levels” of
computer usage cause the most difficulty due to information loss. Consequently, he
advocated the design of programs that “conserve information.” Because deciding
reversibility of large programs is unsolvable, he proposed designing languages that
guaranteed that all well-formed programs are reversible, i.e., designing languages
whose primitives were reversible and whose combinators preserved reversibility. A
considerable body of work has developed around these ideas (e.g. [Mu et al. 2004b]).

Update Translation for Tree Views

There have been many proposals for query languages for trees (e.g., XQuery
[XQuery 2005] and its forerunners, UnQL, StruQL, and Lorel), but these either
do not consider the view update problem at all or else handle update only in situ-
ations where the abstract and concrete views are isomorphic.

For example, Braganholo, Heuser, and Vittori [2001], and Braganholo, Davidson,
and Heuser [2003] studied the problem of updating relational databases “presented
as XML.” Their solution requires a 1:1 mapping between XML view elements and
objects in the database, to make updates unambiguous.

Tatarinov, Ives, Halevy, and Weld [2001] described a mechanism for translating
updates on XML structures that are stored in an underlying relational database. In
this setting there is again an isomorphism between the concrete relational database
and the abstract XML view, so updates are unambiguous—rather, the problem is
choosing the most efficient way of translating a given XML update into a sequence
of relational operations.

The view update problem has also been studied in the context of object-oriented
databases. School, Laasch, and Tresch [1991] restrict the notion of views to queries

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

56 · J. N. Foster et. al.

that preserve object identity. The view update problem is greatly simplified in this
setting, as the objects contained in the view are the objects of the database, and
an update on the view is directly an update on objects of the database.

Update Translation for Relational Views

Research on view update translation in the database literature has tended to focus
on taking an existing language for defining get functions (e.g., relational algebra)
and then considering how to infer corresponding putback functions, either automat-
ically or with some user assistance. By contrast, we have designed a new language
in which the definitions of get and putback go hand-in-hand. Our approach also
goes beyond classical work in the relational setting by directly transforming and
updating tree-structured data, rather than flat relations. (Of course, trees can be
encoded as relations, but it is not clear how our tree-manipulation primitives could
be expressed using the recursion-free relational languages considered in previous
work in this area.)

Recent work by Bohannon, Pierce, and Vaughan [2006] extends the framework
presented here to obtain lenses that operate natively on relational data. Their
lenses are based on the primitives of classical relational algebra, with additional
annotations that specify the desired “update policy” in the putback direction. They
develop a type system, using record predicates and functional dependencies, to aid
compositional reasoning about well-behavedness. The chapter on view update in
Date’s textbook [Date 2003] articulates a similar perspective on translating rela-
tional updates.

Masunaga [1984] described an automated algorithm for translating updates on
views defined by relational algebra. The core idea was to annotate where the “se-
mantic ambiguities” arise, indicating they must be resolved either with knowledge
of underlying database semantic constraints or by interactions with the user.

Keller [1985] catalogued all possible strategies for handling updates to a select-
project-join view and showed that these are exactly the set of translations that
satisfy a small set of intuitive criteria. These criteria are:

(1) No database side effects: only update tuples in the underlying database that
appear somehow in the view.

(2) Only one-step changes: each underlying tuple is updated at most once.

(3) No unnecessary changes: there is no operationally equivalent translation that
performs a proper subset of the translated actions.

(4) Replacements cannot be simplified (e.g., to avoid changing the key, or to avoid
changing as many attributes).

(5) No delete-insert pairs: for any relation, you have deletions or insertions, but
not both (use replacements instead).

These criteria apply to update translations on relational databases, whereas our
state-based approach means only criteria (1), (3), and (4) might apply to us. Keller
later [1986] proposed allowing users to choose an update translator at view defi-
nition time by engaging in an interactive dialog with the system and answering
questions about potential sources of ambiguity in update translation. Building on
this foundation, Barsalou, Siambela, Keller, and Wiederhold [1991] described a

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Combinators for Bi-Directional Tree Transformations · 57

scheme for interactively constructing update translators for object-based views of
relational databases.

Medeiros and Tompa [1985] presented a design tool for exploring the effects of
choosing a view update policy. This tool shows the update translation for update
requests supplied by the user; by considering all possible valid concrete states, the
tool predicts whether the desired update would in fact be reflected back into the
view after applying the translated update to the concrete database. Miller et
al. [2001] describe Clio, a system for managing heterogeneous transformation and
integration. Clio provides a tool for visualizing two schemas, specifying correspon-
dences between fields, defining a mapping between the schemas, and viewing sample
query results. They only consider the get direction of our lenses, but their system is
somewhat mapping-agnostic, so it might eventually be possible to use a framework
like Clio as a user interface supporting incremental lens programming like that in
Figure 8.

Atzeni and Torlone [1997; 1996] described a tool for translating views and ob-
served that if one can translate any concrete view to and from a meta-model (shared
abstract view), one then gets bi-directional transformations between any pair of con-
crete views. They limited themselves to mappings where the concrete and abstract
views are isomorphic.

Complexity bounds have also been studied for various versions of the view update
inference problem. In one of the earliest, Cosmadakis and Papadimitriou [Cos-
madakis 1983; Cosmadakis and Papadimitriou 1984] considered the view update
problem for a single relation, where the view is a projection of the underlying rela-
tion, and showed that there are polynomial time algorithms for determining whether
insertions, deletions, and tuple replacements to a projection view are translatable
into concrete updates. More recently, Buneman, Khanna, and Tan [2002] estab-
lished a variety of intractability results for the problem of inferring “minimal” view
updates in the relational setting for query languages that include both join and
either project or union.

The designers of the RIGEL language [Rowe and Schoens 1979] argued that
programmers should specify the translations of abstract updates. However, they
did not provide a way to ensure consistency between the get and putback directions
of their translations.

Another problem that is sometimes mentioned in connection with view update
translation is that of incremental view maintenance (e.g., [Abiteboul et al. 1998])—
efficiently recalculating an abstract view after a small update to the underlying
concrete view. Although the phrase “view update problem” is sometimes, con-
fusingly, used for work in this domain, there is little technical connection with the
problem of translating view updates to updates on an underlying concrete structure.

11. CONCLUSIONS AND ONGOING WORK

We have worked to design a collection of combinators that fit together in a sensible
way and that are easy to program with and reason about. Starting with lens laws
that define “reasonable behavior,” adding type annotations, and proving that each
of our lenses is total, has imposed strong constraints on our design of new lenses—
constraints that, paradoxically, make the design process easier. In the early stages
of the Harmony project, working in an under-constrained design space, we found

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

58 · J. N. Foster et. al.

Fig. 10. Web demo of Safari Bookmark lens

it extremely difficult to converge on a useful set of primitive lenses. Later, when
we understood how to impose the framework of type declarations and the demand
for compositional reasoning, we experienced a huge increase in manageability. The
types helped not just in finding programming errors in derived lenses, but in ex-
posing design mistakes in the primitives at an early stage.

Our interest in bi-directional tree transformations arose in the context of the
Harmony data synchronization framework. Besides the bookmark synchronizer
described in Section 8, we have developed prototype synchronizers for calendars,
address books, and structured text, as well as a growing library of lens programs.
Building implementations continues to provide valuable stress-testing for both our
combinators and their formal foundations. It also gives us confidence that our
lenses are practically useful.

The source code for each of these prototypes, along with our lens compiler and
synchronization engine, can be found on the Harmony web page [Pierce et al. 2006].
We have also made the system available as an online web demo (a screenshot from
the Safari component of our bookmarks portion of this demo is shown in Figure 10).

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Combinators for Bi-Directional Tree Transformations · 59

Static Analysis

Naturally, the progress we have made on lens combinators raises a host of further
challenges. The most urgent of these is automated typechecking. At present, it
is the lens programmers’ responsibility to check the well-behavedness of the lenses
that they write. Our compiler has the ability to perform simple run-time checking
and some debugging using probe points and to track stack frames. These simple dy-
namic techniques have proven helpful in developing and debugging small-to-medium
sized lens programs, but we would like to be able to reason statically that a given
program is type correct. Fortunately, the types of the primitive combinators have
been designed so that these checks are both local and essentially mechanical. The
obvious next step is to reformulate the type declarations as a type algebra and find a
mechanical procedure for statically checking (or, more ambitiously, inferring) types.

In the semantic framework of lens types we have developed, the key properties
tracked by the types are well-behavedness and totality. However, there are other
properties of lenses that one might want to track in a type system including very well
behavedness, obliviousness, adherence to the conventions about Ω, etc. Moreover,
there is a natural subsumption relation between these different lens types: e.g.,
every oblivious lens is very well behaved. Once basic mechanized type checking for
lenses is in place, the natural next step is to stratify the type system to facilitate
reasoning about these more refined properties of lenses.

A number of other interesting questions are related to static analysis of lenses.
For instance, can we characterize the complexity of programs built from these
combinators? Is there an algebraic theory of lens combinators that would underpin
optimization of lens expressions in the same way that the relational algebra and its
algebraic theory are used to optimize relational database queries? (For example,
the combinators we have described here have the property that map l1; map l2 =
map (l1; l2) for all l1 and l2, but the latter should run substantially faster.)

Optimization

This algebraic theory will play a crucial role in any serious effort to compile lens
programs efficiently. Our current prototype performs a straightforward translation
from a concrete syntax similar to the one used in this paper to a combinator library
written in OCaml. This is fast enough for experimenting with lens programming
and for small demos (our calendar lenses can process a few thousands of appoint-
ments in under a minute), but we would like to apply the Harmony system to
applications such as synchronization of biological databases that will require much
higher throughput.

Additional Combinators

Another area for further investigation is the design of additional combinators. While
we have found the ones we have described here to be expressive enough to code a
large number of examples—both intricate structural manipulations such as the list
transformations in Section 7 and more prosaic application transformations such as
the ones needed by the bookmark synchronizer in Section 8 —there are some areas
where we would like more general forms of the lenses we have (e.g., a more flexible
form of xfork, where the splitting and recombining of trees is not based on top-level
names, but involves deeper structure), lenses expressing more global transforma-

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

60 · J. N. Foster et. al.

tions on trees (including analogs of database operations such as join), or lenses ad-
dressing completely different sorts of transformations (e.g., none of our combinators
do any significant processing on edge labels, which might include string processing,
arithmetic, etc.). Higher-level combinators embodying more global transforma-
tions on trees—perhaps modeled on a familiar tree transformation notation such
as XSLT—are another interesting possibility.

Finally, we would also like to investigate recursion combinators that are less
powerful than fix , but that come equipped with simpler principles for reasoning
about totality. We already have one such combinator: map iterates over the width
of the tree. However, we think it should be possible to go further; e.g., one could
define lenses by structural recursion on trees.

Expressiveness

More generally, what are the limits of bi-directional programming? How expressive
are the combinators we have defined here? Do they cover any known or succinctly
characterizable classes of computations (in the sense that the set of get parts of
the total lenses built from these combinators coincide with this class)? We have
put considerable energy into these questions, but at the moment we can only report
that they are challenging! One reason for this is that questions about expressiveness
tend to have trivial answers when phrased semantically. For example, it is not hard
to show that any surjective get function can be equipped with a putback function—
indeed, typically many—to form a total lens. Indeed, if the concrete domain C is
recursively enumerable, then this putback function is even computable. The real
problems are thus syntactic—how to conveniently pick out a putback function that
does what is wanted for a given situation.

Recently, we have been exploring bidirectional transformations expressed as word
and tree transducers.

Lens Inference

In restricted cases, it may be possible to build lenses in simpler ways than by explicit
programming—e.g., by generating them automatically from schemas for concrete
and abstract views, or by inference from a set of pairs of inputs and desired outputs
(“programming by example”). Such a facility might be used to do part of the work
for a programmer wanting to add synchronization support for a new application
(where the abstract schema is already known, for example), leaving just a few spots
to fill in.

Acknowledgements

The Harmony project was begun in collaboration with Zhe Yang; Zhe contributed
numerous insights whose generic material can be found (in much-recombined form)
in this paper. Owen Gunden,, Malo Denielou, and Stéphane Lescuyer, have also
collaborated with us on many aspects of the Harmony design and implementation;
in particular, Malo’s compiler and programming environment for the combinators
described in this paper have contributed enormously. Trevor Jim provided the
initial push to start the project by observing that the next step beyond the Uni-
son file synchronizer (of which Trevor was a co-designer) would be synchronizing
XML. Conversations with Martin Hofmann, Zack Ives, Nitin Khandelwal, Sanjeev

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Combinators for Bi-Directional Tree Transformations · 61

Khanna, Keshav Kunal, William Lovas, Kate Moore, Cyrus Najmabadi, Penny An-
derson, and Steve Zdancewic helped us sharpen our ideas. Serge Abiteboul, Zack
Ives, Dan Suciu, and Phil Wadler pointed us to related work. We would also like to
thank Karthik Bhargavan, Vanessa Braganholo, Peter Buneman, Malo Denielou,
Owen Gunden, Michael Hicks, Zack Ives, Trevor Jim, Kate Moore, Norman Ram-
sey, Wang-Chiew Tan, Stephen Tse, Zhe Yang, and several anonymous referees for
helpful commentson earlier drafts of this paper.

The Harmony project is supported by the National Science Foundation under
grant ITR-0113226, Principles and Practice of Synchronization. Nathan Foster is
also supported by an NSF Graduate Research Fellowship.

REFERENCES

Abiteboul, S., Cluet, S., and Milo, T. 1997. Correspondence and translation for heterogeneous
data. In International Conference on Database Theory (ICDT), Delphi, Greece.

Abiteboul, S., Cluet, S., and Milo, T. 1998. A logical view of structure files. VLDB Jour-
nal 7, 2, 96–114.

Abiteboul, S., McHugh, J., Rys, M., Vassalos, V., and Wiener, J. L. 1998. Incremental
maintenance for materialized views over semistructured data. In Proc. 24th Int. Conf. Very
Large Data Bases (VLDB).

Abramov, S. M. and Glück, R. 2000. The universal resolving algorithm: Inverse computation
in a functional language. In Mathematics of Program Construction, R. Backhouse and J. N.
Oliveira, Eds. Vol. 1837. Springer-Verlag, 187–212.

Abramov, S. M. and Glück, R. 2002. Principles of inverse computation and the universal
resolving algorithm. In The Essence of Computation: Complexity, Analysis, Transformation,
T. Mogensen, D. Schmidt, and I. H. Sudborough, Eds. Lecture Notes in Computer Science, vol.
2566. Springer-Verlag, 269–295.

Atzeni, P. and Torlone, R. 1996. Management of multiple models in an extensible database
design tool. In Proceedings of EDBT’96, LNCS 1057.

Atzeni, P. and Torlone, R. 1997. MDM: a multiple-data model tool for the management of
heterogeneous database schemes. In Proceedings of ACM SIGMOD, Exhibition Section. 528–
531.

Baker, H. G. 1992. NREVERSAL of fortune – the thermodynamics of garbage collection. In
Proc. Int’l Workshop on Memory Management. St. Malo, France. Springer LNCS 637, 1992.

Bancilhon, F. and Spyratos, N. 1981. Update semantics of relational views. ACM Transactions
on Database Systems 6, 4 (Dec.), 557–575.

Barsalou, T., Siambela, N., Keller, A. M., and Wiederhold, G. 1991. Updating relational
databases through object-based views. In ACM SIGACT–SIGMOD–SIGART Symposium on
Principles of Database Systems, Denver, Colorado. 248–257.

Bennet, C. H. 1973. Logical reversibility of computation. IBM Journal of Research and Devel-
opment 17, 6, 525–532.

Bohannon, A., Vaughan, J. A., and Pierce, B. C. 2006. Relational lenses: A language for
updateable views. In Principles of Database Systems (PODS). Extended version available as
University of Pennsylvania technical report MS-CIS-05-27.

Braganholo, V., Davidson, S., and Heuser, C. 2003. On the updatability of XML views over
relational databases. In WebDB 2003.

Buneman, P., Khanna, S., and Tan, W.-C. 2002. On propagation of deletions and annotations
through views. In ACM SIGACT–SIGMOD–SIGART Symposium on Principles of Database
Systems, Madison, Wisconsin. 150–158.

Cosmadakis, S. S. 1983. Translating updates of relational data base views. M.S. thesis, Mas-
sachusetts Institute of Technology. MIT-LCS-TR-284.

Cosmadakis, S. S. and Papadimitriou, C. H. 1984. Updates of relational views. Journal of the
ACM 31, 4, 742–760.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

62 · J. N. Foster et. al.

Date, C. J. 2003. An Introduction to Database Systems (Eighth Edition). Addison Wesley.

Dayal, U. and Bernstein, P. A. 1982. On the correct translation of update operations on
relational views. TODS 7, 3 (September), 381–416.

de Paula Braganholo, V., Heuser, C. A., and Vittori, C. R. M. 2001. Updating relational
databases through XML views. In Proc. 3rd Int. Conf. on Information Integration and Web-
based Applications and Services (IIWAS).

Dijkstra, E. W. 1979. Program inversion. In Program Construction, International Summer
School, July 26 - August 6, 1978, Marktoberdorf, germany, F. L. Bauer and M. Broy, Eds.
Lecture Notes in Computer Science, vol. 69. Springer.

Fogel, S. and Lane, P. 2005. Oracle Database Administrator’s Guide. Oracle.

Foster, J. N., Greenwald, M. B., Kirkegaard, C., Pierce, B. C., and Schmitt, A. 2006.
Exploiting schemas in data synchronization. Journal of Computer and System Sciences. To
appear. Extended abstract in Database Programming Languages (DBPL) 2005.

Foster, J. N., Pierce, B. C., and Schmitt, A. 2006. Harmony Programmer’s Manual. Available
from http://www.seas.upenn.edu/~harmony/.

Gottlob, G., Paolini, P., and Zicari, R. 1988. Properties and update semantics of consistent
views. ACM Transactions on Database Systems (TODS) 13, 4, 486–524.

Hegner, S. J. 1990. Foundations of canonical update support for closed database views. In
International Conference on Database Theory (ICDT), Paris, France. Springer-Verlag New
York, Inc., New York, NY, USA, 422–436.

Hegner, S. J. 2004. An order-based theory of updates for closed database views. Annals of
Mathematics and Artificial Intelligence 40, 63–125. Summary in Foundations of Information
and Knowledge Systems, 2002, pp. 230–249.

Hofmann, M. and Pierce, B. 1995. Positive subtyping. In ACM SIGPLAN–SIGACT Symposium
on Principles of Programming Languages (POPL), San Francisco, California. 186–197. Full
version in Information and Computation, volume 126, number 1, April 1996. Also available as
University of Edinburgh technical report ECS-LFCS-94-303, September 1994.

Hu, Z., Mu, S.-C., and Takeichi, M. 2004. A programmable editor for developing structured
documents based on bi-directional transformations. In Partial Evaluation and Program Ma-
nipulation (PEPM).

International Business Machines Corporation 2004. IBM DB2 Universal Database Administration
Guide: Implementation. International Business Machines Corporation.

Johnson, M., Rosebrugh, R., and Dampney, C. N. G. 2001. View updates in a semantic data
modelling paradigm. In ADC ’01: Proceedings of the 12th Australasian conference on Database
technologies. IEEE Computer Society, Washington, DC, USA, 29–36.

Keller, A. M. 1985. Algorithms for translating view updates to database updates for views
involving selections, projections, and joins. In ACM SIGACT–SIGMOD Symposium on Prin-
ciples of Database Systems, Portland, Oregon.

Keller, A. M. 1986. Choosing a view update translator by dialog at view definition time. In
VLDB’86.

Landauer, R. 1961. Irreversibility and heat generation in the computing process. IBM Journal
of Research and Development 5, 3, 183–191. (Republished in IBM Jour. of Res. and Devel.,
44(1/2):261-269, Jan/Mar. 2000).

Lechtenbörger, J. 2003. The impact of the constant complement approach towards view up-
dating. In ACM SIGACT–SIGMOD–SIGART Symposium on Principles of Database Systems,
San Diego, California. ACM, 49–55.

Lorentz, D. 2005. Oracle Database SQL Reference. Oracle.

Masunaga, Y. 1984. A relational database view update translation mechanism. In VLDB’84.

Matsuoka, S., Takahashi, S., Kamada, T., and Yonezawa, A. 1992. A general framework for bi-
directional translation between abstract and pictorial data. ACM Transactions on Information
Systems 10, 4 (October), 408–437.

McCarthy, J. 1956. The inversion of functions defined by turing machines. In Automata Studies,
Annals of Mathematical Studies, C. E. Shannon and J. McCarthy, Eds. Number 34. Princeton
University Press, 177–181.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Combinators for Bi-Directional Tree Transformations · 63

Medeiros, C. M. B. and Tompa, F. W. 1985. Understanding the implications of view update
policies. In VLDB’85.

Meertens, L. 1998. Designing constraint maintainers for user interaction. Manuscript.

Microsoft 2005. Creating and Maintaining Databases. Microsoft.

Miller, R. J., Hernandez, M. A., Haas, L. M., Yan, L., Ho, C. T. H., Fagin, R., and Popa,

L. 2001. The clio project: Managing heterogeneity. 30, 1 (March), 78–83.

Mu, S.-C., Hu, Z., and Takeichi, M. 2004a. An algebraic approach to bi-directional updating.
In ASIAN Symposium on Programming Languages and Systems (APLAS).

Mu, S.-C., Hu, Z., and Takeichi, M. 2004b. An injective language for reversible computation.
In Seventh International Conference on Mathematics of Program Construction (MPC).

Niehren, J. and Podelski, A. 1993. Feature automata and recognizable sets of feature trees. In
TAPSOFT. 356–375.

Ohori, A. and Tajima, K. 1994. A polymorphic calculus for views and object sharing. In ACM
SIGACT–SIGMOD–SIGART Symposium on Principles of Database Systems, Minneapolis,
Minnesota.

Oles, F. J. 1985. Type algebras, functor categories, and block structure. In Algebraic Methods
in Semantics, M. Nivat and J. C. Reynolds, Eds. Cambrige University Press.

Pierce, B. C. et al. 2006. Harmony: A synchronization framework for heterogeneous tree-
structured data. http://www.seas.upenn.edu/~harmony/.

Pierce, B. C., Schmitt, A., and Greenwald, M. B. 2003. Bringing Harmony to optimism: A
synchronization framework for heterogeneous tree-structured data. Technical Report MS-CIS-
03-42, University of Pennsylvania. Superseded by MS-CIS-05-02.

Pierce, B. C. and Vouillon, J. 2004. What’s in Unison? A formal specification and refer-
ence implementation of a file synchronizer. Tech. Rep. MS-CIS-03-36, Dept. of Computer and
Information Science, University of Pennsylvania.

Rowe, L. and Schoens, K. A. 1979. Data abstractions, views, and updates in RIGEL. In ACM
SIGMOD Symposium on Management of Data (SIGMOD), Boston, Massachusetts.

Scholl, M. H., Laasch, C., and Tresch, M. 1991. Updatable Views in Object-Oriented
Databases. In Proc. 2nd Intl. Conf. on Deductive and Object-Oriented Databases (DOOD),
C. Delobel, M. Kifer, and Y. Yasunga, Eds. Number 566. Springer.

Spoonhower, D. 2004. View updates seen through the lens of synchronization. Manuscript.

Tatarinov, I., Ives, Z. G., Halevy, A. Y., and Weld, D. S. 2001. Updating XML. In ACM
SIGMOD Symposium on Management of Data (SIGMOD), Santa Barbara, California.

Wadler, P. 1987. Views: A way for pattern matching to cohabit with data abstraction. In ACM
Symposium on Principles of Programming Languages (POPL), Munich, Germany.

Winskel, G. 1993. The Formal Semantics of Programming Languages: An Introduction. MIT
Press.

XQuery 2005. XQuery 1.0: An XML Query Language, W3C Working Draft. http://www.w3.org/
TR/xquery/.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

64 · J. N. Foster et. al.

toplas available only online. You should be able to get the online-only XXXX
from the citation page for this article:

YYYY

Alternative instructions on how to obtain online-only appendices are given on
the back inside cover of current issues of ACM TOPLAS or on the ACM TOPLAS
web page:

http://www.acm.org/toplas YYYY

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

