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This manuscript is a technical sketch of some results that became too
lengthy (and interesting) to fit in an earlier paper, “A Language For
Bi-Directional Tree Transformations,” by Greenwald, Moore, Pierce, and
Schmitt [3]. We repeat the necessary basic technical definitions here for
convenient reference, but please refer to that paper for background, moti-
vations, intuitions, related work, etc.

Abstract

We draw precise connections between lenses and some “classical” structures studied in the context of the

view update translation problem: the notion of view update under a constant complement of Bancilhon

and Spyratos and the dynamic views of Gottlob, Paolini, and Zicari.

1 Introduction

We establish three main results:

1. The set of very-well-behaved lenses in the sense of [3] is isomorphic to the set of translators under

constant complement in the sense of Bacilhon and Spyratos [1].

2. The set of well-behaved lenses is isomorphic to the set of dynamic views in the sense of Gottlob, Paolini,
and Zicari [2].

To be precise, both of these results must be qualified by an additional condition regarding partiality.
The frameworks of Bacilhon and Spyratos and of Gottlob, Paolini, and Zicari are both formulated
in terms of translating update functions on A into update functions on C—i.e., their put functions
have type (A −→ A) −→ (C −→ C)—while our lenses translate abstract states into update functions
on C—i.e., our put functions have type (isomorphic to) A −→ (C −→ C). Moreover, in both of
these frameworks, “update translators” (the analog of our put functions) are defined only over some
particular chosen set U of abstract update functions, not over all functions from A to A. These update
translators return total functions from C to C. Our put functions, on the other hand, are more general
as they are defined over all abstract states and return partial functions from C to C. Finally, the
get functions of lenses are allowed to be partial, whereas the corresponding functions (called views) in
the other two frameworks are assumed to be total. In order to make the correspondences tight, the
sets of well-behaved and very-well-behaved lenses need to be restricted to subsets that are “total” in a
suitable sense.

3. If we restrict both get and put to be total functions (i.e., put must be total with respect to all abstract
update functions), then our lens laws (including PutPut) characterize the set C as isomorphic to
A×B for some B.

1



2 The Results

2.1 Basic Structure

Let C and A be two sets. Let Ω an element that does not occur in C. We write CΩ for C ∪ {Ω}.

2.1.1 Definition [Lenses]: A lens l comprises two partial functions:

• a get function from C to A, written l↗ and

• a put function from A× CΩ to C, written l↘.

We write dom(l↗) for the subset of C on which l↗ is defined and dom(l↘) for the subset of A × CΩ on
which l↘ is defined, and similarly ran(l↗) and ran(l↘) for the ranges of the get and put functions. Note
that neither l↗ nor l↘ may return Ω.

We now define some laws that well-behaved lenses should obey.

2.1.2 Definition [Well-behaved lenses]: A lens is well behaved iff its get and put functions obey the
following laws:

(GetPut) c ∈ dom(l↗) =⇒ l↘ (l↗ c, c) = c

(PutGet) (a, c) ∈ dom(l↘) =⇒ l↗ (l↘ (a, c)) = a

We write L(C, A) for the set of well-behaved lenses between C and A.
A well-behaved lens is very-well-behaved if its get and put functions also obey the following law:

(PutPut) a′ ∈ A and (a, c) ∈ dom(l↘) =⇒ l↘ (a′, l↘ (a, c)) = l↘ (a′, c)

We write L+(C, A) for the set of very-well-behaved lenses between C and A.

2.2 Lenses and View Update Translation

In this section we establish a precise correspondance between the view update setting of [1, 2] and our lenses.
Up to a small restriction concerning partiality, the set of very-well-behaved lenses is isomorphic to the set of
translators under constant complement of Bacilhon and Spyratos [1], whereas the set of well-behaved lenses
is isomorphic to the set dynamic views of Gottlob, Paolini, and Zicari[2].

We restrict our attention to lenses that are total with respect to a given set of update functions—that is
lenses whose put function is defined for every possible update function from some set U ⊆ A −→ A.

2.2.1 Definition: Let P be a set of functions from C to C and U a set of functions from A to A. A lens l

is said to be total with respect to U and P iff

• dom(l↗) = C;

• l↗(C) = A;

• dom(l↘) = {(u(l↗ c), c) | u ∈ U, c ∈ C};

• l↘ (a, c) = c′ =⇒ ∃p ∈ P.c′ = p(c).

We write L+
t (C, A, U, P ) for the set of very-well-behaved total lenses with respect to U and P and

Lt(C, A, U, P ) for the set of well-behaved total lenses with respect to U and P .

The following definition is used to characterize databases C and views f that have a translator T for a
set of complete updates U , as defined by Bancilhon and Spyratos [1].

2.2.2 Definition: A set U of functions from some set A to A is said to be complete iff it contains the
identity and satisfies the following conditions:

2



1. ∀u ∈ U, ∀v ∈ U, uv ∈ U ;

2. ∀s ∈ A, ∀u ∈ U, ∃v ∈ U such that vu(s) = s;

2.2.3 Definition: Let C and A be sets, P be a set of functions from C to C, and U be a set of functions
from A to A that is complete. We define the set BS(C, A, U, P ) as the set of all tuples (f, T ) such that:

• f is a surjective function from C to A;

• T is a function from U to P ;

• ∀u ∈ U, fT (u) = uf ;

• ∀u ∈ U, ∀s ∈ C, uf(s) = f(s) =⇒ T (u)(s) = s;

• ∀u ∈ U, ∀v ∈ V, T (uv) = T (u)T (v).

2.2.4 Theorem: Let C and A be some sets, and U be a complete set of functions from A to A. The sets
L+

t (C, A, U, P ) and BS(C, A, U, P ) are isomorphic.

Proof: We first introduce two functions LB from L+
t (C, A, U, P ) to BS(C, A, U, P ) and BL from

BS(C, A, U, P ) to L+
t (C, A, U, P ) and show that both LB ◦ BL and BL ◦ LB are the identity.

Let l be a total very-well-behaved lens of L+
t (C, A, U, P ). We define LB(l) as the tuple (f, T ), where:

• f = l↗;

• T = u 7→ s 7→ l↘ (u(l↗ s), s).

We show that we have (f, T ) ∈ BS(C, A, U, P ).
Since l is total, f is a surjective function from C to A and T is defined for every u ∈ U and s ∈ C.
Let u ∈ U and s ∈ C. We have f(T (u)(s)) = l↗ l↘ (u(l↗ s), s) = u(l↗ s) = u(f(s)) by law PutGet.
Let u ∈ U and s ∈ C such that u(f(s)) = f(s). We have T (u)(s) = l↘ (u(l↗ s), s) = l↘ (u(f(s)), s) =

l↘ (f(s), s) = l↘ (l↗ s, s) = s by law GetPut.
Let u and v in U . We have

T (u)(T (v))(s)

= l↘ (u(l↗ l↘ (v(l↗ s), s)), l↘ (v(l↗ s), s))

= l↘ (u(v(l↗ s), l↘ (v(l↗ s), s))

= l↘ (u(v(l↗ s)), s)

= T (uv)(s)

by laws PutGet and PutPut.
We now define BL. Let (f, T ) in BS(C, A, U, P ), we define l as:

• l↗ = f ;

• ∀u ∈ U, ∀s ∈ C, l↘ (u(f(s)), s) = T (u)(s).

The function l↘ is undefined otherwise.
We now check that l is a very-well-behaved total lens of L+

t (C, A, U, P ).
We first check GetPut. We have:

l↘ (l↗ c, c) = l↘ (f(c), c)

= l↘ (id(f(c)), c)

= T (id)(c)

= c

since id(f(c)) = f(c) implies T (id)(c) = c.
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We now check PutGet. We recall that l↘ (a, c) is defined iff a = u(f(c)).

l↗ l↘ (u(f(c)), c) = f(T (u)(c)) = u(f(c))

We now check PutPut. As before, l↘ (a, c) is defined iff a = u(f(c)). We consider
l↘ (a′, l↘ (u(f(c)), c)).

We show that if l↘ (a′, c) is defined then it is equal to l↘ (a′, l↘ (u(f(c)), c)). Conversely, we show
that if l↘ (a′, l↘ (u(f(c)), c)) is defined then it is equal to l↘ (a′, c). We conclude by noting that if any
is undefined, then the other is undefined.

Let us assume that l↘ (a′, c) is defined. Then we have a′ = u′(f(c)) for some u′. Let v be such that
vu(f(c)) = f(c) (we know that v exists by definition of U). We have a′ = u′vu(f(c)). We have:

l↘ (u′vu(f(c)), l↘ (u(f(c)), c))

= l↘ (u′v(u(f(c))), T (u)(c))

= l↘ (u′v(f(T (u)(c))), T (u)(c))

= T (u′v)(T (u)(c))

= T (u′)(T (vu)(c))

= T (u′)(c) = l↘ (u′(f(c)), c) = l↘ (a′, c)

since vu(f(c)) = f(c) thus T (vu)(c) = c.
Let us assume that l↘ (a′, l↘ (u(f(c)), c)) = l↘ (a′, T (u)(c)) is defined. Thus for some u′ we have

a′ = u′(f(T (u)(c)). We have:

l↘ (u′(f(T (u)(c)), T (u)(c))

= T (u′)(T (u)(c))

= T (u′u)(c)

= l↘ (u′u(f(c)), c)

= l↘ (u′(f(T (u)(c))), c)

= l↘ (a′, c)

As f is surjective and is defined on all of C, we only need to check that dom(l↘) = {(u(l↗ c), c) | u ∈
U, c ∈ C}. It is the case by definition for the put function since f = l↗. Moreover, since T is a function from
U to P , if l↘ (u(f(c)), c) = c′ then we have c′ = T (u)(c) for some u ∈ U , and we conclude by T (u) ∈ P .

We now show that LB ◦ BL is the identity. Let (f, T ) be in BS(C, A, U, P ). We have:

LB(BL(f, T ))

= LB(f, {(u(f(s)), s) 7→ T (u)(s) | u ∈ U, s ∈ C})

=
(

f,
{

u′ 7→ s′ 7→ ({(u(f(s)), s) 7→ T (u)(s) | u ∈ U, s ∈ C})(u′(f(s′)), s′) | u′ ∈ U, s′ ∈ C
})

= (f, {u′ 7→ s′ 7→ T (u′)(s′) | u′ ∈ U, s′ ∈ C}

= (f, T )

We now show that BL ◦ LB is the identity. Let l be a very-well-behaved total lens (l↗, l↘). We have:

BL(LB(l↗, l↘))

= BL(l↗, {u 7→ s 7→ l↘ (u(l↗ s), s) | u ∈ U, s ∈ C}

= (l↗,
{

(u′(l↗ s′), s′) 7→ ({u 7→ s 7→ l↘ (u(l↗ s), s) | u ∈ U, s ∈ C})u′ s′ | u′ ∈ U, s′ ∈ C
}

)

= (l↗, {(u′(l↗ s′), s′) 7→ l↘ (u′(l↗ s′), s′) | u′ ∈ U, s′ ∈ C})

= (l↗, l↘)

since dom(l↘) = {(u(l↗ c), c) | u ∈ U, c ∈ C}. �

We now state the relation between our setting and [2]: the set of dynamic views is isomorphic to the set
of total well-behaved lenses.
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2.2.5 Definition: The tuple ((C, P ), (A, U), f, τ) is a dynamic view iff:

• C and A are sets of states;

• P (respectivly U) is a set of update operators, that is functions from C to C (respectively from A to
A) containing the identity;

• f is a surjective function from C to A;

• τ is a translator, a function from U to P such that for all u ∈ U and s ∈ C, f((τu)(s)) = u(f(s)) and
such that τ idA = idC .

We write DV (C, A, U, P ) for the set of dynamic views on C, P , A and U .

2.2.6 Theorem: For any sets C, A, P and U , the set DV (C, A, U, P ) is isomorphic to Lt(C, A, U, P ).

Proof: Let C and A be two sets and P and U be two operator sets containing the identity.
We define a function DL which transforms a dynamic view of DV (C, A, U, P ) into a lens of Lt(C, A, U, P ),

and a function LD which transforms a lens from Lt(C, A, U, P ) to a dynamic view DV (C, A, U, P ). We then
prove that DL ◦ LD = idLt(C,A,U,P ) and that LD ◦DL = idDV (C,A,U,P ).

Let ((C, P ), (A, U), f, τ) be a dynamic view. We define DL on this dynamic view as l. Let l be the lens
defined as:

∀s ∈ C . l↗ s = f(s)
∀s, u ∈ C × U . l↘ (u(f(s)), s) = (τu)(s)

For all other arguments, l↘ is undefined.
We show that we have l ∈ Lt(C, A, U, P ). First, we show that l is well-behaved.

GetPut Let s ∈ C.

l↘ (l↗ s, s) = l↘ (f(s), s)

= l↘ (idA(f(s)), s)

= (τ idA)(s)

= idC(s)

= s

PutGet Let s ∈ C and u ∈ U .

l↗ l↘ (u(f(s)), s) = l↗ (τu)(s)

= f((τu)(s))

= u(f(s))

We now show that l is total. We immediately have dom(l↗ ) = dom(f) = C. Moreover, we have
l↗C = f(C) = A as f is surjective. By definition, we have dom(l↘) = {(u(f(s)), s) | u ∈ U, s ∈ C} with
f = l↗. Moreover, if l↘ (a, c) = c′, then a = u(f(c)) and c′ = (τu)(c) = p(c) for some p ∈ P by definition
of τ . Thus l ∈ Lt(C, A, U, P ).

Let l be a lens of Lt(C, A, U, P ). We define LD on this lens as the tuple ((C, P ), (A, U), f, τ) where:

• f = l↗;

• (τu)s = l↘ (u(l↗ s), s).

Note that τ is defined for any u and s by the requirement on the domain of l↘.
We show that ((C, P ), (A, U), f, τ) is a dynamic view. The function f is surjective because l is total. The

function τ is from U to P because l is total.
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Let u ∈ U and s ∈ C, we have:

f((τu)(s)) = l↗ l↘ (u(l↗ s), s)

= u(l↗ s)

= u(f(s))

We also have

(τ idA)(s) = l↘ (idA(l↗ s), s)

= l↘ (l↗ s, s)

= s

= idC(s)

We now show that DL and LD form an isomorphism.
Let ((C, P ), (A, U), f, τ) be a dynamic view. Through DL we obtain the lens l↗ =f and

l↘ (u(f(s)), s) = (τu)(s) for any u ∈ U and s ∈ C. Through LD we obtain the dynamic view f ′ = l↗ =f

and for any u ∈ U and s ∈ C:

(τ ′u)(s) = l↘ (u(l↗ s), s)

= l↘ (u(f(s)), s)

= (τu)(s)

Thus LD ◦ DL = idDV (C,A,U,P ).
Let l be a lens of Lt(C, A, U, P ). Through DL we obtain the dynamic view f = l↗ and for any u ∈ U

and s ∈ C, (τu)(s) = l↘ (u(l↗ s), s). Through LD we obtain the lens l′↗ = f = l↗ and for any u ∈ U

and s ∈ C:

l′↘ (u(f(s)), s) = (τu)(s)

= l↘ (u(l↗ s), s)

= l↘ (u(f(s)), s)

Thus DL ◦ LD = idLt(C,A,U,P ). �

2.3 Partitioning the Concrete Set

In this section, we show that given any fully total very-well-behaved lens (whose put function is total), the
concrete set C is isomorphic to the cross product of the abstract set A and some other set.

2.3.7 Definition: A very-well-behaved lens is said to be fully total iff dom(l↘) = A×C and if ran(l↘) = C.

2.3.8 Lemma: Let l be a fully total very-well-behaved lens. Then we have dom(l↗) = C and, if C 6= ∅,
ran(l↗) = A.

Proof: Let c ∈ C. As l is fully total, there are some a and c′ such that l↘ (a, c′) = c. Thus by rule
PutGet, we have l↗ c = a thus c ∈ dom(l↗).

Let a ∈ A. Let c ∈ C (which is not empty, thus there is such a c). As l is fully total, l↘ (a, c) is defined,
thus by PutGet l↗ l↘ (a, c) = a, thus a ∈ ran(l↗). �

2.3.9 Theorem: Let l be a fully total very-well-behaved lens on C and A. The set C is isomorphic to
A× {λx.l↘ (x, c) | c ∈ C}.

Proof: Let f be the function from C to A× {λx.l↘ (x, c) | c ∈ C} defined as:

f(c) = (l↗ c, λx.l↘ (x, c))
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Let g be the function from A× {λx.l↘ (x, c) | c ∈ C} to C defined as:

g(a, h) = h(a)

As l is fully total and by lemma 2.3.8, both f and g are well defined.
We now show that both f ◦ g and g ◦ f are the identity.
Let c ∈ C. We have

g(f(c)) = g(l↗ c, λx.l↘ (x, c)) = l↘ (l↗ c, c) = c

by GetPut.
Let (a, h) ∈ A× {λx.l↘ (x, c) | c ∈ C}. For any c such that h = λx.l↘ (x, c), we have:

f(g(a, h)) = f(l↘ (a, c)) = (l↗ l↘ (a, c), λx.l↘ (x, l↘ (a, c))

By rule PutGet we have l↗ l↘ (a, c) = a. By rule PutPut we have l↘ (x, l↘ (a, c)) = l↘ (x, c). Thus
f(g(a, h)) = (a, h). �
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