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Abstract

Class nesting has emerged as a promising modularization mechanism in class-based object oriented languages. Several
recent research results employ class nesting to concisely express relationships among multiple classes. Nevertheless, the
issue of type system support for nested classes has not been addressed in previous work. In this paper, we discuss the prob-
lem in the context of Java and the Java “interface” mechanism. Interfaces are a way to specify explicit types for class defi-
nitions. Current Java interfaces cannot express constraints for nested classes. We will show that this is an important
omission. An extension to Java is proposed that solves the problem and has two desirable characteristics: it does not change
the semantics of existing Java programs and it does not introduce new keywords into the language. Additionally, we give
advanced examples to support the general claim that type support for nested classes is useful for future OO languages and
language extensions.

1  Introduction

Modern class-based object-oriented languages (e.g., C++, Java) support class nesting as a way of structuring code. The
idiom of class nesting is particularly promising, as classes can serve as small-scale modules. Several recent research publi-
cations [5][15][21] have used class nesting to elegantly express relationships among multiple classes. Nevertheless, type
system support for class nesting is rarely provided and has not been addressed as a research issue. The need for such type
system support is quite apparent. For instance, Bruce, Odersky, and Wadler explicitly state in [5]: “The intention is that any
implementation of the ‘outer’ interface [...] must provide implementations of the ‘inner’ interfaces.” This requirement only
appears on paper, however. The language of Bruce et al’s example (Java) does not enforce it automatically.

In this paper, we discuss ways to enforce type constraints for nested classes in the context of Java. In particular, we present
an extension of the Java interface mechanism to handle constraints on nested classes. The nature of the language extension
requires some thought, as some obvious candidate syntax (nesting interfaces inside interfaces) is already allowed by Java
and does not have the desired semantics. Our proposed solution does not change the semantics of existing Java programs
(which are oblivious to our extension) and does not introduce new keywords in the language.

Apart from describing a specific extension mechanism, this paper attempts to make a more general case for the value of
types for nested classes. This is an interesting issue in the design of future OO languages or language extensions. We present
specific examples from recent research work in the literature. For instance, like any type mechanism, interfaces for nested
classes are most valuable in the presence of variables over a given interface. Classes in Java are not first-class objects (e.g.,
the type system does not support variables ranging over classes). Nevertheless, class functors can be developed by combin-
ing inheritance and parameterization. Several parameterization mechanisms for Java have been proposed (e.g., [1], [4], [6],
[11], [18]). We show that our extended interfaces are very useful in conjunction with some of the parameterization mecha-
nisms, for expressing constraints on template parameters.

2  Background and Motivation

2.1 Interfaces

Interface specifications in object-oriented (OO) languages are a way to explicitly express type constraints on classes. Inter-



faces, by nature, form an incomplete constraint language. Even though some properties are easy to express (for instance,
“class A should support a method foo that takes no argument and returns an object of class B”) others are not expressible
(for instance, “class A should support a method named foo”). The restrictions are usually imposed because of technical lim-
itations (e.g., simplified parsing) and lack of significant need in everyday programming. Nevertheless, we argue that there is
an important omission from the interface constraint language of Java. This has to do with expressing properties for nested
classes. In particular, there is no way to constrain a class with respect to the nested classes that it must contain.

Interfaces are used to specify explicit type signatures for class members. Consider the example of a Java interface dec-
laration:
interface Foo1 {
Foo1 meth1 ();
boolean meth2 (Foo1 foo);

}

Any (concrete) Java class that conforms to this interface has to define two methods meth1 and meth2 with the exact type
signatures specified in the interface. Conformance is declared using the implements keyword. For instance:
class Baz implements Foo1 {
public Foo1 meth1() { return new Baz(); }
public boolean meth2(Foo1 foo) { return true; }

}

The definition of Baz is legal because it supports both methods prescribed by the interface (i.e., it defines both methods
with identical signatures to the interface prototypes).1 It should be clear from this example that interface specifications are
simply type constraints on class definitions.

2.2 Nested Classes

Nested classes are a powerful mechanism for integrating some of the benefits of block-structured programming in object-
oriented programming languages. Nested classes in Java [7] behave in many respects like other class members (methods and
member variables): they are inherited by subclasses, they have the same access control specifiers (e.g., public, private),
and the outer class acts as a namespace for scoping purposes. (We will ignore the distinction between Java nested top-level
classes and inner classes, as it is not pertinent to our discussion.) Unlike other class members, however, nested classes are
not supported by the interface specification mechanism. In particular, there is a kind of constraint which would be particu-
larly beneficial if expressible using interfaces. Its general form is:

• the constrained class should contain publicly visible nested classes that conform to selected predefined interfaces.

Note that this constraint refers to “interface conformance”. The definition of conformance includes this constraint, hence,
the constraint specification is recursive and can be nested arbitrarily. (For instance, we could specify the property “class A
should contain nested class B which contains nested classes C and D conforming to interfaces I and J, respectively”.) 

Next, we will describe informally a small set of changes to the Java syntax (as well as the corresponding extensions to the
semantics) to support such constraints. It should be straightforward to adapt the main ideas of our extensions to different
concrete syntax (even in different languages, e.g., C++).

3  Interfaces for Nested Classes

3.1 A Failed Attempt

We will explore the design space for extending Java to support type constraints for nested classes. There is an obvious can-
didate syntactic form for expressing interface conformance in Java: using nested interfaces to signify that a client of the
outer interface should include nested classes implementing the inner interfaces. Unfortunately, this option will not work
because it would change the semantics of existing Java programs, since interface nesting, as it is at present in Java, has no
semantic consequences on classes that implement the interface— it only delimits the scope of the nested interface declara-
tion. Furthermore, the existing semantics for this syntax makes sense for fairly realistic examples, as we will argue. Thus, it

1.  Java is non-variant with respect to method signatures in superclasses and interfaces. The language is co-variant with respect to arrays: an array of sub-
class instances can be used in place of an array of superclass instances [18].



is not a good idea to use this approach, not only in the context of Java, but also for future languages.

To see this, consider the consequences of nesting an interface inside another interface (meaning that clients of the outer
interface should have a nested class implementing the inner interface). This would break code that uses interface nesting
with no implications for the members of clients. Furthermore, the reasons to use such code with the existing Java semantics
can be fairly legitimate. For instance, we show below a skeletal data structure interface:
interface DS {
interface IfElement {
... // whatever

}

void insert(IfElement element);
boolean find(IfElement element);

}

It is fairly natural to nest interface IfElement inside interface DS (and this syntax is legal Java). IfElement will specify
some fundamental operations that any member of a DS data structure should support. On the other hand, it is unnatural to
require by default that clients who implement DS must also contain a nested class that implements DS.IfElement. For
instance, a given client that implements DS may support multiple types of elements, each of which just declares that it imple-
ments DS.IfElement. The client of DS may not even know all the different types of elements it supports, so nesting their
definitions inside the DS client definition is not feasible.

3.2 Our Proposed Solution

We can express type constraints for nested classes by allowing class prototypes to be nested inside interfaces. By “class
prototype” we mean a class declaration with no class body. The current syntax for class declarations is:
ClassDecl: ClassModifiers(opt) class Identifier Super(opt) Interfaces(opt) ClassBody.

Our proposed syntax for class prototypes is:
PrototypeDeclaration: ClassModifiers(opt) class Identifier Interfaces(opt) 

with the restriction that prototypes can only appear nested inside an interface. This is analogous to the current Java syntax
for method prototypes in interfaces. The semantics for this extension is straightforward: we specify that a class prototype
nested inside an interface declaration means that classes conforming to the interface should have a publicly available
nested class conforming to the prototype. Consider the following example:
interface DS {
interface IfElement {
void set (Object element);
Object get ();

}
interface IfContainer {
void insert(IfElement element);
boolean find(IfElement element);

}

class Element implements IfElement; // Syntactic extension
class Container implements IfContainer; // Syntactic extension

}

This example describes a simplified (partial) interface for a component encapsulating classes that provide basic data struc-
ture functionality. For a class to implement the DS interface (under our extension) it has to contain two publicly visible
nested classes called Element, and Container with each of them conforming to the above interfaces (IfElement,
IfContainer). For instance, consider a class BinaryTree that implements this interface:



class BinaryTree implements DS {
public class Element implements DS.IfElement {
public void set (Object element) { ... } // implementations omitted
public Object get () { ... }

}

public class Container implements DS.IfContainer {
public void insert(DS.IfElement element) { ... }
public boolean find(DS.IfElement element) { ... }

}
}

The “implements DS” clause in the class declaration makes the class conform to the DS interface. This entails the pres-
ence of two nested classes implementing the corresponding interfaces. It is worth noting that a class prototype may be
declared to implement more than one interface and these interfaces do not have to be nested interfaces (as in our example).
Additionally, there is no notion of inheritance among prototypes (i.e., a prototype declaration has no extends clause).

Note that the proposed scheme does not change the meaning of existing interface nesting (thus, no existing Java programs
are affected by the changes). Also, no new keywords are required in the language.

It is interesting to ask whether our extension is sound. Informally, our rule to type interfaces containing class prototypes is
very simple, and depends directly on the definition of interface conformance for regular (i.e., not extended) Java. Since a
class cannot deviate at all from the exact signature of its declared interface, no room for unsoundness exists.

It is also worth mentioning a related typing extension, called deep subtyping, which was introduced by Wadler, Odersky,
and this author in [21]. Simplifying slightly, a class A is a deep subtype of a class B if A is a subtype of B and for every nested
class F of B, A.F is a deep subtype of B.F. Deep subtyping ensures soundness in the case of type variables ranging over a
class and all its subtypes, and used to access nested classes. No such type variables can be defined in regular Java, but they
can be used in parameterization extensions like GJ [4].

4  Advanced Applications of Interfaces for Nested Classes

Section 3 introduced a non-intrusive way for adding typing capabilities for nested classes into Java. Although the exam-
ples offered this far demonstrate the need for type checking nested classes, they are only the tip of the iceberg. In this section
we argue that type checking nested classes is invaluable when combined with powerful programming constructs, like
parameterization. Even though Java (with extensions) is used for illustration purposes, the argument is equally valid for
other object-oriented languages.

4.1 Nested Classes and Constrained Parameterization

Java classes are second-class entities: they cannot be assigned to variables or passed as arguments to functions but there
are language mechanisms that manipulate classes (most notably, inheritance). Type systems exhibit their benefits mainly in
the presence of variability (for instance, arguments of functions are unknown but have a specific type). Hence, one would
expect that interfaces will be useful in the case of class functors: functions with class arguments and/or producing new
classes. Class functors are commonly implemented using parameterization (templates). Several parameterization mecha-
nisms for Java have been proposed (e.g., [1], [4], [6], [11], [18]). Most of them allow expressing constraints on the parame-
ters of a parameterized class. Common forms of constraints include implements and extends clauses, specifying an
interface that the actual parameter must implement or a superclass that it must inherit from. implements clauses can be
used in conjunction with our proposed type system extension, to enable the compiler to statically type check more programs,
by offering type guarantees for nested classes.

Consider, for instance, the DS interface of Section 3.2. We could use its definition in a constraint for a parameterized class.
(The syntax used in this example is that of GJ [4].)



public class Dictionary<DataStructure implements DS> {
DataStructure.Container dict;
public void insert(Object o) { 
DataStructure.Element e = new DataStructure.Element();
e.set(o);
dict.insert(e);

}
...

}

The Dictionary class implements an adaptor that forces a specific (general) interface on any data structure that imple-
ments DS. Our extensions allow the compiler to statically type check the above definition, without any knowledge of the
specifics of the actual parameter of Dictionary. The DS interface offers enough type information to ensure that nested
classes DataStructure.Container and DataStructure.Element are defined, and that all method calls (e.g.,
dict.insert(e)) are legal.

4.2 Mixins and Nested Classes

In the previous section, we saw how interfaces for nested classes can be used in conjunction with parameterization. Here
we will examine an interesting special case with examples taken from the recent research literature.

A very useful kind of class functors in object-oriented languages comes in the form of mixin classes (or “mixins”). Mixins
[3] can be viewed as classes whose superclasses are left unspecified at mixin definition time.2 The superclass is later speci-
fied during mixin composition. This property of mixins allows them to encode incremental extensions to several different
class hierarchies. It is easy to see from the above description that a mixin can be modeled as a class functor: a function that
takes a class argument (the superclass) and returns another class (the corresponding subclass). This is, in fact, one of the
methods used for actual implementations of mixins in the context of languages supporting classes as first-class entities (e.g.,
using the reflective capabilities of Smalltalk).

Mixins can be simulated using parameterization. For instance, in C++, a mixin class can be a class parameterized with
respect to its superclass as shown below:
template <class Super> class Mixin : public Super { ... /* Mixin members */ };

Unfortunately, there is no way of constraining a parameterization in C++. Hence, such mixins, when viewed as functions
on classes, are inherently untyped.

The Java language does not support mixins but this has been a topic of interest for researchers [1][6]. The parameterization
mechanism of Agesen et.al. [1] is superficially similar to C++ templates but allows parameterizations to be constrained
using interface specifications. The work of Flatt, et al [6] emphasizes the design, rather than the implementation, of a mixin
facility for Java. Mixin arguments in [6] are explicitly constrained by specifying an inheritance interface for each mixin.
Here we will use the syntax of [1] as it is more complete for our purposes. As an example, consider the following interface
and mixin definitions:
interface Foo2 {
Foo2 meth1 ();

}

class Mix <Super implements Foo2> extends Super {
Foo2 get_foo() { return super.meth1(); }
...

}

The implements clause in the mixin definition specifies that the mixin parameter (i.e., the superclass of the produced
class) should conform to interface Foo2. The need for conformance is evident in the body of method get_foo: the code
calls a method meth1 in the mixin’s superclass.3

Mixins are of much more than purely academic interest. The work of VanHilst and Notkin [19][20] demonstrated the soft-

2.  There have been other uses of the term “mixin” to describe specific language idioms that approximate this general mechanism. Most notably, CLOS
classes whose superclass resolution relies on linearization of multiple inheritance and classes in a specific C++ multiple inheritance pattern (having a
common virtual base class) are both called “mixins”.



ware engineering aspects of using mixins in general object-oriented implementations. Their approach offers significant ben-
efits (compared to application frameworks [8]) in the flexibility, efficiency, and composability of implementation entities.
Although VanHilst and Notkin did not realize that these benefits were afforded by the mixin-like character of their tech-
nique, this became evident later with the introduction of the alternative approach of mixin layers [14][15][16]. Mixin layers
consist of nested mixin classes such that the parameter of the outer mixin determines the parameters of all inner mixins. For
instance, consider the following mixin layer definition:
class LayerThis <LayerSuper> extends LayerSuper {
 public class First extends LayerSuper.First { ... }
public class Second extends LayerSuper.Second { ... }
public class Third extends LayerSuper.Third  { ... }

}

As can be seen, a mixin layer is a mixin which contains nested classes that inherit from classes nested inside the class that
parameterizes the layer. As shown in [14] and [15], the mixin layers approach solves the scalability problems of the Van-
Hilst and Notkin technique. Mixin layers represent an elegant way to implement object-oriented programs from reusable
components. 

Expressing mixins with parameterization enables us to use techniques similar to those of Section 4.1. Interfaces for nested
classes are ideal for use in conjunction with mixin layers. An example from the domain of data structures was used in [15] to
demonstrate the mixin layers approach. Four data structure layers were defined, containing refinements for the Container
and Element classes. Here we would like to define generalized interfaces for allocators and data structures (e.g., binary
trees, hash tables, lists). Interface conformance will serve as a static check of the interchangeability of the corresponding
mixin layers. This could be effected with the following interface declarations (note that the first is reproduced from Section
3):
interface DS {
interface IfElement {
void set (Object element);
Object  get ();

}
interface IfContainer {
void insert(IfElement element);
boolean find(IfElement element);

}

class Element implements IfElement;
class Container implements IfContainer;

}

interface ALLOC {
interface IfElement { }
interface IfContainer {
IfElement alloc_node();

}
class Element implements IfElement;
class Container implements IfContainer;

}

Consider now an example mixin layer defining a binary tree. We would like to constrain the mixin parameter so that its
valid values are classes supporting the ALLOC interface.

3.  In this case, the dependency could be inferred from the code. That is, by analogy to many other forms of polymorphism in programming languages, the
mixin could be considered a polymorphic entity that can be parameterized by any class specifying a method meth1 with a compatible type signature. We
will discuss polymorphism and type inference in more detail in Section 5.



class BinaryTree <Alloc implements ALLOC> implements DS extends Alloc {
class Element implements DS.IfElement extends Alloc.Element {
public void set (Object element) { ... } // Implementation omitted
public Object get () { ... }

}

class Container implements DS.IfContainer extends Alloc.Container {
public void insert(DS.IfElement element) { ... }
public boolean find(DS.IfElement element) { ... }

}
} (1)

The constraint on the mixin parameter (“Alloc implements ALLOC”) prevents the BinaryTree layer from being
instantiated with classes that will result in invalid compositions.

4.3 Virtual Types and Nested Classes

Virtual types are a programming language mechanism that enables the propagation of type information from a subclass to
a superclass. More specifically, when a subclass redefines a virtual type (originally declared by its superclass) the redefined
version is used for type-checking all superclass code that utilizes the virtual type. The scope of a virtual type is (usually)
delimited by the class that defines it. Hence, class nesting plays a natural role in the use of virtual types (e.g., see the exam-
ples in [9]).

Virtual types were introduced as virtual patterns in the BETA programming language [10] but they have since been used
in various contexts (e.g., [5], [18]). There have been several attempts at unifying virtual types and parametric types, two of
which [5][21] use class nesting extensively. Here we will only discuss the proposal for statically safe virtual types by Bruce,
Odersky, and Wadler [5], because the code directly supports our argument in favor of interfaces for nested classes. In that
work, class nesting is used to group mutually referential classes together, so as to delimit the scope of their definitions.

Consider the following example from [5]. This defines an interface for a list collection class, whose elements are either
characters or floating point numbers, in alternating order. The form of virtual types described in [5] ensures that the defini-
tion can be type-checked statically even though refinements (i.e., subinterfaces) of the general list interface shown can give
new meaning to the XThis and YThis types.
public interface AltListGrpIfc {
public interface XListIfc (XThis) {
char head ();
@YThis tail ();
void setHead (char h);
void setTail (@YThis t);

}
public interface YListIfc (YThis) {
float head ();
@XThis tail ();
void setHead (float h);
void setTail (@XThis t);

}
}

The syntax of this example is an extension of Java: parenthesized identifiers (following interface names) designate an
interface name with “virtual type” properties— it changes automatically in extensions of the interface. The prefix @ indicates
that the type following it is exact: values must be of exactly this type and not any subtype of it. The reader should consult [5]
for more details.

Our proposed interfaces for nested classes are useful in cases like the above. Bruce, Odersky, and Wadler explicitly state
in [5]: “[A type variable that extends AltListGrpIfc] must support inner interfaces with variable names XThis and
YThis.” Unfortunately, this is not the case in Java. As we have already seen, interface nesting has no semantic conse-
quences on classes that implement the interface. Instead, nesting only has namespace significance (i.e., it delimits the scope
of inner interface declarations). Our proposal of Section 3 introduces explicit syntax so that both requirements are accom-
modated and existing Java programs are not affected. There are many ways in which our extension may interact with the



syntactic additions of [5]. One way would be to imitate the class declarations of [5]. Then the above example becomes:
public interface AltListGrpIfc {
public interface XListIfc (XThis) { [same as before] }
public interface YListIfc (YThis) { [same as before] }

class XList(XThis) implements XListIfc;
class YList(YThis) implements YListIfc;

}

5  Related Work

A class containing nested classes can be considered a large scale component. Extending the interface functionality to
include such classes is a significant step in increasing the granularity of reusable software entities. Type signatures for mul-
tiple-class components have been studied before. The GenVoca model of software construction [2] defines the idea of a
component’s realm. A realm identifies the set of all components that are interchangeable in a parameterization, exactly like
our extended interfaces. In fact, the concept of a realm is reified as a programming language construct in the P++ language
[13].

As we mentioned before, interfaces can be viewed as explicit types for classes. From a programming language standpoint
it makes sense to ask whether the type of a class can be inferred from its definition. This is (to an extent) true in all the exam-
ples we discussed. Consider, for instance, the code fragment (1) from Section 4.2. Both requirements on the mixin parameter
can be inferred from the mixin layer definition:

• The Element nested class has a superclass called Element, nested inside the mixin parameter (Alloc.Element)

• The Container nested class has a superclass called Container, nested inside the mixin parameter (Alloc.Con-
tainer). The additional requirement that this superclass provide a method alloc_node is expected to be deducible
from the definition of the insert method (omitted in (1)).

In other words, instead of using explicit constraints on classes, we could consider them polymorphic: they assume the
most general type permitted by their definitions. Nested classes are no different than other members of the class when it
comes to type inference. Type inference for record members was examined, for instance, in [12]. Combining this technique
with mixin typing (e.g., [6]) should result in a type inference technique that can handle the typing requirements of nested
classes and mixins.

6  Conclusions

We discussed type system additions to class-based object oriented languages for dealing with nested classes. The concrete
application of our work is an extension to the interface mechanisms of Java. The extension does not change the semantics of
existing Java programs and adds no new keywords to the language. Additionally, we argue that type system support for class
nesting is particularly useful when classes are used in complex contexts, such as those explored in the recent research litera-
ture. We expect that these ideas will become increasingly important both in the context of Java as well as in the design of
future object-oriented languages.
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