Shared Variables Interaction Diagrams

Rajeev Alur Radu Grosu
Department of Computer and Information Science Department of Computer Science
University of Pennsylvania State University of New York at Stony Brook
alur@cis.upenn.edu grosu@cs.sunysh.edu
Abstract variables paradigm. Textbooks on concurrent programming

(e.g., [14, 17]) contain many pictures describing the interac-
Scenario-based specifications offer an intuitive and vi- tions of processes communicating by shared variables, and
sual way of describing design requirements of distributed similar scenarios arise in diverse areas such as transaction
software systems. For the communication paradigm basedprocessing in concurrent databases (c.f. [18]) and consis-
on messagemessage sequence chdMtSC) offer a stan- tency in shared-memory multiprocessors [13].
dardized and formal notation amenable to formal analysis. | gur definition of an SVID, an action corresponds to,

In this paper, we definshared variables interaction dia- possibly multiple, reading/writing of shared variables. The
grams(SVID) as the counterpart of MSCs when processes actions of one process are visually ordered. The causal de-

communicate via shared variables. After formally defining pendence among actions of different processes is illustrated
SVID;, we develop an intuitive as yvell as fprmal deflnltlon by arrows: an arrow from an actianof process to an ac-
of refmement for $V|DS. Th|s notion proyldes a basis for tion 4 of process; means thag reads a value that was writ-
systematically adding details to SVID requirements. ten byp. If the variable involved in this communication is
write-shared, then there is an implicit additional constraint
that between these two actiomgndb, there is no interven-
1. Introduction ing action that writes to this variable. Checking whether all
such implicit constraints are consistent with one another can
Message Sequence Charts (MSCs) are a commonly use@€ computationally hard, and is shown to be NP-complete in
visual description of design requirements for concurrent 9eneral. We also establish that the problem can be solved in
systems such as telecommunications software [19], andinear-time when all the variables are read-shared but write-
have been incorporated into software design notations suctfXclusive. Benefits of SVIDs are the same as that of MSCs:
as UML [6]. On one hand, the clear graphical layout of an they give an intuitive and visual understanding of interac-
MSC immediately gives an intuitive understanding of the {ilons among processes in a single execution, and have a
intended system behavior, and on the other, the notationformal semantics. The execution of a concurrent program
has been standardized (ITU standard Z.120) with precisec@n also be depicted by a linear trace involving actions of
semantics, and hence, can be subjected to analysis. Thidll Processes, buta single SVID captures many such execu-
has already motivated the development of algorithms for ations succinctly, and makes causal dependencies explicit.
variety of analyses including detecting race conditions and An appealing notion for systematic hierarchical develop-
timing conflicts [3], pattern matching [16], detecting non- ment of specifications or models involves refinement (this is
local choice [7], and model checking [4], and tools such as present in all concurrency formalisms [20]). The definition
uBET [11] and MESA [5]. of SVIDs, and the underlying shared-variables paradigm,
An MSC depicts the desired exchange of messagessuggests many natural ways of refining SVIDs. We identify
among communicating entities in distributed software sys- different ways of visually adding more details to an SVID:
tems. An alternative paradigm for communication in dis- by moving arrows depicting dependencies, by introducing
tributed systems involves shared variables. Communicatiomnew variables, actions, and/or new arrows, by splitting com-
and synchronization via shared objects provides a higherposite actions, and by splitting processes into subprocesses.
level of abstraction, and is supported by many modern con-All these cases are captured by our formal definition of re-
current programming languages. In this paper, we proposdinement for SVIDs. The definition requires existence of a
shared variables interaction diagranfSVID) as a formal mapping of implementation actions to specification actions
and visual notation for describing scenarios in the sharedconsistent with the dependencies. We show the problem of

checking refinement to be NP-complete. When the commu- The inter-process communication via shared variables is
nication is point-to-point, that is, each variable has a sin- depicted by arrows (or edges) between boxes. An arrow
gle writer and a single reader, the problem can be solved inpointing from a box; to a boxb, indicates that the value of
polynomial time. the variables updated hy is read (or checked) bhs. For

The remaining paper is organized as follows. Section 2 instance, in Figure 1, i/, the arrow fronb, » to b4 spec-
introduces the definition of SVIDs. Section 3 defines the ifies that the value of; read byp- in box b.4 is the value
notion of refinement for SVIDs. Section 4 compares SVIDs written to f; by p; in box 5. Thus, the arrows establish a
to related formalisms, and in particular to message sequenceausal order between actions of different processes: the ac-
charts (MSCs). tion of p» corresponding té.4 must happemafterthe action
of p; corresponding té;.. For write-shared variables, the
arrows establish an additional causal dependence between
reads and writes, namely, not only the read should happen
after the write, but in addition, there should be no interven-

Peterson’s mutual exclusion protocol. In order to il- ing write to the shared variable. For instancejify, the
lustrate the use and utility afhared variables interaction arrow from boxbs, to 515 says that the value dfread by
diagrams (SVID)et us consider the Peterson’s mutual ex- p; in boxb, 5 is the value written t@ by p, in boxb,,. This
clusion protocol for two asynchronous procegseandps. means that the action pf corresponding té, 5 happens af-
The protocol makes sure that and p, never simultane- ter the action of, corresponding té..», and between these
ously reach their dgtical sections and that each may eventu- two actions there is no action involving writing to the shared
ally enter its critical section provided it desires to do so. variablet. In this case, this enforces an implicit causal de-

2. Shared Variables Interaction Diagrams

To achieve the desired synchronization ampngndp, pendence between béx. andb., (i.e, p» writes tot after
the protocol uses three variables. The first varighlés a p1 in this scenario).
boolean variable (or flag), that when set, signals thate- To simplify the notation we adopt the (usual) convention

sires to enter its critical section. It is writable only pybut that, write exclusive variables of a process preserve their
it can be read by.. The second variable, the flgg, plays values if not explicitly updated. Hence, a bbxontained

the same role fop, asf; does forp;. Finally, the variable by a proces exports not only the variables explicitly up-
(turn) is used to resolve the conflict when both processes trydated by but also the write exclusive variables;othat are

to simultaneously enter their critical sections. The variable not updated by. This allows the use of empty boxes (not

is written and read by both processes and ranges over thexplicitly drawn) as sources for arrows. Similarly to MSCs
set of process identifiers, i.d.1, 2} in the binary case. the arrows may be labeled. However, the arrow labels are
not messages. They are conditions over variables that have
to hold in order to perform the update operation at the head
of the arrow.

The vertical process lines define a top down linear or-
der among the update operations (boxes) of the same pro-
cess (like in MSCs time flows top/down). Hence, verti-
cal lines describe local synchronization whereas arrows de-
scribe global synchronization.

Exemplary SVIDs for the protocol. In Figure 1 we
show four typical scenarios for the Peterson’s protocol as
basicSVIDs. They intuitively capture the synchronization
(communication) patterns between the procegsesdp-.

The SVIDsM; and M3 describe the situations where only
p1 or only p» requests the critical section. The SVID$,
and M, show how the tie is resolved when both processes

p1 andp» request the critical section. These scenarios can To improve readability we use, as with MSG=ndi-

be used for understanding the behavior of the protocol, or.. 7 "
e - tions They are drawn inside hexagonal boxes. Intuitively,
they can be used as a specification for de;ugnmg the protq—a condition is an update of the program counter variable as-
L P y 9 L In the following we define SVIDs in a formal way. To
As with message sequence charts (.MSCS)’ vertical IIneSsimplify the definition we do not consider arrow labels.
tci:)rrespond to é)rocetsses. Ho_wetver,.tlrr: cor;tratsr: to .MSCSThey might be understood simply as comments that reflect
€ processes do not communicate With €ach Other VIa MeSy, o g5t recent value of the associated variables. Similarly,
sages. Instead, they communicateshared variablesThe

: . o . we do not include the conditions in the formal definition.
way a process updates its variables is given textually in the

left compartment of rectangular boxes (or vertices). The pefinition 1 (Shared variables interaction diagram) A

variables needed (or read) by the update operations in a boXpareq variables interaction diagrai consists of the fol-
are given in the right compartment of the same box. Vari- lowing components:

ables and updating operations inside a box are not ordered.
They may be regarded as being performed simultaneously, Processes.A finite setP of processes. Each process
i.e., they define aatomic action p € P has an associated (finite) sgetX of (typed)

=
Ni
=
§

alu
N
> |
> |
EI-D
I»a

—_
)
1
T
=3
—
firy
1
T

Figure 1. Basic SVIDs for the Peterson protocol

variables The variables inp. X are classified into inherited variables of the immediate predecessors, i.e.,
read variablesg. X, write-shared variableg. X, and v.Xp C U vyer(u-Xw Uup.Xe). 0
write-exclusive variables. X.. We denote by. X, =

p-Xs U p.X. the set of write variables of and by We say that a SVIDV is consistent if there is a lin-

X = Upepp.X the set of all variables ofi/. Itis earization of the updates il¥ that respects the linear ver-
required that the write-exclusive variables of different tica| (process) orders and the partial horizontal (arrows) or-
process are disjoint: fop # ¢, p.Xc N¢.Xe =6,and der. In addition, the horizontal order should reflect most
every variable is written by some proces&f.X = recentupdates (see definition below). For example, in Fig-
Upep p-Xuw. ure 1, M, is a consistent SVID with three linearizations

Vertices. A finite setl” of vertices. Each vertexhas an (2011012013014, b11b21615b15b14 ANAD11b15b21613014.

associated process.p. The set of vertices belonging
to a procesy is denoted by.V. This set is linearly
ordered by the (top down) relatior,. We denote by
< the partial orderU,cp <, obtained by taking the
union of these linear orders.

Definition 2 (Consistent SVID)An SVIDM is calledcon-
sistentif there is a linear ordew, vs . . . v, of all vertices in
M.V such that (1) it is consistent with, (2) itis consistent
with 7, and (3) ifx is a variable anct = (u, v) is an edge
withz € v.X, andz € u.X,, then there is no verteyw
Update boxes.Each vertex has an associated setX, between: andv withz € w. Xy O

of read variables, a set. X,, of write variables and a) i
statev.s. The setv.X, is the set of variables read The consistency requirement makes sure that the value

in order to perform the update, and it is required agsigned by a process to a variable in an update box at the
that v.X, C v.p.X,. The setv.X,, is the set of tail of an arrow is also the value conS|dered.by the.(')the;r
" ¢ processinthe box at the head of the arrow. This conditionis
new when compared with MSCs and it is necessary because
to the update and it is a mapping that associates each both the process co.ntaining.the b.ox at. the head of. an arrow
variablex € v.X,, toa valuea € T, whereT, is the or another process if the variable is write shared might have
type associated to .. written the variable too.
Note that if a boxb; reads a variable:, then the def-
Read edges.A finite setl/ C V x V of edges denoting inition of an SVID requires that it has an incoming edge
the read dependencies. For each verteke setv. X, from some box- that writes tox or inheritsz. Multiple
of read variables of is included in the set of write and incoming edges are not ruled out. Suppose betandbs
I - write to z and have an edge to béx that readsz. In this
The specific state associated with a vertex is not of importance for . . .
subsequentresults. The definition can be made more general to allow mor&a@S€, ifz is write-shared, the SVID cannot be consistent.
abstract states such as predicates, or to omit the state altogether. If « is write-exclusive, then botl, andbs must belong to

variables explicitly updated, and it is required tha
v.Xw C v.p.Xy. Finally, the statev.s corresponds

the same process, and thus, are linearly ordered according Henceforth we will assume that we are dealing only with

to the visual vertical order. 1§, appears beforgs in this consistent SVIDs. Note that an SVID has multiple lin-

order, then the edge froms to b, is redundant. earizations, and thus, provides a more succinct representa-
If there are no write-shared variables, i.e., if the SVIDs tion than linear traces.

use the one-to-many communication paradigm, then consis-

tency can be verified in linear time. 3. Refinement

Theorem 1 (Consistency check: write-exclusive cas#)
M is an SVID such that all variables are write-exclusive, Given an SVIDS as a high-level requirement, one may

then the problem of checking consistencyéfcan be \yant to add more details to the requirement leading to an-
solved in linear time. other SVID I. In this context, given an implementation
Proof: If all variables of M are write-exclusive, then SVID 1 and a gpeC|f|cat|0n SVID; itis important to know

if I refines (or implementsy, written as/ < S, in a mathe-

Mis consistent iff the relation< UE)" is acyclic. Thus, matically precise way. We are mainly interested in a refine
hecking inconsistency r finding a cycle in a graph, .) .)
checking inconsistency reduces tofinding a cy grap ment notion that has a concrete, syntactic counterpart that

f ndard linear-tim rch algo- : o ;
ﬁ?hdmcsn be performed by standard linear-time sea g would guide the users to add details in a visual, yet formal,

One-to-many communication is the typical case for (asyn- \év{a/)llb.InIU|Svely, there are threec:j S'g:jple Wayst tobr()e(fme 2”
chronous) hardware applications where connecting the out- : (1) by moving arrows and adding empty boxes, (2)

puts of two gates is not allowed. An example of an incon- by splitting the vertices and (3) by splitting the procedses

sistent SVID for this paradigm is shown in Figure 2 (there Moving arrows and adding empty boxes. The write
is an implied cycle betweel 5 andé,s). exclusive variables of a procegghat are updated in a box

If there are also write-shared variables, i.e., if the SVIDs $, maintain their value down the process line as long as they
also use the many to one communication paradigm, thenare not updated in another béx This is not only an ex-
checking consistency can be difficult.lfis a write-shared pected behavior for SVIDs but it also allows to move the
variable written in vertex: and read in vertex, then the arrows exporting only write exclusive variables in order to
consistency requirement says that any other venteat simplify the SVID, by minimizing the number of arrows
writes tox should come either beforeor afterv. Thatis, crossing each other. The transformation of moving arrows
we want to add an edge from to « or from v to w. If can restrict the set of allowed linearizations, and leads to a
only one of these edges is consistent with the partial-orderrefined SVID. Moreover, it allows to introduce empty boxes
(< UE)* then we can resolve the dependence efficiently. if this further simplifies the SVID. In the SVIDV. in Fig-
This is likely to be the typical case. For instance, in sample ure 2, we show how to move the arrow exporting the flag
scenariol,, the consistency requirement says that the box of the SVID M- of Figure 2.
b12 should either pecedeb,. or follow b,5. The latter is
inconsistent with the vertical order. Hence, we can resolve
the disjunctive dependency conclusively by adding an edge

Splitting vertices. One may split a box that contains a
set of reads and writes in several successive boxes placed on
from b15 to b25. If both the edges are consistent, we can the same process line and such that eaqh contains a disjoint
make a greedy choice, but backtracking may be necessary?Ubs_et of the orlglnal set of readszgnd \(vrltes. As an example
leading to exponential worst-case complexity of this tra;nsformgﬂon, the SVID/5 in Figure 2 refines the

SVID M,. Splitting boxes may be applied repeatedly un-
Theorem 2 (Consistency check: general cas€hecking til all boxes contain either only one read or only one write
the consistency of an SVID with write shared variables is operation for a single variable.

NP-complete. - . '
comp Splitting processes. The third type of refinement we

Proof: Membership in NP is obvious since check- consider is splitting processes into subprocesses such that
ing whether a guessed linearization satisfies all the requireth€ et of variables of eactulsprocess is contained in one
ments of consistency is easy. For hardness, the proof is by?f the original processes (thus, implementation processes
reduction from the problem of checking sequential consis- cannot aggregate distinct variables of different processes).

tency. Consider the case when all variables are shared, an@Uring the splitting, a write shared variable may become
all boxes involve a single read or a single write. Check- write exclusive. However, a write exclusive variable cannot

ing consistency, then, corresponds to verifying whether thebecome write shared. Simi_larly to splitting vgrtices, split-
local views of individual processes are sequentially consis-iNd Processes may be applied repeatedly until each process
tent. Since the edges match reads with writes, this is a re-Writes only one variable, distinct from the variable associ-
stricted case of sequential consistency, which is known to " 2 the full paper we define a more general refinement that allows to
be NP-hard [8]. O augmentan SVID with additional variables, boxes, and/or arrows.

Inconsistent

zer0 zer0
wfoy=Fl | [oy=F] o
one one
bofo=T[| [o=T[ea
bfo,=Floj 0,:=Floyos
three
o] o:=T] 0 :=T| |ba
o four
— —

Figure 2. Inconsistency and refinement by moving arrows and splitting vertices and processes

ated to the other processes. An example of this kind of re-

finement is the SVIDV3 in Figure 2 obtained by refining
M3. In this SVID, the write shared variabléhas been fac-
tored out both fronp,; andp, and transformed into a write
exclusive variable. This SVID mimics the way Peterson’s
protocol would be implemented with MSCs. In this case,
a shared resource likeis written by sending it messages
(mimicked with SVIDs by a write followed by an event ar-

Dependency. The specification partial orderS.F U
S.<) isincluded in the image(!.E U I.<) of the im-
plementation partial order under the map That is,
whenever a specification vertexis related tov ac-
cording to (S.E U S.<), there exist implementation
verticesu’ and v’ such thatr(v') = u, r(v') = v,
andw’ is related tov’ according to(/. £ U I.<).

row) and it is read by getting from it a message (mimicked By this definition, we have

with SVIDs by a read arrow). Since this SVID is a refine-
ment of the original SVID, it should be clear that SVIDs
offer in general a very high level of abstraction.

Now let us proceed to formally define the notion of re-
finement.

Definition 3 (Refinement) A shared variables interaction
diagram/ refinesa shared variables interaction diagram
S, written! < S'if:
Variables. The set of variables it¥ and / is the same:
SX=1X.

Processes.For every implementation procegsc I.P
and every specification procegs S. P, eitherp.X N
g.X = @ orp.X C ¢.X. Inthe latter case, write
shared variables it may become write exclusive in
1, but write exclusive variables if cannot become
write shared:p. X C ¢.X; andp. X, C ¢.X,,.

Boxes. There is asurjective map- from the vertices of
I to the vertices of5 such that for each vertex of
S, v. Xy = Up(w)=oW - Xy, V.5 = Up(w)=pw.s, and
v.X, = Ur(w)sz.Xr 8,

M7 < Mi < My < Ma.

For example, let the boxes invMi be denoted by
mi1,M12,M13,M14, M21, Mo, M3, Moy and the boxes
in M;’ be denoted lel,77,12,77,13,77,14,77,21,77,22,77,31,77,32,
nss,ns4, as shown in Figure 3. Define the implementation
mapr such that it mapsi; to mi1, ng; to msy, n12 and
na91 10 my2, n3z andnas t0 mos, niz t0 M3, N33 t0 M3
and finallyni4 to mi4 andnszs to ma4. Then it is easy to
see that the dependency condition is satisfied and that the
process condition is satisfied too. Hengé; refines).; .

Note that the vertical dependengysi, n22) in M3 be-
comes an arroims », ms2) in the image-(M3). Similarly,
the arrows(niz2, n21) and (nsz2, n22) in M3 become self-
loops inr(M3). All these arrows are new when compared
with M.

Given an “implementation” SVID/ and a “specifica-
tion” SVID S, we would like to determine algorithmically if
I < S holds. According to the definition of refinement, we
first need to verify the requirements concerning variables
and processes, both of which are stratighforward to check.

3In the more general notion of refinement, all equalities can be made subsets, allowing the implementation to add more variables.

P1 7]
— —
ini ini
[[
my, fl::F‘ ‘ ‘fz::F‘ m,,
[[
ide ide
[[
f:=T f,:=T
my, my,
t:= t:=
[[
reqCS reqCSs
I I
ml] [[tfm
I
inCS f1 m,,
m, | fi:=F I
idle reqCS
+ +

Figure 3. Refinement image by a mapping r

Then, the the algorithm has to guess (or synthesize) a vertexgle process and written by a single process, the refinement
mapr and to check the dependencies. This, in general, canrelation I < S can be determined i@(n?), wheren is the

be computationally difficult if the actions appearing in an number of vertices i.

implementation vertex can appear in multiple processes.

In the standard notion of refinement for processes, im-
plementation is obtained from specification by adding more
details, and typically, by restricting the set of observable
behaviors. The notion of implementation for SVIDs allows

Proof: In the general case, membership in NP is ob- split.tirllg processes aqd gddin'g cpnstraints, and 'thus, con-
vious since once the refinement majis guessed, check- stralnlng the set of yalld Ilnearlzatlorjs. Howevgr, it also al-
ing whether all dependencies are preserved can be dondWs Splitting of vertices, thus changing the notion of atom-
polynomial-time. For NP-hardness, it is known that given ICity @nd “increasing” the possible interleavings. While this
an MSC whose vertices are labeled with symbols in an al- M2y seéem counter to the traditional notion of hierarchical
phabets, and a stringw overy, the problem of determining deve.lopment Qf systems, it seems intuitive .fo'r developing
whethenw is a possible linearization of vertices of the MSC "éduirements in a systematic manner by refining the atom-
is NP-complete [4]. This problem can be reduced to refine- '€ty assumptior’s
ment checking problem, wherecontains a single process.

O 4. Comparison with Other Formalisms

If every specification variable is written by at most one
process and read by at most one process (i.e. the communi-
cation is point-to-point) then each action in the implemen-
tation can be mapped to vertices of a uniquely determined

Theorem 3 (Checking refinement: general casepiven
two SVIDsS and I, deciding whethed < S holds is
NP-complete.

As we discussed in the introduction, the purpose of
shared variables interaction diagrams (SVIDs) is to describe

: . . exemplary interactions (scenarios) of concurrent systems
process. Smpe vert|ce's qf a single process are tptally %Mthat communicate via shared variables. Hence, they play
dered, there is no gmblgwty in dgtermmmg the reflnemgnt the same role for these systems as message sequence charts
mapi C*)JHC? éhe regnem_ent may; IS ﬂetekrn&lrg)ed, the r?gu'rtf{éMSCs) or interaction diagrams (in UML) play for concur-
ment about dependencies can be checked by Computing thgy ¢ systems that communicate via message passing. While

ransitive cl i i ial- i s : : .
ijiittirﬁec osure of the imeplementation partial-order in scenarios involving shared variables appear in many con-

. 40One can reconcile these two notions of implementation by observing
Theorem 4 (Checking refinement: exclusive cas&iven inat, under the refinement map the implementation has more constraints
two SVIDsS and/ such that each variable is read by a sin- and therefore less linearizations than the specification.

M, M,

Py P2 Pa Py f1 P2 f Ps fs
1 1 1 1 1 1 1 T 1 1
\ \ \
ini ini ini ini ini ini ini ini ini
| ‘ =6 e]
‘ fl1:=F ‘ ‘ ‘ fl2]:=F ‘ ‘ ‘ fl3]:=F ‘ ‘ ™
| | Csr > Csr > Csr >
tsR tsR tsR get et get =)
| | | EG R Cq
(=[] [wa=r]ta] | wi=r]) e " e
\ \ \
tstl tstl tstl tstl tstl - tstl tstl o tstl tstl
| | | o ~— vam | = vam |
[fea] [Jm] [[na] : —
—
tstl tstl tstl tstl D tstl tstl tstl tstl tstl
| | | | | |

Figure 4. Deadlock for three dining philosophers

texts, there seems to be no effort to formally define a no- indirect way with SVIDs would probably lead to more com-

tation for our intended purposes. One exception is [9], in plex solutions too.

which the authors define a notation for describing scenarios From a visual point of view (as boxes connected by ar-

for hybrid systems in which synchronous communication rows), SVIDs are also related to acyclic versions of Petri

can be captured by global conditions over variables. nets and data flow diagrams (DFDs). Unlike these for-
Since MSCs are already standardized by the ITU consor-malisms, an SVID denotes a single partially-ordered exe-

tium and very popular (e.g. in the specification of telecom- cution, and has an implicit notion of shared state.

munication protocols) one might wonder if MSCs could not

be used instead of SVIDs for shared variables systems, too.

Indeed, by associating with each global variable a sepa-5. Conclusions

rate process (vertical line) and introducing three messages

set(x) , get andval(v) one can model reading and

writing these variables. However, this is an indirect way =~ We have presented a formal notation for visual descrip-

of dealing with the read and write primitives and the more tion of scenarios in distributed systems when the commu-

shared variables the system contains, the more complex theication is via shared variables. We have also presented a

MSCs become. natural and precise way of relating such scenarios via the
Tollustrate this point, let us consider the dining philoso- notion of refinement. SVIDs can be useful for writing de-
phers example (see, for instance, [15]). Therewgphiloso- Sign requirements. Many model checkers, suchras £1.0]

phers seated around a table, usually thinking. Betveeeh ~ @nd MOCHA [1], support shared-variables communication
pair of philosophers is a single fork. From time to time, any and show the counter-examples in a graphical format like
philosopher might become hungry and attempt to eat. |nSVIQs. Conseq.uently, SYlDS can also be used to compare
order to eat, the philosopher needs exclusive use of the twd€duirements with executions of models.

adjacent forks. After eating, the philgsher relinquishes SVIDs are also a promising specification and debugging
the two forks and resumes thinking. formalism for concurrent systems written in Java. This is
In a wrong symmetric solution, each phitggher will one of the few languages that allows process creation and

wait first for the right fork and after getting it will wait for ~ Process control. In Java processes are instances of a spe-
the left fork. However, if all philosophers pick the right fork ~ Cial class called’hread and run in an asynchronous way.
first, they will wait forever for the left fork. This situation ~ Threads interact by using the shared memory paradigm.

is illustrated for three philosophers in Figure 4 where the To obtain richer specifications using SVIDs, we will
left hand side is the scenario presented as an SVID and theneed to considerigh-levelSVIDs in the spirit of high-level

right hand side is the scenario presented as an MSC. TheMSCs (a high-level MSC is basically a finite graph whose
MSC solution has more processes, more arrows and moranodes are labeled with basic MSCs). To be able give seman-
crossings. We believe, this makes it harder to read and un-ics to such specifications, we need to define concatenation
derstand. Trying to model message passing systems in amf SVIDs that accounts for the shared state.

References [17] J. ReppyConcurrent Programming in MLCambridge Uni-

versity Press, 1999.

[1] R. Alur, L. de Alfaro, R. Grosu, T.A. Henzinger, M. Kang, [18] R.Ramakrishnanand J. Gehrl@atabase managementsys-

R. Majumdar, F. Mang, C.M. Kirsch, and B.Y. Wang.d@HA:

tems McGraw-Hill, 1999.

A model checking tool that exploits design structure.Pho- [19] E. Rudolph, P. Graubmann, and J. Gabowski. Tutorial on

ceedings of 23rd International Conference on Software Engi-
neering 2001.

message sequence charts. Aomputer Networks and ISDN
Systems — SDL and MS@lume 28. 1996.

[2] R. Alur, K. Etessami, and M. Yannakakis. Inference of mes- [20] R.J. van Glabbeek and U. Goltz. Refinement of Actions in

sage sequence charts. Pmoceedings of 22nd International
Conference on Software Engineerjpgges 304-313, 2000.

[3] R. Alur, G.J. Holzmann, and D. Peled. An analyzer for mes-
sage sequence charSoftware Concepts and Toplk7(2):70—
77,1996.

[4] R. Alur and M. Yannakakis. Model checking of message se-
quence charts. IBONCUR’99: Concurrency Theory, Tenth In-
ternational Conferencé.NCS 1664, pages 114-129. Springer-
Verlag, 1999.

[5] H. Ben-Abdallah and S. Leue. MESA: Support for scenario-
based design of concurrent systemsPoceedings of the 4th
International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systerh8ICS 1384, pages 118-135,
1998.

[6] G. Booch, I. Jacobson, and J. Rumbaughified Modeling
Language User GuideAddison Wesley, 1997.

[7] H. Ben-Abdallah and S. Leue. Syntactic detection of process

divergence and non-local choice in message sequence charts.

In Proceedings of the Second International Workshop on Tools
and Algorithms for the Construction and Analysis of Systems
1997.

[8] P. Gibbons and E. Korach. Testing shared memoris&\M
Journal on Computing26(4):1208-1244, 1997.

[9] R. Grosu, I. Krueger, and T. Stauner. Hybrid sequence
charts. InNISORC’2K, the 3rd IEEE International Symposium
on Object-oriented Real-time distributed Computinages
104-111, 2000.

[10] G.J. Holzmann. The model checker SPINEEE Trans. on
Software Engineerin@3(5):279-295, 1997.

[11] G.J.Holzmann, D.A. Peled, and M.H. Redberg. Design tools
for for requirements engineerind.ucent Bell Labs Technical
Journal 2(1):86-95, 1997.

[12] I. Krueger, R. Grosu, P. Scholz, M. Broy, From MSCs to
Statecharts. Iistributed and Parallel Embedded Systems
Kluwer Academic Publishers, 1999.

[13] L. Lamport. How to make a multiprocessor computer that
correctly executes multiprocess prograniSEE Transactions
on Computers28(9):690—-691, 1979.

[14] D. Lea. Concurrent Programming in Java: Design Princi-
ples and PatternsAddison Wesley, 2000.

[15] N.Lynch.Distributed algorithmsMorgan Kaufmann, 1996.

[16] A. Muscholl, D. Peled, and Z. Su. Deciding properties of
message sequence charts.Fiundations of Software Science
and Computation Structure$998.

Causality Based Models. l@omparitive Concurrency Seman-
tics and Refinement of Actignmsges 161-203, 1989.

