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Abstract. We combine compositional reasoning and reachability analy-
sis to formally verify the safety of a recent cache coherence protocol. The
protocol is a detailed implementation of token coherence, an approach
that decouples correctness and performance. First, we present a formal
and abstract specification that captures the safety substrate of token co-
herence, and highlights the symmetry in states of the cache controllers
and contents of the messages they exchange. Then, we prove that this
abstract specification is coherent, and check whether the implementa-
tion proposed by the protocol designers is a refinement of the abstract
specification. Our refinement proof is parametric in the number of cache
controllers, and is compositional as it reduces the refinement checks to
individual controllers using a specialized form of assume-guarantee rea-
soning. The individual refinement obligations are discharged using refine-
ment maps and reachability analysis. While the formal proof justifies the
intuitive claim by the designers about the ease of verifiability of token
coherence, we report on several bugs in the implementation, and accom-
panying modifications, that were missed by extensive prior simulations.

1 Introduction

Shared memory multiprocessors have become the most important architecture
used for commercial and scientific workloads. Such systems use hardware cache
coherence protocols to create the illusion of a single, shared memory without
caches. These protocols are important factors of the overall system performance,
and numerous optimizations contribute to their complexity. Since hard-to-cover
race conditions elude simulations of the protocols, formal methods are often
employed to verify their correctness.

Token Coherence is a new approach to cache coherence protocols that de-
couples correctness requirements from performance choices, claiming to improve
both performance and verifiability [22]. Separate correctness mechanisms ensure
safety and liveness. Safety is achieved by token counting: per memory location,
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the number of tokens in the system is a global invariant. By requiring at least
one token for read access and all tokens for write access, the protocol directly
enforces a single-writer, multiple-reader policy. On the other hand, Liveness is
achieved by persistent requests. This reliable, but slower protocol is used when
the regular requests do not succeed within a timeout period. Persistent requests
are required because the regular requests, while likely to complete quickly, do
not guarantee eventual success.

In this work, we combine compositional verification and model checking to
verify the safety of a detailed implementation of a token coherence protocol for
an arbitrary number of caches. Our method takes advantage of the opportunities
offered by the token coherence design. It proceeds in four steps.

1. We present a formal specification of the safety substrate of token coherence.
This abstract protocol is based on rewrite rules and multisets, and expresses
the symmetry between components and messages. It applies to arbitrary
network topologies, cache numbers, and even cache hierarchies.

2. We prove manually that the abstract protocol is safe (i.e. coherent). The
verification problem is thus reduced to checking that the implementation
correctly refines the abstract protocol.

3. We prove that the refinement can be verified for each component individ-
ually, by replacing its context with an abstraction. We prove that this de-
composition into local refinement obligations is sound, using a variant of
assume-guarantee reasoning based on contextual refinement, and performing
an induction on the number of caches.

4. We discharge the local refinement obligations with the conventional model
checker Murϕ [12, 11]. To obtain the models, we manually translate, abstract
and annotate the implementation code. This procedure reduces the refine-
ment checking to a reachability problem, which Murϕ solves by enumerative
state space search.

Even though the protocol implementation had been extensively simulated
prior to this work, we discovered a few bugs, and were able to fix them quickly
with the help of counterexamples produced by the model checker. The compo-
sitional refinement method proved to be effective in avoiding the state space
explosion problem [16] which is commonly encountered in system-level mod-
els [28].

Because of the page limit, we had to omit most proofs. A more complete
version of this article can be found online [7].

1.1 Related Work

Prior work on formal verification of cache coherence varies in (1) the proto-
col complexity and level of detail (2) the coverage achieved (safety, liveness,
parametric systems) (3) the underlying tools (enumerative or symbolic model
checkers, decision procedures, theorem provers), (4) reduction techniques (sym-
metry, abstraction, compositional verification), and (5) degree of automation.
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We refer to Pong and Dubois [28] for a general survey, and to various illustrative
efforts [23, 27, 14, 3].

Our proof methodology modifies and combines a variety of ideas in the for-
mal verification literature. These include assume-guarantee reasoning for compo-
sitional verification (c.f. [1, 8, 2, 25]), structural induction for proving properties
for arbitrary number of processes (c.f. [19, 9, 15, 13, 10, 4]), data abstraction (c.f.
[32, 17]), use of term rewrite systems for hardware verification [5], and proving
refinement using reachability analysis (c.f. [18]).

2 Process Model

In this section, we define the process model and introduce our assume-guarantee
proof rules. We chose to define the process model from scratch, so to keep it con-
cise and self-contained, and to obtain the desired combination of features. Ex-
cept for the specialized definition of contextual refinement, all concepts (traces,
composition, refinement) are standard and appear in many variations and com-
binations in the process algebra literature [29].

A process is defined as the set of its traces, which are finite words over an
alphabet Σ of events. Σ is considered fixed and common to all processes. We
further partition Σ = Σe∪Σc into disjoint subclasses: Σe contains events that are
visible to external observers of the system only, while Σc describes synchronous
communication events. Matching events in Σc (e.g. sending and receiving of a
message) are denoted σ and σ.

Definition 2.1. A process P over Σ is a non-empty prefix-closed language; i.e.
P ⊂ Σ∗, P �= ∅ and for all u, v ∈ Σ∗ : uv ∈ P ⇒ u ∈ P . A process P refines a
process Q, written P � Q, iff P ⊂ Q. A process P is closed if P ⊂ Σ∗

e .

The refinement relation � is a complete partial order on the processes. The
bottom (silent) process {ε} has but one trace: the empty string. The top (uni-
versal) process Σ∗ includes all possible traces.

When composing processes, we merge their traces by interleaving their events
and hiding mutual communication.

Definition 2.2. Let u, v, w ∈ Σ∗ be traces. We define the relation u | v � w
(speak: u, v can combine to form w) by the following inference rules:

ε | ε � ε
(epsilon) u | v � w σ ∈ Σc

uσ | vσ � w
(communication)

u | v � w σ ∈ Σ

uσ | v � wσ
(l-event)

u | v � w σ ∈ Σ

u | vσ � wσ
(r-event)

Example 2.3. Let Σe = {a, b, c, d} and Σc = {e, e}. Then we have

ab | cd � acbd ab | cd � abcd ae | eb � ab ae | eb � aeeb

but not ae | eb � ba.
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Definition 2.4. Let P , Q be processes. Then P | Q
.= {w ∈ Σ∗ | ∃u ∈ P : ∃v ∈

Q : u | v � w}.
Composition is commutative and associative. Composition does not restrict

its components: for processes P, Q we always have P � P | Q. This same style
of communication is used by CCS [26].

Refinement is preserved by composition: if P ′ � P , then P ′ | Q � P | Q. We
can use this fact to prove that a system implementation refines its specification

P ′ | Q′ � P | Q (1)

from the simpler, local refinement conditions

P ′ � P and Q′ � Q . (2)

However, this method is not very powerful, because the refinements (2) do often
not hold because of implicit assumptions on the context. Assume-guarantee rea-
soning remedies this shortcoming. We provide the context as an explicit subscript
to the refinement relation, enabling us to conclude (1) from

P ′ �Q P and Q′ �P Q . (3)

Most process models used for compositional refinement of hardware [2, 24] can
express the contextual refinement P ′ �Q P directly as P ′ ‖Q � P (using syn-
chronous parallel composition). The same does not work in our context (as ex-
emplified by the observation 5 below), so we use a direct definition instead.

Definition 2.5 (Contextual refinement). Let P, P ′, C be processes. Then P ′

is said to refine P in context C, written P ′ �C P , iff for all traces u ∈ P ′ the
following condition holds: if there is a trace v ∈ C such that u ↑ Σc = v ↑ Σc

(i.e. the communication events in u, v match up), then u ∈ P .

Intuitively, we require that all behaviors of P ′ that are actually possible
within an environment that adheres to C are allowed by P .

The following observations provide insight about contextual refinement.

1. For any process C, �C is a pre-order on processes.
2. If P ′ �C P , and C′ � C, then P ′ �C′ P .
3. Refinement in a universal context corresponds to regular refinement:

P ′ �Σ∗ P ⇔ P ′ � P .
4. Refinement in a silent context corresponds to refinement of closed processes:

P ′ �{ε} P ⇔ (P ′ ∩ Σ∗
e ) � (P ∩ Σ∗

e )
5. The refinement P ′ | C �{ε} P | C does not imply P ′ �C P , because the

traces of P ′ | C do not indicate what mutual communication takes place.
However, the converse always holds.

To avoid circularity in the assume-guarantee reasoning, we conservatively
require that the specification processes can always engage in a subset of commu-
nication events Σr ⊂ Σc that is sufficiently large, i.e. Σr ∪Σr = Σc; in our case,
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we will take care of this requirement by having specification processes accept any
message at any time1. We use the following definition to formalize this property
of processes.

Definition 2.6. Let P be a process over Σ, and Σr ⊂ Σ be an event subset. P
is called Σr-enabled iff ∀u ∈ P : ∀σ ∈ Σr : uσ ∈ P .

We now give the two proof rules for compositional refinement. The first rule is
simpler, but restricted to two components. The second rule is a generalization
suited for induction.

Theorem 2.7. Let P, P ′, Q, Q′, C be processes over Σ = Σe ∪Σc. Let Σr ⊂ Σc

such that Σr ∪ Σr = Σc. Then the following proof rules are sound:

P ′ �Q P P, Q are Σr-enabled Q′ �P Q

P ′ | Q′ �{ε} P | Q

P ′ �Q|C P P, Q are Σr-enabled Q′ �P |C Q

P ′ | Q′ �C P | Q

For example, consider again the local refinement obligations (3). Suppose
that the specification processes P, Q can receive messages at any time. We can
then apply the first proof rule to conclude that P ′ | Q′ refines P | Q, if there is
no external communication, i.e., there are no other components in the system.

3 Token Coherence

In this section, we introduce a formal specification of the safety substrate of
token coherence. This abstract protocol is a generalization of the MOESI token
counting rules in Martin’s dissertation [20]. We then justify it’s use as a spec-
ification, by proving that it is coherent, and with it any implementation that
refines it.

3.1 Background: Cache Coherence

Cache coherence describes the contract between the memory system and the
processor in a shared-memory multiprocessor. It is typically established at the
granularity of a cache block. A memory system is cache coherent if for each
block, writes are serialized, and reads get the value of the last write.

Definition 3.1. Let V be the set of values of a fixed cache block, and v0 ∈ V
the initial value. Let Σrw = {rd(v), wr(v) | v ∈ V } be the alphabet of events,

1 If this is not true by default, we could extend the specification to generate a special
error event if it receives an unexpected message.
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describing accesses to the block by some processor. Then the coherent traces of
the system are given by the following regular language over Σrw :

Coh = rd(v0)∗
( ⋃

v∈V

wr(v) rd(v)∗
)∗

Token coherence, like many contemporary coherence protocols such as the
popular MOESI protocol family [31], provides this strong form of coherence by
enforcing a “single writer, multiple reader” policy2.

3.2 The Abstract Protocol

In our abstract protocol, system components and messages are of the same type
and treated completely symmetrically: both are represented by token bags. Token
bags are finite multisets (or bags) over some set T of tokens, and may be required
to satisfy some additional constraints (well-formedness). The tokens in the bag
constitute the state of the component, or the contents of the message.

The state of the entire system is represented as yet another bag that encloses
the token bags of the individual components and messages. The sending of a
message is modeled as a division, where a bag separates into two bags, dividing
its tokens. The receipt of a message, symmetrically, is modeled as a fusion of
token bags. Change is expressed by local reactions: tokens within a bag can be
consumed, produced or modified according to rewrite rules.

We give two preliminary definitions before proceeding to the definition of the
abstract protocol.

Definition 3.2 (Multisets). Let T be a set. Two words u, v ∈ T ∗ are equiva-
lent if one is a permutation of the other. The induced equivalence classes {[u] |
u ∈ T ∗} are called finite multisets over T , or T -bags. Multiset union is defined
as concatenation [u] � [v] .= [uv]. The set of all T -bags is denoted M(T ). For
x ∈ M(T ), let |x| denote the set of elements of T that occur in x.

For example, for any t1, t2 ∈ T , all of the following denote the same T -bag:
[ t21 t2 ] = [ t1 t1 t2 ] = {t1t1t2, t1t2t1, t2t1t1}. The exponent is a convenient
notation for repeated symbols, and often used with regular languages.

Definition 3.3 (Token Transition System). A TTS is a tuple (T, B, I, Σe,
W ) where T is a set of tokens, B ⊂ M(T ) defines the set of well-formed T -
bags, I ∈ M(B) is the initial configuration, Σe is a set of local events, and
W ⊂ Σe ×M(T )× 2T ×M(T ) is a set of rewrite rules.

A rewrite rule (a, x, H, y) ∈ W is denoted a: x =⇒
H

y. It describes a reaction

labeled a that can occur whenever all the tokens in x are together in a bag, and
2 We are considering only the interface between the memory system and the processor

here. Independently, the contract between the processor and the programmer may
use weaker forms of coherence that involve temporal reordering of events, as specified
by the memory model.
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the bag does not contain any of the inhibiting tokens listed in H . When the
reaction fires, the tokens x are replaced by the tokens y. If H is empty, we omit
it from the notation.

A TTS defines a process over the alphabet Σ = Σe ∪ Σc, with Σc =
{snd(b), rcv(b) | b ∈ B}, with the traces {u ∈ Σ∗ | ∃C ∈ M(B) : I

u−→ C},
where we define the transition relation C

u−→ C′ with the inference rules3 below.

C
ε−→ C

(stutter)
C

u−→ C′ C′ v−→ C′′

C
uv−→ C′′ (trans)

x�y ∈ B

[ C x y ] ε−→ [ C x�y ]
(fusion)

[ C x�y ] ε−→ [ C x y ]
(division)

a: x =⇒
H

y |z| ∩ H = ∅ y�z ∈ B

[ C x�z ] a−→ [ C y�z ]
(reaction)

[ C x ]
snd(x)−−−−→ [ C ]

(send)
[ C ]

rcv(x)−−−−→ [ C x ]
(receive)

Token transition systems have a feel of concurrency much like a biological sys-
tem where reactive substances are contained in cells that can undergo fusion and
division. Chemical abstract machines [6] capture the same idea (with molecules,
membranes, and solutions instead of tokens, bags, and configurations), but are
also different in many ways (for example, they do not have fusion or division).

Definition 3.4 (The abstract protocol). The safety substrate Tm (where m
is the number of tokens, a fixed parameter) is a TTS (T, B, I, Σe, W ) where

– T contains the following tokens:
R is a regular token as used by token coherence.
O(s) is a owner token in one of two states s ∈ {C, D} (clean or dirty).
D(v) is an instance of the data, with value v ∈ V .
M(v) is a memory cell containing the value v ∈ V .

– B is defined by imposing two conditions on a token bag x ∈ M(T ):
• if x contains data D(v), then it must contain at least one regular token

R or an owner token O(s).
• if x contains a dirty owner token O(D), then it must contain data D(v).

– I
.= [ [ Rm−1 O(C) M(v0) ] ].

– Σe
.= {rd(v), wr(v), memread, memwrite, copy, drop | v ∈ V }.

– W consists of the rewrite rules shown in Fig. 1.

Fig. 2 shows an example trajectory of the abstract protocol. Next, we explain
the reaction rules and their interaction in some more detail.
3 The variables in the rule templates range over the following domains: u, v, w ∈ Σ∗,

x, y, z ∈ B, and C, C′, C′′ ∈ M(B). Furthermore, as a syntactic shortcut, we allow
C, C′, C′′ to match several positions in a multiset of token bags: for example, [ C z ]
can match [ x y z ] by setting C = [ x y ].
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Table 1. The reaction rules of the abstract protocol.

rd(v): [ D(v) ] =⇒ [ D(v) ]

wr(w): [ Rm−1 O(s) D(v) ] =⇒
{D(v)}

[ Rm−1 O(D) D(w) ]

memread: [ M(v) O(C) ] =⇒ [ M(v) O(C) D(v) ]

memwrite: [ M(v) O(D) D(w) ] =⇒ [ M(w) O(C) D(w) ]

copy: [ D(v) ] =⇒ [ D(v) D(v) ]

drop: [ D(v) ] =⇒ [ ]

Table 2. A short example trajectory of the abstract protocol, representing a system
with a memory D and two caches C1 and C2. For clarification, token bags carry sub-
scripts indicating the component that they represent. Those subscripts are not part of
the abstract protocol.

Description System trajectory

initial state [ [ M(v0) O(C) Rm−1 ]D [ ]C1 [ ]C2 ]

C1 requests M (requests are abstracted away)

D responds

— read memory data
memread−−−−−→ [ [ M(v0) D(v0) O(C) Rm−1 ]D [ ]C1 [ ]C2 ]

— send data w/ tokens
ε−→ [ [ M(v0) ]D [ D(v0) O(C) Rm−1 ] [ ]C1 [ ]C2 ]

C1 receives response
ε−→ [ [ M(v0) ]D [ D(v0) O(C) Rm−1 ]C1 [ ]C2 ]

C1 writes value v1
wr(v1)−−−−→ [ [ M(v0) ]D [ D(v1) O(D) Rm−1 ]C1 [ ]C2 ]

C2 requests S (requests are abstracted away)

C1 responds

— copy data
copy−−→ [ [ M(v0) ]D [ D(v1) D(v1) O(D) Rm−1 ]C1 [ ]C2 ]

— send data w/ token
ε−→ [ [ M(v0) ]D [ D(v1) O(D) Rm−2 ]C1 [ D(v1) R ] [ ]C2 ]

rd(v) reads a value from a data instance (it can be applied at any time, and
does not modify the state). wr(w) modifies a data token, and can only be applied
if all m tokens (one owner token and m − 1 regular tokens) are present, and no
other data copies are in the same bag (which guarantees that the data token
being modified is the only one in the system).
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To guarantee proper writebacks of modified data, a special owner token is
used. The owner token records the clean/dirty state, i.e. whether the memory
value is stale. When modifying data, the owner token is set to dirty. When the
memory writes back the data (memwrite), the owner token is cleaned. memread
loads data from the memory only if there is a clean owner token, and thereby
avoids reading stale data.

The rules copy and drop imply that data instances D(v) can be freely copied
or destroyed, subject only to the restriction enforced by B that all bags are well-
formed – for example, whoever has the dirty owner token must keep at least one
data instance.

We can now prove that the abstract protocol is coherent.

Theorem 3.5. The closed system Tm ∩ Σ∗
e is coherent:

(Tm ∩ Σ∗
e ) ↑ Σrw ⊂ Coh

To prove this, verify that (1) all of the following invariants hold in the initial
state I and (2) prove (by induction on derivations) that if the invariants hold
for a state C, they hold for any state C′ such that C

u−→ C′ for some u ∈ Σ∗
e .

1. The number of regular tokens R in the system is m − 1.
2. There is always exactly one owner token O(s).
3. There is always exactly one memory cell M(v).
4. All data instances D(v) have the same values.
5. If the owner token is clean, any data instances present have the same value

as the memory cell.
6. If there is a data token, it contains the value of the last write. Otherwise,

the memory does.

Together, these invariants guarantee that all data instances D(v) are always
up-to-date; therefore, reads get the correct value which implies coherence.

All state is modeled by tokens, and there is no distinction between com-
ponents and messages. This symmetry points out interesting design directions.
For example, we consider the memory cell M(v) to be stationary. However, the
formal token rules do not impose this restriction and and could be used as an
implementation guideline for a system with home migration.

4 Implementation

In this section, we describe how we verified the safety of a detailed implementa-
tion of token coherence for an arbitrary number of caches. We describe how we
used compositional verification to deal with the parametric character, and how
we employed abstraction to handle the fine level of detail. We conclude with a
list of discovered bugs.

4.1 The Protocol Implementation

The protocol implementation was developed by Martin et al. for architecture
research on token coherence [20], and was extensively simulated prior to this
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Fig. 1. The SLICC table for the memory controller. Rows show controller states,
columns show events, and cells show transitions. For example, consider the upper left
box. It states that if a Request-Exclusive message arrives while the controller is in state
O, the actions d, b and j are executed in sequence, and the controller transitions to
the NO state. Shaded cells indicate that an event is not expected to occur in the given
state.

work. It consists of finite state machines (FSM) for the cache and memory con-
trollers, augmented with message passing capabilities. The FSMs are specified
using the domain-specific language SLICC (Specification Language for Imple-
menting Cache Coherence) developed by Martin et al.

The FSMs include all necessary transient states that arise due to the asyn-
chronous nature of the protocol. The memory and cache controller amount to 600
and 1800 lines of SLICC code, respectively, a scale on which purely manual anal-
ysis methods are impractical, in particular because these low-level specifications
are usually changed over time.

The SLICC compiler generates (1) executables for the simulation environ-
ment and (2) summary tables containing the control states, events and transi-
tions in a human-readable table format4.

Fig. 1 shows the summary table for the memory controller, with its 3 states
and 11 events. Note that some parts of the state, such as the number of tokens,
or the actual data values, are stored in variables that are not visible in the
summary table.

Due to lack of space, we can not reproduce the summary table for the cache
controller (17 states and 20 events), and we can not explain further the meaning
of the states and events. The complete SLICC code and interactive HTML-
tables are online [21], along with implementations of three other cache coherence
protocols.

4.2 Parametric Compositional Refinement Proof

Consider the system S′
n consisting of n caches C′, a directory controller D′

(which is attached to the memory, and sometimes called memory controller), and
4 More about the table format can be found in Sorin et al. [30].
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a interconnection network N ′. We consistently use primes for implementation
processes to distinguish them from specification processes:

S′
n

.= C′ | C′ | · · · | C′︸ ︷︷ ︸
n

| N ′ | D′ (4)

In the beginning, the memory holds all tokens. We define local specification
processes as token transition systems:

D
.= Tm = (T, B, I, Σe, W )

C
.= (T, B, [ [ ] ], Σe, W )

N
.= (T, B, [ [ ] ], Σe, W )

Since a token transition system already models all possible distributions of the
state, no new behavior arises when it is composed:

C | D = D C | C = C

We now state the central result which (together with Theorem 3.5) allows us to
verify the implementation components D′, C′ and N ′ individually, each within
an abstracted context rather than a fully instantiated system.

Theorem 4.1. If the implementation processes satisfy the local refinement obli-
gations

D′ �C D C′ �D C N ′ �D C

then for all n ∈ N, we have S′
n �{ε} Tm, i.e., the system refines the formal token

coherence protocol.

The proof uses induction and the proof rules (Theorem 2.7).

4.3 Discharging the Obligations

To discharge the remaining obligations, we used manual translation, abstraction,
and annotation, and the explicit model checker Murϕ [12, 11]. The following steps
give an overview of the method.

1. Obtain models D′, C′ for the memory and cache controller implementations.
This step involves translating the SLICC code to Murϕ, instrumenting it
with the read/write events relevant for coherence, and abstracting both the
state space and the message format. Fig. 2 shows snippets of translated code.
The SLICC instructions that fell prey to the abstraction are in slanted face.
For example, only a single cache block is modeled, therefore the code dealing
with addresses is abstracted away. Also, message source and destination
fields are irrelevant due to the deep symmetry of formal token coherence.
Furthermore, two data values are sufficient5.

5 Restricting the set of values is justified by the data-independence [32], which implies
that we can freely substitute values in the traces.
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2. Obtain good encodings for the specification/environment processes D, C. We
can take advantage (1) of the global system invariants established earlier
and (2) of the fact that fusion and division are not observable. For example,
the flattening map [ b1 b2 . . . bk ] �→ b1 � b2 . . . � bk provides a canonical
representative state. This means that a single T -bag, rather than a multiset of
T -bags, is sufficient to model the context. The models we obtain this way are
compact and contribute much to the state-space economy of our approach.

3. Annotate the transitions of the implementation with matching specification
transitions, and provide refinement maps. For each transition of the imple-
mentation process, the annotations specify a sequence of transitions of the
specification process. Fig. 2 shows such annotations in uppercase. The re-
finement maps are functions that map a controller state to its corresponding
token bag.

4. Run the model checker Murϕ separately for the two relevant obligations6

D′ �C D and C′ �D C.
Proposition 4.3 listed below describes how the contextual refinement is dis-
charged. The state enumeration performed by the model checker effectively
constructs and verifies the relation R, which describes the reachable states
of the implementation process I within the abstract context C. The annota-
tions provided by the user eliminate the need for existential quantification.
The model checker also validates the assertions present in the implementa-
tion code.

Definition 4.2. For a labeled transition system (Q, q0, Σ∪{ε}, δ), states q1, q2 ∈
Q and a word v ∈ Σ∗ we define: q

v=⇒ q′ iff there exists a k ≥ 0 and a sequence of
transitions q0

v1−→ q1
v2−→ . . .

vk−→ qk such that q0 = q, qk = q′ and v1v2 . . . vk = v
(where v1v2 . . . vk = ε for k = 0).

Proposition 4.3. Let I, S and C be processes defined by the trace sets of the
labeled transition systems Li

.= (Qi, q0i, Σ ∪ {ε}, δi) with i ∈ {I, S, C}. Let φ :
QI → QS be a function (the refinement map). If R ⊂ QI ×QC is a relation with
the properties (R1)–(R4) listed below, then I �C S.

(R1) (q0I , q0C) ∈ R, and φ(q0I) = q0S

(R2) If (qI , qC) ∈ R and qC
u−→ q′C for some u ∈ Σe ∪ {ε},

then (qI , q
′
C) ∈ R.

(R3) If (qI , qC) ∈ R and qI
u−→ q′I for some u ∈ Σe ∪ {ε},

then (q′I , qC) ∈ R and φ(qI)
u=⇒ φ(q′I).

(R4) If (qI , qC) ∈ R and qI
σ−→ q′I and qC

σ−→ q′C for some σ ∈ Σc,
then (q′I , q

′
C) ∈ R and φ(qI)

σ=⇒ φ(q′I).

The full Murϕ code is available online [7].

6 Theorem 4.1 lists three obligations, but we skip N ′ �D C because it reduces to
checking the reliablity of the network, which is trivial at the given abstraction level.
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rule "get Request-Excl in O state"
(I_DirectoryState = state_O)

==>
begin

d_sendDataWithAllTokens();
I_DirectoryState := state_NO;

endrule;

procedure d_sendDataWithAllTokens();
var

out_msg: I_message;
begin

out_msg.RType := DATA_OWNER;
if !(I_Tokens > 0) then
error "d: assertion failed. ";

endif;
out_msg.Tokens := I_Tokens;
out_msg.DataBlk := I_DataBlk;
out_msg.Dirty := false;
I_Tokens := 0;
EVENT_MEMLOAD();
EVENT_SEND(out_msg);
EVENT_DROP();

end;

transition(O, RequestExcl, NO) {
d_sendDataWithAllTokens;
b_forwardToSharers;
j_popIncomingRequestQueue;

}

action(d_sendDataWithAllTokens, "d") {
peek(requestNetwork_in, RequestMsg) {
enqueue(responseNetwork_out, ResponseMsg) {

out_msg.Address := address;
out_msg.Type := CoherenceResponseType:DATA_OWNER;
out_msg.Sender := id;
out_msg.SenderMachine := MachineType:Directory;
out_msg.Destination.add(in_msg.Requestor);
out_msg.DestMachine := MachineType:L1Cache;
assert(directory[address].Tokens > 0);
out_msg.Tokens := directory[in_msg.Address].Tokens;
out_msg.DataBlk := directory[in_msg.Address].DataBlk;
out_msg.Dirty := false;
out_msg.MessageSize := MessageSizeType:Response_Data;

}
}
directory[address].Tokens := 0;

}

Fig. 2. The murphi code (top) is obtained from the SLICC code (bottom).
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4.4 Results

The translation required about two days of work. This estimate assumes familiar-
ity with token coherence, and some knowledge of the implementation. We found
several bugs of varying severity, all of which were missed by prior random sim-
ulation tests similar to those described by Wood et. al. [33]. Seven changes were
needed to eliminate all failures (not counting mistakes in the verification model):

1. The implementation included assertions that do not hold in the general sys-
tem. Although they were mostly accompanied by a disclaimer like “remove
this for general implementation”, the latter was missing in one case.

2. The implementation was incorrect for the case where a node has only one
token remaining and answers a Request-Shared. This situation was not en-
countered by simulation, probably because the number of tokens always ex-
ceeded the number of simulated nodes. We fixed the implementation, which
involved adding another state to the finite state control.

3. Persistent-Request-Shared messages (which are issued if the regular Request-
Shared is not answered within a timeout period) suffered from the same
problem, and we applied the same fix.

4. The implementation copied the dirty bit from incoming messages even if they
did not contain the owner token. Although this does not compromise coher-
ence, it can lead to suboptimal performance due to superfluous writebacks.
This performance bug would have gone undetected had we only checked for
coherence, rather than for refinement of the abstract protocol.

5. After fixing bug 4, a previously masked bug surfaced: the dirty bit was no
longer being updated if a node with data received a dirty owner token.

6. Two shaded boxes (i.e. transitions that are specified to be unreachable) were
actually reachable. This turned out to be yet another instance of the same
kind of problem as in bug 2.

7. Finally, another (last) instance of bug 2 was found and fixed.

As expected, the compositional approach heavily reduced the number of
searched states. This kept computational requirements low, in particular con-
sidering that the results are valid for an arbitrary number of caches. The mea-
surements in Fig. 3 were carried out on a 300MHz Pentium III ThinkPad.

5 Conclusions and Future Work

We make three main contributions. First, we formally verified the safety of a
system-level implementation of token coherence, for an arbitrary number of

# tokens component # states # transitions time

4 memory controller 92 1692 0.3s
8 memory controller 188 5876 0.6s

32 memory controller 764 83396 7.49s
4 cache controller 700 23454 1.4s
8 cache controller 1308 76446 4.6s

32 cache controller 4956 1012638 65.2s

Fig. 3. Computational requirements for the model checking.
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caches. Second, we developed a general and formal specification of the safety
substrate of token coherence, and prove its correctness. Third, we demonstrated
that token coherence’s “design for verification” approach indeed facilitates the
verification as claimed.

Future work may address the following open issues. First, the methodol-
ogy does not currently address liveness. Second, other protocols or concurrent
computations may benefit from the high-level abstraction expressed by token
transition systems, and offer opportunities for compositional refinement along
the same lines. Third, much room for automation remains: for example, we could
attempt to integrate theorem provers with the SLICC compiler.
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