
Regular Functions

Rajeev Alur
University of Pennsylvania

1

Regular Languages

 Natural

 Intuitive operational model of finite-state automata

 Robust

 Alternative characterizations and closure properties

 Analyzable

 Algorithms for emptiness, equivalence, minimization, learning …

 Applications

 Algorithmic verification, text processing …

What is the analog of regularity for defining functions?

2

Do we really need such a concept ?

Input Output

Vechev, Martin Martin Vechev

Martin Abadi Martin Abadi

Rinard, Martin C. Martin Rinard

FlashFill: Programming by Examples
 Ref: Gulwani (POPL 2011)

 Infers desired Excel macro program
 Iterative: user gives examples and corrections
 Already incorporated in Microsoft Excel

3

 Learning regular languages : L* (Angluin’92)
 Learning string transformation : ??

function delete
 input ref curr;
 input data v;
 output ref result;
 output bool flag := 0;
 local ref prev;

 while (curr != nil) & (curr.data = v) {
 curr := curr.next;
 flag := 1;
 }
 result := curr;
 prev:= curr;
 if (curr != nil) then {
 curr := curr.next;
 prev.next := nil;
 while (curr != nil) {
 if (curr.data = v) then {
 curr := curr.next;
 flag := 1;
 }
 else {
 prev.next := curr;
 prev := curr;
 curr := curr.next;
 prev.next := nil;
 }
 }

Typically a simple function D* D*
 Insert
 Delete
 Reverse …

Verification of List-processing Programs

head tail

3 8 2

4

curr

But finite-state verification
algorithms not applicable, only lots
of undecidability results !

@inproceedings{AC11,
 author = {Alur and Cerny},
 conference = {POPL 2011}
}

@inproceedings{AFR14,
 title = {Streaming transducers},
 conference = {LICS 2014},
 author = {Alur and Freilich and Raghothaman}
}

@inproceedings{ADR15,
 author = {Alur and D’Antoni and Raghothman},
 title = {Regular combinators},
 conference = {POPL 2015}
}

Task: Shift titles one entry up

Document Transformation

5

Should we use Perl ? sed ?
But these are Turing-complete languages with no “analysis” tools

Complexity Classification of Languages

What if we consider functions?
 From strings to strings

--- Recursive

--- NP

--- P

--- Linear-time

--- Regular

No essential change for
 Recursive, NP, P, linear-time…

6

Natural starting point for regular functions:
 Variation of classical finite-state automata

Finite-State Sequential Transducers

 Deterministic finite-state control + transitions labeled by
(input symbol / string of output symbols)

 Examples:

Delete all a symbols

Duplicate each symbol

Insert 0 after first b

 Theoretically not that different from classical automata, and
have found applications in speech/language processing

q q’
a/010

7

Expressive enough ? What about reverse ?

Deterministic Two-way Transducers

 Unlike acceptors, two-way transducers more expressive than
one-way model (Aho, Ullman 1969)

Reverse

Duplicate entire string (map w to w.w)

Delete a symbols if string ends with b (regular look-ahead)

q

a c b a b b c

8

Theory of Two-way Finite-state Transducers

 Closed under sequential composition (Chytil, Jakl, 1977)

 Checking functional equivalence is decidable (Gurari 1980)

 Equivalent to MSO (monadic second-order logic) definable
graph transductions (Engelfriet, Hoogeboom, 2001)

 Challenging theoretical results

Not like finite automata (e.g. Image of a regular language
need not be regular !)

Complex constructions

No known applications

9

Talk Outline

 Machine model: Streaming String Transducers

 DReX: Declarative language for string transformations

 Regular Functions: Beyond strings to strings

10

Example Transformation 1: Delete

Dela(w) = String w with all a symbols removed

output x

a / x := x

x := e

b / x := x.b

11

a / e

b / b

Traditional transducer Finite-state control +
Explicit string variable to
compute output

Example Transformation 2: Reverse

Rev(w) = String w in reverse

output y

a / y := a.y

y := e

b / y := b.y

12

String variables updated at each step as in a program

Key restriction: No tests ! Write-only variables !

Example Transformation 3: Regular Choice

f(w)= If input ends with b, then Rev(w) else Dela(w)

output x

a / y := a.y

x,y := e

output y

b / x:=x.b; y:=b.y

b/ x:=x.b; y:= b.y

a/ y := a.y

13

Multiple string variables used to compute alternative outputs

Model closed under “regular look-ahead”

Example Transformation 4: Swap

f(u1 : v1 # u2 : v2 # ...) = v1 : u1 # v2 : u2 # ... ui and vi : {a,b}*

s / y := y.s

x,y := e

output x : y

s / x := x.s

:

/ x := x.:.y.#; y:= e

14

Concatenation of string variables allowed (and needed)

Restriction: if x := x.y then y must be assigned a constant

Streaming String Transducer (SST)

1. Finite set Q of states

2. Input alphabet S

3. Output alphabet G

4. Initial state q0

5. Finite set X of string variables

6. Partial output function F : Q -> (G U X)*

7. State transition function d : Q x S -> Q

8. Variable update function r : Q x S x X -> (G U X)*

 Output function and variable update function required to be
copyless: each variable x can be used at most once

 Configuration = (state q, valuation a from X to G*)

 Semantics: Partial function from S * to G*

 15

SST Properties

 At each step, one input symbol is processed, and at most a
constant number of output symbols are newly created

 Output is bounded: Length of output = O(length of input)

 SST transduction can be computed in linear time

 Finite-state control: String variables not examined

 SST cannot implement merge

 f(u1u2….uk#v1v2…vk) = u1v1u2v2….ukvk

 Multiple variables are essential

 For f(w)=wk, k variables are necessary and sufficient
16

Decision Problem: Type Checking

Pre/Post condition assertion: { L } S { L’ }

 Given a regular language L of input strings (pre-condition), an
SST S, and a regular language L’ of output strings (post-
condition), verify that for every w in L, S(w) is in L’

Thm: Type checking is solvable in polynomial-time

 Key construction: Summarization

17

Decision Problem: Equivalence

Functional Equivalence;

 Given SSTs S and S’ over same input/output alphabets,

 check whether they define the same transductions.

Thm: Equivalence is solvable in PSPACE

 (polynomial in states, but exponential in no. of string variables)

Open problem: Lower bound / Improved algorithm

18

Expressiveness

Thm: A string transduction is definable by an SST iff it is regular

 1. SST definable transduction is MSO definable

 2. MSO definable transduction can be captured by a two-way

 transducer (Engelfriet/Hoogeboom 2001)

 3. SST can simulate a two-way transducer

Evidence of robustness of class of regular transductions

Closure properties with effective constructions

 1. Sequential composition: f1(f2(w))

 2. Regular conditional choice: if w in L then f1(w) else f2(w)

19

From Two-Way Transducers to SSTs

q

Two-way transducer A visits each position multiple times

What information should SST S store after reading a prefix?

f(q)
xq

For each state q of A, S maintains summary of computation of A
started in state q moving left till return to same position

 1. The state f(q) upon return

 2. Variable xq storing output emitted during this run

 20

Challenge for Consistent Update

q

Map f: Q -> Q and variables xq need to be consistently updated at
each step

If transducer A moving left in state u on symbol a transitions to
q, then updated f(u) and xu depend on current f(q) and xq

Problem: Two distinct states u and v may map to q

Then xu and xv use xq, but assignments must be copyless !

Solution requires careful analysis of sharing (required value of
each xq maintained as a concatenation of multiple chunks)

f(q)
xq

a

u

f(u)

21

Heap-manipulating Programs

 Sequential program +

 Heap of cells containing data and next pointers +

 Boolean variables +

 Pointer variables that reference heap cells

 Program operations can add cells, change next pointers, and
traverse the heap by following next pointers

How to restrict operations to capture exactly regular transductions

head prev

3 8 2 5

curr

4 new

22

Representing Heaps in SST

x

y

z

Shape (encoded in state of SST):

 x : u1 u2 z ; y : u4 u2 z ; z: u3

String variables: u1, u2, u3, u4

Shape + values of string vars enough to encode heap

u3
u2

u1

u4

23

Simulating Heap Updates

x

y

z

Consider program instruction

 y.next := z

How to update shape and string variables in SST?

u3
u2

u1

u4

24

Simulating Heap Updates

x

y

z

New Shape: x: u1 z ; y : z ; z : u3

Variable update: u1 := u1 u2

Special cells:
 Cells referenced by pointer vars

 Cells that 2 or more (reachable) next pointers point to

Contents between special cells kept in a single string var

Number of special cells = 2(# of pointer vars) - 1

u3

u1

25

Regular Heap Manipulating Programs

Update

x.next := y (changes heap shape destructively)

x := new (a) (adds new cell with data a and next nil)

Traversal

curr := curr.next (traversal of input list)

x := y.next (disallowed in general)

Theorem: Programs of above form can be analyzed by compiling
into equivalent SSTs

Single pass traversal of input list possible

Pointers cannot be used as multiple read heads

26

Manipulating Data

 Each string element consists of (tag t, data d)
 Tags are from finite set

 Data is from unbounded set D that supports = and < tests

 Example of D: Names with lexicographic order

 SSTs and list-processing programs generalized to allow
 Finite set of data variables

 Tests using = and < between current value and data vars

 Input and output values

 Checking equivalence remains decidable (in PSPACE) !

 Many common routines fall in this class
 Check if list is sorted

 Insert an element in a sorted list

 Delete all elements that equal input value

27

function delete
 input ref curr;
 input data v;
 output ref result;
 output bool flag := 0;
 local ref prev;

 while (curr != nil) & (curr.data = v) {
 curr := curr.next;
 flag := 1;
 }
 result := curr;
 prev:= curr;
 if (curr != nil) then {
 curr := curr.next;
 prev.next := nil;
 while (curr != nil) {
 if (curr.data = v) then {
 curr := curr.next;
 flag := 1;
 }
 else {
 prev.next := curr;
 prev := curr;
 curr := curr.next;
 prev.next := nil;
 }
 }

Decidable Class of List-processing Programs

head tail

3 8 2

28

curr

Decidable Analysis:
 1. Assertion checks
 2. Pre/post condition
 3. Full functional correctness

Potential Application: String Sanitizers

 BEK: A domain specific language for writing string manipulating
sanitizers on untrusted user data

 Analysis tool translates BEK program into (symbolic)
transducer and checks properties such as

Is transduction idempotent: f(f(w)) = f(w)

Do two transductions commute: f1(f2(w)) = f2(f1(w))

 Recent success in analyzing IE XSS filters and other web apps

 Example sanitizer that BEK cannot capture (but SST can):

 Rewrite input w to suffix following the last occurrence of “dot”

Fast and precise sanitizer analysis with BEK.
 Hooimeijer et al. USENIX Security 2011

29

Talk Outline

 Machine model: Streaming String Transducers

 DReX: Declarative language for string transformations

 Regular Functions: Beyond strings to strings

30

Search for Regular Combinators

 Regular Expressions
Basic operations: e, a, Union, Concatenation, Kleene-*

Additional constructs (e.g. Intersection) : Trade-off between
ease of writing constraints and complexity of evaluation

 What are the basic ways of combining functions?
Goal: Calculus of regular functions

 Partial function from S* to G*
Dom(f): Set of strings w for which f(w) is defined

In our calculus, Dom(f) will always be a regular language

31

Base Functions

 For a in S and g in G*, a / g
If input w equals a then output g, else undefined

 For g in G*, e / g

If input w equals e then output g else undefined

32

Choice

 f else g
Given input w, if w in Dom(f), then return f(w) else return g(w)

 Analog of union in regular expressions

Asymmetric (non-commutative) nature ensures that the result
(f else g)(w) is uniquely defined

 Examples:

Id1 = (a / a) else (b / b)

Dela1 = (a / e) else Id1

33

Concatenation and Iteration

 split (f, g)
Given input string w, if there exist unique u and v such that w=u.v
and u in Dom(f) and v in Dom(g) then return f(u).g(v)

Similar to “unambiguous” concatenation

 iterate (f)
Given input string w, if there is unique k and unique strings u1,…uk
such that w = u1.u2…uk and each ui in Dom(f) then return f(u1)…f(uk)

 left-split (f, g)
Similar to split, but return g(v).f(u)

 left-iterate (f)

Similar to iterate, but return f(uk)…f(u1)

34

Examples

 Id1 = (a / a) else (b / b)

 Dela1 = (a / e) else Id1

 Id = iterate (Id1) : maps w to itself

 Dela = iterate (Dela1) : Delete all a symbols

 Rev = left-iterate (Id1) : reverses the input

 If w ends with b then delete a’s else reverse

 split (Dela, b / b) else Rev

 Map u#v to v.u

 left-split (split (Id, # / e), Id)

35

Function Combination

 combine (f, g)
If w in both Dom(f) and Dom(g), then return f(w).g(w)

 combine(Id, Id) maps an input string w to w.w

 Needed for expressive completeness

 Reminiscent of Intersection for languages

36

@inproceedings{AC11,
 author = {Alur and Cerny},
 conference = {POPL 2011}
}

@inproceedings{AFR14,
 title = {Streaming transducers},
 conference = {LICS 2014},
 author = {Alur and Freilich and Raghothaman}
}

@inproceedings{ADR15,
 author = {Alur and D’Antoni and Raghothman},
 title = {Regular combinators},
 conference = {POPL 2015}
}

Task: Shift titles one entry up

Document Transformation Example

37

Does not seem expressible with combinators discussed so far…
Cannot compute this by splitting document in chunks, transforming
them separately, and combining the results

Chained Iteration

chain (f, r) : Given input string w, if there is unique k and unique strings
u1,…uk such that w = u1.u2…uk and each ui in Dom(r) then return
f(u1u2).f(u2u3)…f(uk-1uk)

38

Thm: A partial function f : S*->G* is regular iff it can be constructed using
base functions, choice, split, left-split, combine, chain, and left-chain.

Matches r Matches r Matches r Matches r Matches r

Apply f to get v1

Input w

Apply f to get v2

Apply f to get v3

Apply f to get v4

Output v1.v2.v3.v4

Towards a Prototype Language

 Goal: Design a DSL for regular string transformations

 Allow “symbolic” alphabet

Symbols range over a “sort”

Base function: j(x) / g

Set of allowed predicates form a Boolean algebra

Inspired by Symbolic Automata of Veanes et al

 Given a program P and input w, evaluation of P(w) should be fast!

Natural algorithm is based on dynamic programming: O(|w|3)

39

Consistency Rules

 In f else g, Dom(f) and Dom(g) should be disjoint

 In combine(f,g), Dom(f) and Dom(g) should be identical

 In split(f,g), for every string w, there exists at most one way to
split w = u.v such that u in Dom(f) and v in Dom(g)

 Similar rules for left-split, iterate, chain, and so on

40

DReX: Declarative Regular Transformations

 Syntax based on regular combinators + Type system to enforce
consistency rules

 Thm: Restriction to consistent programs does not limit the
expressiveness (DReX captures exactly regular functions)

 Consistency can be checked in poly-time in size of program

 For a consistent DReX program P, output P(w) can be computed in
single-pass in time O(|w|) (and poly-time in |P|)

Intuition: To compute split(f,g)(w), whenever a prefix of w
matches Dom(f), a new thread is started to evaluate g.
Consistency is used to kill threads eagerly to limit the number
of active threads

41

DReX Prototype Status

 Prototype implementation

Type checking

Linear-time evaluation

 Evaluation

How natural is it to write consistent DReX programs?

How does type checker / evaluator scale ?

 Ongoing work

Syntactic sugar with lots of pre-defined operations

Support for analysis (e.g. equivalence checking)

Integration in Python/Java ?

 42

Talk Outline

 Machine model: Streaming String Transducers

 DReX: Declarative language for string transformations

 Regular Functions: Beyond strings to strings

Parameterized Definition of Regularity

Additive Cost Register Automata

Regular functions over a semi-ring

43

Mapping Strings to Numerical Costs

C: Buy Coffee

S: Fill out a survey

M: End-of-month

C / 2 C / 1

S

M

M

Maps a string over {C,S,M} to a cost value:

 Cost of a coffee is 2, but reduces to 1 after filling out a
 survey until the end of the month

Can we generalize expressiveness using SST-style model?
Potential application: Quantitative analysis

S

44

Finite Automata with Cost Registers

C / x:=x+2 C / x:=x+1
S

M

M

Cost Register Automata:

 Finite control + Finite number of registers

 Registers updated explicitly on transitions

 Registers are write-only (no tests allowed)

 Each (final) state associated with output register

x
x:=0

x

S

45

CRA Example

C / x:=x+2 C / x:=x+1
S

M / x:=0

M / x:=0

At any time, x = cost of coffees during the current month

Cost register x reset to 0 at each end-of-month

x
x:=0

x

S

46

CRA Example

C / x:=x+2

C / x:=x+1
S / x:=y

M / y:=x

M / y:=x

Filling out a survey gives discount for all coffees during that month

x
x,y:=0

x

y:=y+1

S

47

CRA Example

C / y:=y+1

M / x:=min(x,y); y:=0

Output = minimum number of coffees consumed during a month

 Updates use two operations: increment and min

min(x,y) y:=0

x:=Infty

48

Can we define a general notion of regularity
parameterized by operations on the set of costs ?

Cost Model

Cost Grammar G to define set of terms:

 Inc: t := c | (t+c)

 Plus: t := c | (t+t)

 Min-Inc: t := c | (t+c) | min(t,t)

 Inc-Scale: t := c | (t+c) | (t*d)

Interpretation [] for operations:

 Set D of cost values

 Mapping operators to functions over D

 Example interpretations for the Plus grammar:

 Set N of natural numbers with addition

 Set G* of strings with concatenation 49

Regular Function

Definition parameterized by the cost model C=(D,G,[])

A (partial) function f:S*->D is regular w.r.t. the cost model C if
there exists a string-to-tree transformation g such that

 (1) for all strings w, f(w)=[g(w)]

 (2) g is a regular string-to-tree transformation

50

MSO-definable String-to-tree Transformations

 MSO over strings

 F := a(x) | X(x) | x=y+1 | ~ F | F & F | Exists x. F | Exists X. F

 MSO-transduction from strings to trees:

 1. Number k of copies

 For each position x in input, output-tree has nodes x1, …xk

 2. For each symbol a and copy c, MSO-formula Fa,c(x)

 Output-node xc is labeled with a if Fa,c(x) holds for unique a

 3. For copies c and d, MSO-formula Fc,d(x,y)

 Output-tree has edge from node xc to node xd if Fc,d(x,y) holds

51

Example Regular Function

Cost grammar Min-Inc: t := c | (t+c) | min(t,t)

Interpretation: Natural numbers with usual meaning of + and min

S={C,M}

f(w) = Minimum number of C symbols between successive M’s

Infty 0 1 1 0 1 1 1

+ + + + +

min min

Input w= C C M C C C M

Tree:

Value = 2

52

Regular String-to-tree Transformations

 Definition based on MSO (Monadic Second Order Logic) –
definable graph-to-graph transformations (Courcelle)

 Studied in context of syntax-directed program transformations,
attribute grammars, and XML transformations

 Operational model: Macro Tree Transducers (Engelfriet et al)

 Recent proposal: Streaming Tree Transducers (ICALP 2012)

53

Properties of Regular Functions

Known properties of regular string-to-tree transformations imply:

 If f and g are regular w.r.t. a cost model C, and L is a regular
language, then “if L then f else g” is regular w.r.t. C

 Reversal: define Rev(f)(w) = f(reverse(w)).

 If f is regular w.r.t. a cost model C, then so is Rev(f)

 Costs grow linearly with the size of the input string:

 Term corresponding to a string w is O(|w|)

54

Regular Functions for Non-Commutative Monoid

 Cost model: G* with binary function concatenation

 Interpretation for . is non-commutative, associative, identity e

 Cost grammar G(.): t := s | (t . t) s is a string

 Cost grammar G(.s): t := s | (t . s) | (s . t)

 Thm: Regular functions w.r.t G(.) is a strict superset of regular
functions w.r.t. G(.s)

 Classical model of Sequential Transducers captures only a
subset of regular functions w.r.t. G(.s)

 SSTs capture exactly regular functions w.r.t. G(.)

55

Regular Functions over Commutative Monoid

Cost model: D with binary function +

Interpretation for + is commutative, associative, with identity 0

Cost grammar G(+): t := c | (t+t)

Cost grammar G(+c): t := c | (t+c)

Thm: Regularity w.r.t. G(+) coincides with regularity w.r.t. G(+c)

Proof intuition: Show that rewriting terms such as (2+3)+(1+5) to
(((2+3)+1)+5) is a regular tree-to-tree transformation, and use
closure properties of tree transducers

56

Additive Cost Register Automata

Additive Cost Register Automata:

 DFA + Finite number of registers

 Each register is initially 0

 Registers updated using assignments x := y + c

 Each final state labeled with output term x + c

Given commutative monoid (D,+,0), an ACRA defines a partial
function from S* to D

C / x:=x+2, y:=y+1 C / x:=x+1

S / x:=y

M / y:=x
M / y:=x

x
x,y:=0

x

S

57

Regular Functions and ACRAs

 Thm: Given a commutative monoid (D,+,0), a function f:S*->D is
definable using an ACRA iff it is regular w.r.t. grammar G(+).

 Establishes ACRA as an intuitive, deterministic operational
model to define this class of regular functions

 Proof relies on the model of SSTT (Streaming string-to-tree
transducers) that can define all regular string-to-tree
transformations

58

Single-Valued Weighted Automata

 Weighted Automata:

 Nondeterministic automata with edges labeled with costs

 Single-valued:

 Each string has at most one accepting path

 Cost of a string:

 Sum of costs of transitions along the accepting path

 Example: When you fill out a survey, each coffee during that
month gets the discounted cost.

 Locally nondeterministic, but globally single-valued

 Thm: ACRAs and single-valued weighted automata define the
same class of functions

59

Decision Problems for ACRAs

 Min-Cost: Given an ACRA M, find min {M(w) | w in S*}

 Solvable in Polynomial-time

 Shortest path in a graph with vertices (state, register)

 Equivalence: Do two ACRAs define the same function

 Solvable in Polynomial-time

 Based on propagation of linear equalities in program graphs

 Register Minimization: Given an ACRA M with k registers, is
there an equivalent ACRA with < k registers?

 Algorithm polynomial in states, and exponential in k

60

Towards a Theory of Additive Regular Functions

 Goal: Machine-independent characterization of regularity

 Similar to Myhill-Nerode theorem for regular languages

 Registers should compute necessary auxiliary functions

 Example: S = {C,S}

 f(w)= if w contains S then |w| else 2|w|

 f1(Ci)=i and f2(Ci)=2i are necessary and sufficient

 Thm: Register complexity of a function is at least k iff there
exist strings s0, … sm, loop-strings t1,…tm, and suffixes w1,…wm,
and k distinct vectors c1,…ck such that for all numbers x1,…xm,
f(s0 t1

x1 s1 t2
x2 … sm wi) = Sj cij xj + di

61

Regular Functions over Semiring

 Cost Domain: Natural numbers + Infty

 Operation Min: Commutative monoid with identity Infty

 Operation +: Monoid with identity 0

 Rules:
 a + Infty = Infty + a = Infty

 a+min(b,c) = min (a+b, a+c); min(b,c)+a = min(b+a,c+a)

 Cost grammar MinInc: t := c | min(t,t) | (t+c)

 Goal: Understand class of regular functions w.r.t. MinInc

62

Weighted Automata

 Weighted Automata:

 Nondeterministic automata with edges labeled with costs

 Interpreted over the semiring cost model:
 cost of string w = min of costs of all accepting paths over w

 cost of a path = sum of costs of all edges in a path

 Widely studied (Handbook of Weighted Automata, Droste et al)

 Minimum cost problem solvable

 Equivalence undecidable over (N, min, +)

 Not determinizable

 Natural model in many applications

 Recent interest in CAV/LICS community for quantitative analysis

63

CRA over Min-Inc Semiring

C / y:=y+1

M / x:=min(x,y); y:=0

Output = Minimum number of coffees consumed during a month

min(x,y)
y:=0

x:=Infty

64

CRA(min,+c) = Weighted Automata

 From WA to CRA(min,+c):
 Generalizes subset construction for determinization

 For every state q of WA, CRA maintains a register xq

 xq = min of costs of all paths to q on input read so far

 Update on a: xq := min { xp + c | p –(a,c)-> q is edge in WA}

 From CRA(min,+c) to WA:
 State of WA = (state q of CRA, register x)

 min simulated by nondeterminism

 To simulate p – (a, x:=min(y,z)) -> q in CRA,

 add a-labeled edges from (p,y) and (p,z) to (q,x)

 Distributivity of + over min critical

65

CRA(min,+c) > Min-Plus Regular Functions

Thm: The class of regular functions w.r.t. Min-Inc semiring is a
strict subset of weighted automata

Above function is not regular: cost term is quadratic in input

C/1 S/1

M

S,M C,M

Input w: w1 M w2 M … M wn

Each wi in {C,S}*

ci = Number of C’s in wi

si = Number of S’s in wi

Cost(w) = minj { c1+…+cj+sj+1+…+sn}

66

Machine Model for Semiring Regular Functions

 Updates to registers must be copyless
 Each register appears at most once in a right-hand-side

 Update [x,y] := [min(x,y),y] not allowed

 Necessary to maintain “linear” growth

 Need ability to simulate substitution
 Register x carries two values c and d

 Stands for the parameterized expression min(c, ?)+d

 Besides min and inc, can substitute ? with a value

 Resulting model coincides with regular functions over semiring

 Open: Decidability of equivalence over (N, min , +c)

67

Discounted Cost Regular Functions

 Basic element: (cost c, discount d)

 Discounted sum: (c1,d1)*(c2,d2) = (c1+d1c2, d1d2)

 Example of non-commutative monoid

 Classical Model: Future discounting
 Cost of a path: (c1,d1) * (c2,d2) * … * (cn,dn)

 Polynomial-time algorithm for “generalized” shortest path

 Past discounting
 Cost of a path: (cn,dn) * (cn-1,dn-1) * … * (c1,d1)

 Same PTIME algorithm works for shortest paths

 Prioritized double discounting
 Cost = (c1,d1) * … * (cn, dn) * (c’1,d’1) * … * (c’n,d’n)

 Shortest path: NExpTime algorithm

 Open: Shortest path for Discounted Cost Register Automata
68

Conclusions

 Streaming String Transducers and Cost Register Automata
 Write-only machines with multiple registers to store outputs

 DReX: Declarative language for string transformations
 Robust expressiveness with decidable analysis problems

 Prototype implementation with linear-time evaluation

 Ongoing work: Analysis tools

 Emerging theory of regular functions
 Some results, new connections

 Many open problems and unexplored directions

69

Acknowledgements and References

 Streaming String Transducers (with P. Cerny; POPL’11, FSTTCS’10)

 Transducers over Infinite Strings (with E. Filiot, A. Trivedi; LICS’12)

 Streaming Tree Transducers (with L. D’Antoni; ICALP’12)

 Regular Functions and Cost Register Automata
 (with L. D’Antoni, J. Deshmukh, M. Raghothaman, Y. Yuan; LICS’13)

 Decision problems for Additive Cost Regular Functions

 (with M. Raghothaman; ICALP’13)

 Infinite-String to Infinite-Term Regular Transformations

 (with A. Durand, A. Trivedi; LICS’13: Next session)

 Min-cost problems for Discounted Sum Regular Functions

 (with S. Kannan, K. Tian, Y. Yuan; LATA’13)

 Regular combinators for string transformations

 (with A. Freilich and M. Raghothaman, LICS’13)

 DReX (with L. D’Antoni and M. Raghothaman; POPL’15)
70

