Regular Functions

Rajeev Alur University of Pennsylvania

Regular Languages

- Natural

Intuitive operational model of finite-state automata
\square Robust
Alternative characterizations and closure properties

- Analyzable

Algorithms for emptiness, equivalence, minimization, learning ...
\square Applications
Algorithmic verification, text processing ...

What is the analog of regularity for defining functions?
Do we really need such a concept?

FlashFill: Programming by Examples

Ref: Gulwani (POPL 2011)

Input	Output
Vechev, Martin	Martin Vechev
Martin Abadi	Martin Abadi
Rinard, Martin C.	Martin Rinard

- Infers desired Excel macro program
- Iterative: user gives examples and corrections
\square Already incorporated in Microsoft Excel

Learning regular languages
L* (Angluin'92) Learning string transformation
??

Verification of List-processing Programs

```
function delete
    input ref curr;
input data v;
output ref result;
output bool flag := 0;
```



```
local ref prev;
while (curr != nil) & (curr.data = v) {
        curr := curr.next;
        flag := 1;
        }
    result := curr;
prev:= curr;
if (curr != nil) then {
        curr := curr.next;
        prev.next := nil;
        while (curr != nil) {
            if (curr.data = v) then {
                curr := curr.next;
                flag := 1;
                }
            else {
                        prev.next := curr;
                prev := curr;
                curr := curr.next;
                prev.next := nil;
                            Typically a simple function D* }->\mathrm{ D*
                            Insert
                                    Delete
                            Reverse ...
```

But finite-state verification algorithms not applicable, only lots of undecidability results!

Document Transformation

```
@inproceedings{AC11,
    author = {Alur and Cerny},
    conference = {POPL 2011}
}
@inproceedings{AFR14,
    title = {Streaming transducers,,
    conference = {LICS 2014},
    author = {Alur and Freilich<and Raghothaman}
}
@inproceedings{ADR15,
    author = {Alur and D'Antoni
        title = {Regular combinators},
        conference = {POPL 2015}
}
```

Should we use Perl? sed?
But these are Turing-complete languages with no "analysis" tools

Complexity Classification of Languages

-- Recursive
-- NP
$--P$
-- Linear-time
-- Regular

What if we consider functions?
 From strings to strings

No essential change for
Recursive, NP, P, linear-time...

Natural starting point for regular functions:
Variation of classical finite-state automata

Finite-State Sequential Transducers

Deterministic finite-state control + transitions labeled by (input symbol / string of output symbols)

$$
q \xrightarrow{a / 010} q^{\prime}
$$

- Examples:
- Delete all a symbols
- Duplicate each symbol
- Insert 0 after first b

Theoretically not that different from classical automata, and have found applications in speech/language processing

Expressive enough ? What about reverse?

Deterministic Two-way Transducers

\square Unlike acceptors, two-way transducers more expressive than one-way model (Aho, Ullman 1969)

- Reverse
- Duplicate entire string (map w to w.w)
- Delete a symbols if string ends with b (regular look-ahead)

Theory of Two-way Finite-state Transducers

Closed under sequential composition (Chytil, Jakl, 1977)
Checking functional equivalence is decidable (Gurari 1980)
Equivalent to MSO (monadic second-order logic) definable graph transductions (Engelfriet, Hoogeboom, 2001)

Challenging theoretical results

- Not like finite automata (e.g. Image of a regular language need not be regular!)
- Complex constructions
- No known applications

Talk Outline

D Machine model: Streaming String Transducers

D DReX: Declarative language for string transformations

Regular Functions: Beyond strings to strings

Example Transformation 1: Delete

$\operatorname{Del}_{a}(w)=$ String w with all a symbols removed

b/b
Traditional transducer

b/x:=x.b
Finite-state control + Explicit string variable to compute output

Example Transformation 2: Reverse

$\operatorname{Rev}(w)=$ String w in reverse

String variables updated at each step as in a program Key restriction: No tests! Write-only variables!

Example Transformation 3: Regular Choice

 $f(w)=$ If input ends with b, then $\operatorname{Rev}(w)$ else $\operatorname{Del}_{a}(w)$

Multiple string variables used to compute alternative outputs
Model closed under "regular look-ahead"

Example Transformation 4: Swap

$$
f\left(u_{1}: v_{1} \# u_{2}: v_{2} \# \ldots\right)=v_{1}: u_{1} \# v_{2}: u_{2} \# \ldots \quad u_{i} \text { and } v_{i}:\{a, b\}^{\star}
$$

Concatenation of string variables allowed (and needed)
Restriction: if $x:=x . y$ then y must be assigned a constant

Streaming String Transducer (SST)

1. Finite set Q of states
2. Input alphabet Σ
3. Output alphabet Γ
4. Initial state q_{0}
5. Finite set X of string variables
6. Partial output function $F: Q \rightarrow(\Gamma \cup X)^{\star}$
7. State transition function $\delta: Q \times \Sigma \rightarrow Q$
8. Variable update function $\rho: Q \times \Sigma \times X \rightarrow(\Gamma \cup X)^{\star}$

- Output function and variable update function required to be copyless: each variable \times can be used at most once
- Configuration $=\left(\right.$ state q, valuation α from X to $\left.\Gamma^{*}\right)$
- Semantics: Partial function from Σ^{*} to Γ^{*}

SST Properties

\square At each step, one input symbol is processed, and at most a constant number of output symbols are newly created
\square Output is bounded: Length of output $=O$ (length of input)
\square SST transduction can be computed in linear time
\square Finite-state control: String variables not examined
\square SST cannot implement merge

$$
f\left(u_{1} u_{2} \ldots u_{k} \# v_{1} v_{2} \ldots v_{k}\right)=u_{1} v_{1} u_{2} v_{2} \ldots . u_{k} v_{k}
$$

- Multiple variables are essential

For $f(w)=w^{k}, k$ variables are necessary and sufficient

Decision Problem: Type Checking

Pre/Post condition assertion: \{L\} S \{L'\}
Given a regular language L of input strings (pre-condition), an SST S, and a regular language L ' of output strings (postcondition), verify that for every w in $\mathrm{L}, \mathrm{S}(\mathrm{w})$ is in L^{\prime}

Thm: Type checking is solvable in polynomial-time Key construction: Summarization

Decision Problem: Equivalence

Functional Equivalence: Given SSTs S and S' over same input/output alphabets, check whether they define the same transductions.

Thm: Equivalence is solvable in PSPACE
(polynomial in states, but exponential in no. of string variables)
Open problem: Lower bound / Improved algorithm

Expressiveness

Thm: A string transduction is definable by an SST iff it is regular

1. SST definable transduction is MSO definable
2. MSO definable transduction can be captured by a two-way transducer (Engelfriet/Hoogeboom 2001)
3. SST can simulate a two-way transducer

Evidence of robustness of class of regular transductions
Closure properties with effective constructions

1. Sequential composition: $f_{1}\left(f_{2}(w)\right)$
2. Regular conditional choice: if w in L then $f_{1}(w)$ else $f_{2}(w)$

From Two-Way Transducers to SSTs

Two-way transducer A visits each position multiple times What information should SST S store after reading a prefix?

For each state q of A, S maintains summary of computation of A started in state q moving left till return to same position

1. The state $f(q)$ upon return
2. Variable x_{q} storing output emitted during this run

Challenge for Consistent Update

Map f: Q-> Q and variables x_{q} need to be consistently updated at each step
If transducer A moving left in state u on symbol a transitions to q, then updated $f(u)$ and x_{u} depend on current $f(q)$ and x_{q}
Problem: Two distinct states u and v may map to q
Then x_{u} and x_{v} use x_{q}, but assignments must be copyless!
Solution requires careful analysis of sharing (required value of each x_{q} maintained as a concatenation of multiple chunks)

Heap-manipulating Programs

Sequential program +
Heap of cells containing data and next pointers +
Boolean variables +
Pointer variables that reference heap cells

Program operations can add cells, change next pointers, and traverse the heap by following next pointers

How to restrict operations to capture exactly regular transductions

Representing Heaps in SST

Shape (encoded in state of SST):

$$
x: u_{1} u_{2} z: y: u_{4} u_{2} z: z: u_{3}
$$

String variables: $u_{1}, u_{2}, u_{3}, u_{4}$
Shape + values of string vars enough to encode heap

Simulating Heap Updates

Consider program instruction
y.next := z

How to update shape and string variables in SST?

Simulating Heap Updates

New Shape: $x: u_{1} z: y: z ; z: u_{3}$
Variable update: $u_{1}:=u_{1} u_{2}$
Special cells:
Cells referenced by pointer vars
Cells that 2 or more (reachable) next pointers point to
Contents between special cells kept in a single string var
Number of special cells $=2$ (\# of pointer vars) -1

Regular Heap Manipulating Programs

Update
x.next :=y (changes heap shape destructively)
$x:=$ new (a) (adds new cell with data a and next nil)

Traversal

```
curr := curr.next (traversal of input list)
x:= y.next (disallowed in general)
```

Theorem: Programs of above form can be analyzed by compiling into equivalent SSTs
Single pass traversal of input list possible
Pointers cannot be used as multiple read heads

Manipulating Data

\square Each string element consists of (tag t, data d)
Tags are from finite set
Data is from unbounded set D that supports = and < tests Example of D: Names with lexicographic order
\square SSTs and list-processing programs generalized to allow
Finite set of data variables
Tests using = and < between current value and data vars
Input and output values
Checking equivalence remains decidable (in PSPACE)!
\square Many common routines fall in this class
Check if list is sorted
Insert an element in a sorted list
Delete all elements that equal input value

Decidable Class of List-processing Programs

```
function delete
    input ref curr;
    input data v;
output ref result;
output bool flag := 0;
```



```
local ref prev;
while (curr != nil) & (curr.data = v) {
        curr := curr.next;
        flag := 1;
        }
result := curr;
prev:= curr;
if (curr != nil) then {
        curr := curr.next;
        prev.next := nil;
        while (curr != nil) {
            if (curr.data = v) then {
                curr := curr.next;
                        flag := 1;
                }
            else {
                        prev.next := curr;
                prev := curr;
                curr := curr.next;
                prev.next := nil;
}
```

Decidable Analysis:

1. Assertion checks
2. Pre/post condition
3. Full functional correctness

Potential Application: String Sanitizers

BEK: A domain specific language for writing string manipulating sanitizers on untrusted user data

- Analysis tool translates BEK program into (symbolic) transducer and checks properties such as
- Is transduction idempotent: $f(f(w))=f(w)$
- Do two transductions commute: $\mathrm{f}_{1}\left(\mathrm{f}_{2}(w)\right)=\mathrm{f}_{2}\left(\mathrm{f}_{1}(w)\right)$

Recent success in analyzing IE XSS filters and other web apps

- Example sanitizer that BEK cannot capture (but SST can): Rewrite input w to suffix following the last occurrence of "dot"

Fast and precise sanitizer analysis with BEK. Hooimeijer et al. USENIX Security 2011

Talk Outline

\checkmark Machine model: Streaming String Transducers
© DReX: Declarative language for string transformations

Regular Functions: Beyond strings to strings

Search for Regular Combinators

\square Regular Expressions

- Basic operations: ε, a, Union, Concatenation, Kleene-*
- Additional constructs (e.g. Intersection) : Trade-off between ease of writing constraints and complexity of evaluation

What are the basic ways of combining functions?

- Goal: Calculus of regular functions
\square Partial function from Σ^{\star} to Γ^{*}
- $\operatorname{Dom}(f)$: Set of strings w for which $f(w)$ is defined
- In our calculus, Dom(f) will always be a regular language

Base Functions

\square For a in Σ and γ in $\Gamma^{*}, a / \gamma$

- If input w equals a then output γ, else undefined
- For γ in $\Gamma^{*}, \varepsilon / \gamma$
- If input w equals ε then output γ else undefined

Choice

- f else g

- Given input w, if w in $\operatorname{Dom}(f)$, then return $f(w)$ else return $g(w)$
\square Analog of union in regular expressions
- Asymmetric (non-commutative) nature ensures that the result (f else g)(w) is uniquely defined
- Examples:
- Id1 = (a/a) else (b/b)
- Del $_{a} 1=(a / \varepsilon)$ else Id1

Concatenation and Iteration

\square split (f, g)

- Given input string w, if there exist unique u and v such that $w=u . v$ and u in $\operatorname{Dom}(f)$ and v in $\operatorname{Dom}(g)$ then return $f(u) . g(v)$
- Similar to "unambiguous" concatenation
\square iterate (f)
- Given input string w, if there is unique k and unique strings $u_{1}, \ldots u_{k}$ such that $w=u_{1} \cdot u_{2} \ldots u_{k}$ and each u_{i} in $\operatorname{Dom}(f)$ then return $f\left(u_{1}\right) . . . f\left(u_{k}\right)$
\square left-split (f, g)
- Similar to split, but return g(v).f(u)
- left-iterate (f)
- Similar to iterate, but return $f\left(u_{k}\right) \ldots f\left(u_{1}\right)$

Examples

- Id1 = (a/a) else (b/b)
\square Del $_{a} 1=(a / \varepsilon)$ else Id1
- Id = iterate (Id1) : maps w to itself
\square Del $_{a}=$ iterate (Dela 1) : Delete all a symbols
\square Rev = left-iterate (Id1) : reverses the input
I If w ends with b then delete a 's else reverse split (Del ${ }_{a}$, b/b) else Rev
- Map u\#v to v.u left-split (split (Id, \# / ε), Id)

Function Combination

\square combine (f, g)

- If w in both $\operatorname{Dom}(f)$ and $\operatorname{Dom}(g)$, then return $f(w) . g(w)$
\square combine(Id, Id) maps an input string w to w.w

Needed for expressive completeness
\square Reminiscent of Intersection for languages

Document Transformation Example

```
@inproceedings{AC11,
    author = {Alur and Cerny},
    conference = {POPL 2011}
}
@inproceedings{AFR14,
        title = {Streaming transducerq
        conference = {LICS 2014},
        author = {Alur and Freilich<and Raghothaman}
}
@inproceedings{ADR15,
        author = {Alur and D'Antoni
        title = {Regular combinators},
        conference = {POPL 2015}
}
```

Does not seem expressible with combinators discussed so far... Cannot compute this by splitting document in chunks, transforming them separately, and combining the results

Chained Iteration

chain (f, r): Given input string w, if there is unique k and unique strings $u_{1} \ldots u_{k}$ such that $w=u_{1}, u_{2} \ldots u_{k}$ and each u_{i} in $\operatorname{Dom}(r)$ then return $f\left(u_{1} u_{2}\right) \cdot f\left(u_{2} u_{3}\right) . . f\left(u_{k-1} u_{k}\right)$

Thm: A partial function $f: \Sigma^{\star}->\Gamma^{*}$ is regular iff it can be constructed using base functions, choice, split, left-split, combine, chain, and left-chain.

Towards a Prototype Language

Goal: Design a DSL for regular string transformations

- Allow "symbolic" alphabet
- Symbols range over a "sort"
- Base function: $\varphi(x) / \gamma$
- Set of allowed predicates form a Boolean algebra
- Inspired by Symbolic Automata of Veanes et al
\square Given a program P and input w, evaluation of $P(w)$ should be fast!
- Natural algorithm is based on dynamic programming: $O\left(|w|^{3}\right)$

Consistency Rules

In f else $g, \operatorname{Dom}(f)$ and $\operatorname{Dom}(g)$ should be disjoint
In combine $(f, g), \operatorname{Dom}(f)$ and $\operatorname{Dom}(g)$ should be identical

In split(f,g), for every string w, there exists at most one way to split $w=u . v$ such that u in $\operatorname{Dom}(f)$ and v in $\operatorname{Dom}(g)$

Similar rules for left-split, iterate, chain, and so on

DReX: Declarative Regular Transformations

Syntax based on regular combinators + Type system to enforce consistency rules
\square Thm: Restriction to consistent programs does not limit the expressiveness (DReX captures exactly regular functions)

Consistency can be checked in poly-time in size of program
\square For a consistent DReX program P, output $P(w)$ can be computed in single-pass in time $O(|w|)$ (and poly-time in $|P|$)

- Intuition: To compute split $(f, g)(w)$, whenever a prefix of w matches $\operatorname{Dom}(f)$, a new thread is started to evaluate g. Consistency is used to kill threads eagerly to limit the number of active threads

DReX Prototype Status

- Prototype implementation
- Type checking
- Linear-time evaluation
\square Evaluation
- How natural is it to write consistent DReX programs?
- How does type checker / evaluator scale?
- Ongoing work
- Syntactic sugar with lots of pre-defined operations
- Support for analysis (e.g. equivalence checking)
- Integration in Python/Java?

Talk Outline

\checkmark Machine model: Streaming String Transducers
\checkmark DReX: Declarative language for string transformations

Degular Functions: Beyond strings to strings

- Parameterized Definition of Regularity
- Additive Cost Register Automata
- Regular functions over a semi-ring

Mapping Strings to Numerical Costs

C: Buy Coffee
S: Fill out a survey
M: End-of-month

Maps a string over $\{C, S, M\}$ to a cost value:
Cost of a coffee is 2 , but reduces to 1 after filling out a survey until the end of the month

Can we generalize expressiveness using SST-style model? Potential application: Quantitative analysis

Finite Automata with Cost Registers

Cost Register Automata:
Finite control + Finite number of registers
Registers updated explicitly on transitions
Registers are write-only (no tests allowed)
Each (final) state associated with output register

CRA Example

At any time, $x=$ cost of coffees during the current month

Cost register \times reset to 0 at each end-of-month

CRA Example

$$
x, y:=0
$$

Filling out a survey gives discount for all coffees during that month

CRA Example

$$
x:=\text { Infty } \longrightarrow \frac{c / y:=y+1}{\sum_{M / x}} \frac{\min (x, y)}{M /=\min (x, y) ; y:=0}
$$

Output = minimum number of coffees consumed during a month Updates use two operations: increment and min

Can we define a general notion of regularity parameterized by operations on the set of costs?

Cost Model

Cost Grammar G to define set of terms:

$$
\begin{aligned}
& \text { Inc: } \dagger:=c \mid(t+c) \\
& \text { Plus: } \dagger:=c \mid(\dagger+\dagger) \\
& \text { Min-Inc: } \dagger:=c|(t+c)| \min (t, t) \\
& \text { Inc-Scale: } \dagger:=c|(\dagger+c)|\left(t^{\star} d\right)
\end{aligned}
$$

Interpretation [] for operations:
Set D of cost values
Mapping operators to functions over D
Example interpretations for the Plus grammar: Set N of natural numbers with addition Set Γ^{*} of strings with concatenation

Regular Function

Definition parameterized by the cost model $C=(D, G,[])$
A (partial) function $f: \Sigma^{\star}->D$ is regular w.r.t. the cost model C if there exists a string-to-tree transformation g such that
(1) for all strings $w, f(w)=[g(w)]$
(2) g is a regular string-to-tree transformation

MSO-definable String-to-tree Transformations

\square MSO over strings

$$
\Phi:=a(x)|X(x)| x=y+1|\sim \Phi| \Phi \& \Phi \mid \text { Exists } x . \Phi \mid \text { Exists } X . \Phi
$$

\square MSO-transduction from strings to trees:

1. Number k of copies

For each position x in input, output-tree has nodes $x_{1}, \ldots x_{k}$
2. For each symbol a and copy $c, M S O$-formula $\Phi_{a, c}(x)$

Output-node x_{c} is labeled with a if $\Phi_{a, c}(x)$ holds for unique a
3. For copies c and $d, M S O$-formula $\Phi_{c, d}(x, y)$

Output-tree has edge from node x_{c} to node x_{d} if $\Phi_{c, d}(x, y)$ holds

Example Regular Function

Cost grammar Min-Inc: $\dagger:=c|(\dagger+c)| \min (\dagger, \dagger)$
Interpretation: Natural numbers with usual meaning of + and \min $\Sigma=\{C, M\}$
$f(w)=$ Minimum number of C symbols between successive M 's
Input w= CCMCCCM
Tree:

Value $=2$
min

Regular String-to-tree Transformations

\square Definition based on MSO (Monadic Second Order Logic) definable graph-to-graph transformations (Courcelle)
\square Studied in context of syntax-directed program transformations, attribute grammars, and XML transformations
\square Operational model: Macro Tree Transducers (Engelfriet et al)

Recent proposal: Streaming Tree Transducers (ICALP 2012)

Properties of Regular Functions

Known properties of regular string-to-tree transformations imply:
If f and g are regular w.r.t. a cost model C, and L is a regular language, then "if L then f else g " is regular w.r.t. C
\square Reversal: define $\operatorname{Rev}(f)(w)=f($ reverse $(w))$.
If f is regular w.r.t. a cost model C, then so is $\operatorname{Rev}(f)$

Costs grow linearly with the size of the input string:
Term corresponding to a string w is $O(|w|)$

Regular Functions for Non-Commutative Monoid

\square Cost model: Γ^{*} with binary function concatenation
\square Interpretation for . is non-commutative, associative, identity ε
\square Cost grammar $G():. \dagger:=\sigma \mid(\dagger . \dagger) \quad \sigma$ is a string
\square Cost grammar $G(. \sigma): \dagger:=\sigma|(\dagger . \sigma)|(\sigma . \dagger)$
Thm: Regular functions w.r.t $G($.$) is a strict superset of regular$ functions w.r.t. G(. σ)
\square Classical model of Sequential Transducers captures only a subset of regular functions w.r.t. G(. σ)
\square SSTs capture exactly regular functions w.r.t. $G($.

Regular Functions over Commutative Monoid

Cost model: D with binary function +
Interpretation for + is commutative, associative, with identity 0
Cost grammar G(+): $\dagger:=c \mid(\dagger+\dagger)$
Cost grammar $G(+c): \dagger:=c \mid(\dagger+c)$
Thm: Regularity w.r.t. $G(+)$ coincides with regularity w.r.t. $G(+c)$

Proof intuition: Show that rewriting terms such as $(2+3)+(1+5)$ to $(((2+3)+1)+5)$ is a regular tree-to-tree transformation, and use closure properties of tree transducers

Additive Cost Register Automata

$$
x, y:=0 \rightarrow \frac{c}{c / x:=x+2, y:=y+1} c / x:=x+1
$$

Additive Cost Register Automata:
DFA + Finite number of registers
Each register is initially 0
Registers updated using assignments $x:=y+c$
Each final state labeled with output term $x+c$
Given commutative monoid ($D,+, 0$), an ACRA defines a partial function from Σ^{\star} to D

Regular Functions and ACRAs

- Thm: Given a commutative monoid ($D,+, 0$), a function $f: \Sigma^{*}->D$ is definable using an ACRA iff it is regular w.r.t. grammar $G(+)$.
\square Establishes ACRA as an intuitive, deterministic operational model to define this class of regular functions
\square Proof relies on the model of SSTT (Streaming string-to-tree transducers) that can define all regular string-to-tree transformations

Single-Valued Weighted Automata

- Weighted Automata:

Nondeterministic automata with edges labeled with costs
\square Single-valued:
Each string has at most one accepting path

- Cost of a string:

Sum of costs of transitions along the accepting path
\square Example: When you fill out a survey, each coffee during that month gets the discounted cost.

Locally nondeterministic, but globally single-valued
\square Thm: ACRAs and single-valued weighted automata define the same class of functions

Decision Problems for ACRAs

Min-Cost: Given an ACRA M, find $\min \left\{M(w) \mid w\right.$ in $\left.\Sigma^{\star}\right\}$ Solvable in Polynomial-time Shortest path in a graph with vertices (state, register)
\square Equivalence: Do two ACRAs define the same function Solvable in Polynomial-time Based on propagation of linear equalities in program graphs
\square Register Minimization: Given an ACRA M with k registers, is there an equivalent ACRA with < k registers?

Algorithm polynomial in states, and exponential in k

Towards a Theory of Additive Regular Functions

\square Goal: Machine-independent characterization of regularity
Similar to Myhill-Nerode theorem for regular languages
Registers should compute necessary auxiliary functions
\square Example: $\Sigma=\{C, S\}$

```
f(w)= if w contains S then |w| else 2|w|
f
```

\square Thm: Register complexity of a function is at least k iff there exist strings $\sigma_{0}, \ldots \sigma_{m}$, loop-strings $\tau_{1}, \ldots \tau_{m}$, and suffixes $w_{1}, \ldots w_{m}$, and k distinct vectors $c_{1}, \ldots c_{k}$ such that for all numbers $x_{1}, \ldots x_{m}$, $f\left(\sigma_{0} \tau_{1}{ }^{\times 1} \sigma_{1} \tau_{2}{ }^{\times 2} \ldots \sigma_{m} w_{i}\right)=\Sigma_{j} c_{i j} x_{j}+d_{i}$

Regular Functions over Semiring

Cost Domain: Natural numbers + Infty

- Operation Min: Commutative monoid with identity Infty
- Operation +: Monoid with identity 0

Rules:

$$
\begin{aligned}
& a+\operatorname{Infty}=\operatorname{Infty}+a=\operatorname{Infty} \\
& a+\min (b, c)=\min (a+b, a+c) ; \min (b, c)+a=\min (b+a, c+a)
\end{aligned}
$$

\square Cost grammar MinInc: $\dagger:=c|\min (t, \dagger)|(\dagger+c)$
Goal: Understand class of regular functions w.r.t. MinInc

Weighted Automata

- Weighted Automata:

Nondeterministic automata with edges labeled with costs
\square Interpreted over the semiring cost model: cost of string $w=\min$ of costs of all accepting paths over w cost of a path = sum of costs of all edges in a path

Widely studied (Handbook of Weighted Automata, Droste et al) Minimum cost problem solvable Equivalence undecidable over ($\mathrm{N}, \mathrm{min},+$)
Not determinizable
Natural model in many applications
Recent interest in CAV/LICS community for quantitative analysis

CRA over Min-Inc Semiring

$$
x:=\operatorname{Infty} \longrightarrow \frac{c / y:=y+1}{\sum_{y:=0}^{m i n}(x, y)}
$$

Output $=$ Minimum number of coffees consumed during a month

CRA $(\min ,+c)=$ Weighted Automata

- From WA to CRA $(\min ,+c)$:

Generalizes subset construction for determinization For every state q of WA, CRA maintains a register x_{q} $x_{q}=$ min of costs of all paths to q on input read so far Update on $a: x_{q}:=\min \left\{x_{p}+c \mid p-(a, c)->q\right.$ is edge in WA\}

- From $\operatorname{CRA}(\min ,+c)$ to $W A$:

State of WA $=$ (state q of CRA, register x) min simulated by nondeterminism
To simulate $p-(a, x:=\min (y, z))->q$ in CRA,
add a-labeled edges from (p, y) and (p, z) to (q, x)
Distributivity of + over min critical

CRA $(\min ,+c)>$ Min-Plus Regular Functions

Input w: $w_{1} M w_{2} M \ldots M w_{n}$ Each w_{i} in $\{C, S\}^{*}$
$c_{i}=$ Number of $C^{\prime} s$ in w_{i}
$s_{i}=$ Number of S's in w_{i}
$\operatorname{Cost}(w)=\min _{j}\left\{c_{1}+\ldots+c_{j}+s_{j+1}+\ldots+s_{n}\right\}$

Thm: The class of regular functions w.r.t. Min-Inc semiring is a strict subset of weighted automata

Above function is not regular: cost term is quadratic in input

Machine Model for Semiring Regular Functions

\square Updates to registers must be copyless
Each register appears at most once in a right-hand-side
Update $[x, y]:=[\min (x, y), y]$ not allowed
Necessary to maintain "linear" growth
\square Need ability to simulate substitution
Register x carries two values c and d
Stands for the parameterized expression min(c, ?)+d Besides min and inc, can substitute? with a value

Resulting model coincides with regular functions over semiring
\square Open: Decidability of equivalence over ($N, \min ,+c$)

Discounted Cost Regular Functions

\square Basic element: (cost c, discount d)
\square Discounted sum: $\left(c_{1}, d_{1}\right) \star\left(c_{2}, d_{2}\right)=\left(c_{1}+d_{1} c_{2}, d_{1} d_{2}\right)$
\square Example of non-commutative monoid
\square Classical Model: Future discounting
Cost of a path: $\left(c_{1}, d_{1}\right)^{*}\left(c_{2}, d_{2}\right)^{*} \ldots$ * $\left(c_{n}, d_{n}\right)$
Polynomial-time algorithm for "generalized" shortest path
\square Past discounting
Cost of a path: $\left(c_{n}, d_{n}\right)$ * $\left(c_{n-1}, d_{n-1}\right)$ * ... * $\left(c_{1}, d_{1}\right)$
Same PTIME algorithm works for shortest paths
\square Prioritized double discounting

$$
\operatorname{Cost}=\left(c_{1}, d_{1}\right) * \ldots *\left(c_{n}, d_{n}\right) *\left(c_{1}^{\prime}, d_{1}^{\prime}\right) * \ldots *\left(c_{n}^{\prime}, d_{n}^{\prime}\right)
$$

Shortest path: NExpTime algorithm
\square Open: Shortest path for Discounted Cost Register Automata

Conclusions

\square Streaming String Transducers and Cost Register Automata

- Write-only machines with multiple registers to store outputs
\square DReX: Declarative language for string transformations
- Robust expressiveness with decidable analysis problems
- Prototype implementation with linear-time evaluation
- Ongoing work: Analysis tools
\square Emerging theory of regular functions
- Some results, new connections
- Many open problems and unexplored directions

Acknowledgements and References

\square Streaming String Transducers (with P. Cerny; POPL'11, FSTTCS'10)
\square Transducers over Infinite Strings (with E. Filiot, A. Trivedi; LICS'12)
\square Streaming Tree Transducers (with L. D'Antoni; ICALP'12)
\square Regular Functions and Cost Register Automata
(with L. D'Antoni, J. Deshmukh, M. Raghothaman, Y. Yuan; LICS'13)
\square Decision problems for Additive Cost Regular Functions
(with M. Raghothaman; ICALP'13)
\square Infinite-String to Infinite-Term Regular Transformations
(with A. Durand, A. Trivedi; LICS'13: Next session)
\square Min-cost problems for Discounted Sum Regular Functions
(with S. Kannan, K. Tian, Y. Yuan; LATA'13)

- Regular combinators for string transformations
(with A. Freilich and M. Raghothaman, LICS'13)
- DReX (with L. D'Antoni and M. Raghothaman; POPL'15)

