Intel Formal Verification Seminar, July 2001

Refinement Checking

Problem

Given two descriptions of the same design Imp and Spec,
check if every behavior of Imp is allowed by Spec:

Imp < Spec
Why relevant ?

Writing Spec as another state machine may be easier than
listing all temporal logic formulas of interest

Promotes hierarchical design by successive refinements
Examples

Cache-coherent memory < Abstract serial memory
Pipelined implementation < I SA spec

Point-to-Point Protocol

 Popular networking protocol for
establishing connections remotely

1 Goal: To verify the actual implementation
J Specification: RFC 1661 (standard)
- Specified in tabular format

d Implementation: ppp version 2.4.0

— avallable in various Linux distributions
— C code

Why Modular Reasoning?

J Behavior of a
component can be

computed from . .

behaviors of Its parts
d Components can be
analyzed in isolation . -

JAssume-guarantee rules

-> Scalable analysis

Goal: Composable Behavioral Interfaces!

Model Checker MOCHA

Joint project with UC Berkeley

Innovations aimed at exploiting modularity
Modeling language: Reactive Modules
Requirements: Alternating Temporal Logic
Symbolic model checking
Game-based abstractions
Hierarchical reduction algorithms
Assume guarantee reasoning

Avalilable from www.cis.upenn.edu/~mocha
www .eecs.berkeley.edu/~mocha

Talk Outline

v' Motivation
1 Refinement check as Reachability
1 Assume-Guarantee Reasoning

1 Hierarchical Reduction
1 Case studies

Reactive Modules

Hierarchic modeling using composition, hiding,
and instantiation

Well-typed communication interface

Compositional semantics
module = (inputs, outputs, traces)

Proof calculus for simplifying verification goals
Both synchronous and asynchronous systems

Modeling of open systems

Weak Refinement

e Standard Refinement: inclusion of
trace sets (set of traces of Imp is
Included In the set of traces Spec)

e Modeling of Asynchrony: a process may
Idle or take a step in each round
(speeds of different components are
Independent)

e Weak refinement: Trace inclusion, but
traces differing only due to stuttering
are equivalent

Refinement Check by Search

Suppose all vars of Spec are part of Imp

IMmp (X, X5, X1 Y1, Yor Yim) < SPEC(Xy,Xs, ..., %)
Then, for every reachable state s of Imp, check

Search can be performed enumeratively or symbolically

I T Spec has additional variables, user must supply their
definitions in terms of Imp variables

Imp inherits all properties of Spec

Refinement -> Reachability

Goal: Tocheck I < S

If S has private variables, complexity
of automatic check too high

Solution: Introduce a module W that
defines private vars of S in terms of
vars of 1 (Cospan, Mocha, SMV)

Checking I || W < S involves
reachability analysis

Can construction of W be automated ?

Automatic Witness Construction

e First strategy: Pick W to be Priv(S) (part
of S that controls its private vars)

« Doesn’t work for asynchronous processes

e Our strategy: Pick W to be Eager(Priv(S))
(stutter only when all else is disabled)

true P else
|

11l
o o

P=0

% 1=0 & I'=1

1
P=1
1

P
|

Spec transition Witness transition

Witness Construction

J Eager(P) can be viewed as a locally
determinized version of P

d 1T S Is deterministic, checking I<S reduces
to reachability of analysis of IXS (i.e. update
rules for union of variables of I and S)

J Sound, but incomplete, method

1 Eager(P) can be constructed easily by
syntactic transformation

d Works surprisingly well

Talk Outline

v' Motivation

v Refinement check as Reachability
1 Assume-Guarantee Reasoning

J Hierarchical Reduction

1 Case studies

Decomposing Refinement Check

J Goal: Reduce I < S to simpler subgoals

1 Strategy: I Is a composition of many
components, so exploit that structure

dIf 1is 11]]12, rewrite S as S1||S2, so that
S1 i1s abstraction of 11 and S2 1s abstraction
of 12

1 Powerful technique, but requires expertise
and “clean” interfaces

To prove

Compositional Rule

11

@ refines

It suffices to prove

11

—>

—

<

S1

S1

Assume Guarantee

d Intuition: Proving 11<S1 may require assumptions
about the inputs to 11

 Strategy: Use S2 (the specification of 12) as the
assumption about the inputs to 11

 Circularity: S1 is established assuming S2 and S2
IS established assuming S1

d Not always valid! (key to proof is “non-blocking”
Interaction, and non-empty trace-sets)

 Long history: Starks85, ChandyMisra88,
AbadiLamport93, AlurHenzinger96, McMillan97...

To prove

Assume-Guarantee Rule

11

It suffices to prove

and

11

(=2) <

S1

(2D

@ refines S1

—s2)

S1

—

@

Talk Outline

v' Motivation

v Refinement check as Reachability
v' Assume-Guarantee Reasoning

J Hierarchical Reduction

1 Case studies

Hierarchic Reduction

Typical on-the-fly search strategies do not
exploit architectural hierarchy

Compositional minimization works bottom-up
Can we combine the advantages of the two?

Solution based on transition hierarchies

Simple reduction strategy based on compressing
Internal moves (AW: Concur'99)

Tree Architecture

E = Root||Join||JoinO||Join1||ClientO0]||ClientO1]|Client10]||Clientll

Definition of next operator

Next © for P executes P transitions until It
encounters a transition in ©.

P Next © for P

«—

e
~

DR e—W—N «—O
/l_\
N <

Correctness: IT @ includes all “visible” transitions
Then P and Next © for P are weakly-similar

State-Space Reduction

_U
O

P 1] Q
- .ﬂ ;,/? o

T

/e

DR e—W«—N «—O
M

O «—W «—>

R(next © for P || next X~ for Q) has blue nodes
R(P || Q) has blue and green nodes

Methodology

e Given E=P || Q|| R .. and an invariant ¢,
check whether “E satisfies ¢’?
e Transform E to E’ by inserting hide and next so
that “E satisfies @’ reduces to “E’ satisfies ¢’
e Basis for computation of E’:
weak simulation preorder and what is visible.

e Search algorithm is used to solve “E’ satisfies ¢’

Symbolic Search Algorithm
d Problem:

- How to search an expression with nested
applications of next and parallel composition?

J Goals:

- On-the-fly: states should be explored on
demand

— Avoid precomputing transitive closures
- Store only states

- Early detection of violation of requirements

Parity Computer Example

Root
.. - eqvack
Join
reqO reql
rereeeeeane st e sttt en s EED ackO T
Join0 Joinl

reqO0Q/ack00 req01 ackOléérequ ackl10 reql ackllé
. i | Client00 | | ClientO1 [ii| Client10 | | Client1l || !

NEXT(JoinO]|ClientOO]||Client01)

E’ = Root||NEXT|Jdoin : - -
[INEXTL0INH et (3oint | Client10] Client11)

Space Comparison (MDD nodes)

PPP

PPP H.R. IWLS
No sift ({1,007,719/1,171,598
Sift 186,589 | 166,320
DME
4 S| 6 I

H.R. | 3804 7200| 8971 9516
IWLS | 3452|12133|25536|15725

Automatic Hierarchical Partitioning

For a set of processes, which architectural hierarchy
IS “better”?

@ ® [0 @ ® [D)

Influences the order of composition and hiding
e Relevant for compositional minimization
e Affects performance of hierarchical reduction

Optimization Problem

Processes as vertices: { A, B, C, D}
Variables as hyperedges: x:{A,B} y:{C,D} z:{A,B,C}

Z y
XO/ \Qy /céQ\@D
SRCRCEC x

Cost = 4 @é Cost=5

x:1,y:1, z:2 xi1,y:3, zi1

Hierarchical Partitioning

d Input: Hypergraph (V,E)
- V: set of processes

— Each edge corresponds to a variable, and is a subset of V
(processes that access Iit)

 Output: Tree T over V (hierarchical partition)

d Cost of T: sum of heights of all edges
— Ht of e: ht of lowest node where e is visible

d Goal: Optimize costof T
d Problem is NP-hard

1 Greedy heuristic (implementation + experiments)

Talk Outline

v' Motivation

v Refinement check as Reachability
v' Assume-Guarantee Reasoning

v Hierarchical Reduction

 Case studies

Refinement Verification

d Goal: Given two models Imp and Spec,
verify that Imp refines Spec

d Methodology:

Step 1: Using compositional rules, generate
simpler subgoals

Step 2: For each subgoal I < S, Introduce a
witness module W, and reduce the check to
reachability analysis of I || W

Step 3: Apply an efficient reachability check

DME Example

e High-level description:
— A virtual token is passed around a ring of cells.

— Any cell which gets the token has the right to
access the critical section.

— A cell asks its right neighbor for the token.
— A cell passes the token to the left when done.

e Low-level description:
- The implementation is built on logic gates.
— No virtual token is defined in the implementation.

DME Refinement

Automatic witnhess construction works

]

Point-to-Point Protocol

 Popular networking protocol for
establishing connections remotely

1 Goal: To verify the actual implementation
J Specification: RFC 1661 (standard)
- Specified in tabular format

d Implementation: ppp version 2.4.0

— avallable in various Linux distributions
— C code

PPP Verification

J Focus on option negotiation aspect of
protocol

1 Manually constructed module I from C-code
J Manually translated RFC spec to module S
Jd Goal: Toverify 1<S

J Result: Discovered an inconsistency in the
code wrt specification

Assume Guarantee Reasoning

GOAL:

LINK
(o0 < -0

REDUCES TO

LINK

o s < [so

More Case Studies

d DHCP: Dynamic host configuration protocol
for mobile networks

- Specification: RFC 2131

- Implementation: dhcp version 2.0 patch 5
 Traditional examples in refinement setting

- DME

— Leader election
- Tree-structured reg-ack template

J Hierarchical reduction can be beneficial

References

d Mocha: A model checker that exploits design
structure (ICSE’'O1)

d Automatic refinement checking for asynchronous
processes (A,Grosu,Wang, FMCAD’00)

d Verifying network protocol implementations by
symbolic refinement checking (A,Wang, CAV'0l)

 Heuristics for hierarchical partitioning (A,
Moller, CHARME’O1)

Analysis of hierarchical state machines

ﬁ‘\\ - Reads: x

Modes: (Mode It \\‘ Writes: y

Local: z

~—

Submode
M2

d Transition relation is indexed by control points
e generalization of conjunctively partitioned bdds,

d Transition type exploited
« Tfor early quantification in the symbolic search,

d Reached state space indexed by control points
e pool of variables is not global,

