Lecture 4. Applications

Summary

Tools such as HyTech, CheckMate, Uppaal, Kronos have been used in many contexts

typically to verify safety of a control design or to get tight bounds on parameters (e.g. steam boiler, audio control)

This lecture shows where hybrid systems theory can fit in some application domains

Applications Outline

- Embedded Control Systems
- **Autonomous Mobile Robots**
- Biological Systems

Embedded Controller Development Process For Automobile Transmissions

Former Practice

Automotive Embedded Controller Design: State of the Practice

Computer-Aided Control System Design

Executable Specifications Using MATLAB/Simulink/Stateflow

Transmission Control Logic

Opportunity to Apply Formal Verification Techniques

Computer-Aided Control System Design

Automotive Engine Control in Cut-off Mode

Control law: Decide when to inject air/fuel for torque to minimize acceleration peaks during the cut-off operation.

Problem: Verify the event-driven implementation of a control law designed in continuous time.

Application of CheckMate due to Krogh et al

Automotive Powertrain Model

Model from Magneti Marelli Engine Control Division

- Four-stroke, four cylinder engine
- Continuous-time powertrain model
- Hybrid model for cylinder cycles

CheckMate Model

Continuous Dynamics

$$\mathbf{\dot{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$$
 $\mathbf{u} = 0$ (no air-fuel) or 10

 x_1 = engine block angle x_2 = wheel revolution speed (radians) x_3 = axle torsion angle (in radians) x_4 = crankshaft revolution speed (rpm) x_5 = crankshaft angle (degrees)

Controller Specification

- Sliding mode control law derived in continuous time
- Hybrid implementation due to discrete torque decisions

Cylinder Cycle

Control decision to apply torque on the power stroke must be made before the intake stroke \Rightarrow three step lookahead.

Crankshaft Angle Rate Logic

Predictive Control Logic

The discrete state indicates the torque decisions for the current and next two power strokes (i.e., for three of the four cylinders).

Transitions from each state depend on whether predicted state for the next power stroke is closer to the sliding mode with or without torque.

The 9th state (not shown) is the "end simulation" state--reachable from any of the other 8 states.

Flowpipe for One Discrete Sequence

Applications Outline

- ✓ Embedded Control Systems
- Autonomous Mobile Robots
- Biological Systems

Programming Interacting Autonomous Robots

Many modes

Individual modes are well understood, but not their interaction.

Software design

Modes designed bottom-up Protocols top-down

Modular design to ensure reusability

Tasks: Formation control, cooperative control

Software Design Methodology

Vision-Based Control: Mode Switching

Reactive Vision Based Controllers

Controllers for Maintaining Formation

 Estimate of relative position, orientation, linear and angularove of the streng of the

Multirobot Coordination

Rules for Mode Switching

Leader Follower and Obstacle Avoidance

Mode Switching and Maintain Formation

Applications Outline

- ✓ Embedded Control Systems
- ✓ Autonomous Mobile Robots
- Biological Systems

Cellular Networks

- Networks of interacting biomolecules carry out many essential functions in living cells (gene regulation, protein production)
- □Both positive and negative feedback loops
- Design principles poorly understood
- □Large amounts of data is becoming available
- Beyond Human Genome: Behavioral models of cellular networks
- Modeling becoming increasingly relevant as an aid to narrow the space of experiments

Regulatory Networks

Hybrid Modeling of Biological Systems

Hybrid Modeling

At low concentrations, a continuous approximation model might not be appropriate. Instead, a stochastic model should be used.

In some cases, the biological description of a system is itself hybrid.

Luminescence / Quorum Sensing in Vibrio Fischeri

Luminescence Regulation

· • • ·

Simulation Results

Summary

- Hybrid systems are necessary to model some biological regulatory networks.
- The simulation results of the luminescence control in Vibrio fischeri are in accordance with phenomena observed in experiments.
- Modeling concepts such as hierarchy, concurrency, reuse, are relevant for modular specifications
- Exploiting the structure of real biological systems will be essential to meet the challenge posed by the enormous complexity of biological regulatory networks.

Conclusions

- A rich variety of domains match hybrid systems paradigm
- Traditional benefits: safety verification, design of hybrid controllers
- Formal models can be beneficial in more ways: modeling, understanding, programming, simulation
- Emerging potential for integration with software engineering design tools