Lecture 4.
Applications



Summary

Tools such as HyTech, CheckMate, Uppaal,
Kronos have been used In many contexts

typically to verify safety of a control design or to
get tight bounds on parameters (e.g. steam boiler,
audio control)

This lecture shows where hybrid systems
theory can fit in some application domains



Applications Outline

< Embedded Control Systems
J Autonomous Mobile Robots

1 Biological Systems



Embedded Controller Development Process
For Automobile Transmissions
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Executable Specifications Using
MATLAB/Simulink/Stateflow
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Transmission Control Logic

/ Stateflow {chart) shift logic

- UFSHIF T34
gear_selectiond © gear_state UPSHIFTIZ LIRSHIFTZE

I DOWMNSHIFT32 DOWMiNSHIFT42

zelection_state’
i during: dewn_thre=shold = miCinterp2i[1:4] downth, downtab, %g, %9, gear, throttle);...
up_threshold = miCinterp2i[1 :4],upth, uptab, %gq, %g7, gear, throttle];

r

[wehicle_speed » up_threshald] fr-Llpshift_cnnfirrn.l'
7] entry: tup =t;

& [wehicle_speed < up_threshaold]

™y [wehicle_speed < dl:-wn_thresh-:-ll:l]‘b steady_state
=2

ntry : tdn = t; . i
e : . 4 [wehicle_speed > down_threshaold] it - tup >= Teanfimm & ...
It 'ht_d:" B ch-:'lnflrrz & ... e wehicle_spead »= up_threghnld]
wehicle_speed <= down_thresho o)
= = = = [gear == 3/UPSHIFT24

[gear == Z/UPSHIFTZS

;'
1
: [d-:-wnghift_c-:-nfirrn."
1
1
1
1
1
1

[gear == 1}/UPSHIFT1Z2




Opportunity to Apply
Formal Verification Techniques
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Automotive Engine Control in Cut-off Mode

Control law: Decide when to inject air/fuel for
torgue to minimize acceleration peaks during the
cut-off operation.

Problem: Verify the event-driven implementation
of a control law designed in continuous time.

Application of CheckMate due to Krogh et al



Automotive Powertrain Model

Model from Magneti Marelli Engine Control Division

» Four-stroke, four cylinder engine
« Continuous-time powertrain model

e Hybrid model for cylinder cycles
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Continuous Dynamics

X = AX + Bu u=0 (no air-fuel) or 10

X, = engine block angle

X, = wheel revolution speed (radians)
X5 = axle torsion angle (in radians)

X, = crankshaft revolution speed (rpm)
Xz = crankshaft angle (degrees)



Controller Specification

« Sliding mode control law derived in continuous time
e Hybrid implementation due to discrete torque decisions
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Cylinder Cycle

Phase change

Phase change Phase_change

¢ (COMpression

Phase_change

Control decision to apply torque on the power stroke must be made
before the intake stroke [ three step lookahead.




Crankshaft Angle Rate Logic

Cylinder state transitions occur every
180°. Crankshaft angle switches
between 0° and 180°, angle rate
switches between +rate and -rate.




Predictive
Control Logic

argle_nggerhidd == 1]

The discrete state indicates the torque
decisions for the current and next two
S T power strokes (i.e., for three of the
four cylinders).
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next power stroke is closer to the
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The 9th state (not shown) is the “end
simulation” state--reachable from any
of the other 8 states.
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Applications Outline

v Embedded Control Systems
< Autonomous Mobile Robots
 Biological Systems



Programming Interacting Autonomous Robots

Many modes
Individual modes are
well understood, but not
their interaction.

Software design

Modes designed bottom-up
Protocols top-down

Modular design to ensure
reusability

Tasks: Formation control,
cooperative control



Software Design Methodology
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Reactive Vision Based Controllers
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Controllers for Maintaining Formation
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Multirobot Coordination

i Panazonic MPEGT Encoder



Rules for Mode Switching

AUtONOMOUS
Navigation

Sensor constraints



Leader Follower and Obstacle Avoidance

o, T

Leader is teleoperated Leader is autonomous




Mode Switching and Maintain Formation




Applications Outline

v Embedded Control Systems
v' Autonomous Mobile Robots
< Biological Systems



Cellular Networks

dNetworks of interacting biomolecules carry out
many essential functions in living cells (gene
regulation, protein production)

dBoth positive and negative feedback loops
dDesign principles poorly understood
dLarge amounts of data is becoming available

dBeyond Human Genome: Behavioral models of
cellular networks

dModeling becoming increasingly relevant as an
ald to narrow the space of experiments




Regulatory Networks
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Hybrid Modeling of Biological Systems
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Hybrid Modeling
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Luminescence / Quorum Sensing
In Vibrio Fischeri
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Luminescence Regulation
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Simulation Results
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Summary

Hybrid systems are necessary to model some biological
regulatory networks.

The simulation results of the luminescence control in Vibrio
fischeri are in accordance with phenomena observed in
experiments.

Modeling concepts such as hierarchy, concurrency, reuse,
are relevant for modular specifications

Exploiting the structure of real biological systems will be
essential to meet the challenge posed by the enormous

complexity of biological regulatory networks.



Conclusions

d A rich variety of domains match hybrid
systems paradigm

d Traditional benefits: safety verification,
design of hybrid controllers

d Formal models can be beneficial in more
ways: modeling, understanding,
programming, simulation

d Emerging potential for integration with
software engineering design tools



