Lecture 3. Reachability Analysis

Talk Outline

- Symbolic Reachability Analysis
- □ Timed Automata (Kronos, Uppaal)
- □ Linear Hybrid Automata (HyTech)
- Polyhedral Flow-pipe Approximations (CheckMate)
- Orthogonal polyhedra (d/dt)

Advantages

Automated formal verification, Effective debugging tool

Moderate industrial success

In-house groups: Intel, Microsoft, Lucent, Motorola... Commercial model checkers: FormalCheck by Cadence

Obstacles

Scalability is still a problem (about 100 state vars) Effective use requires great expertise

Components of a Model Checker

- Modeling language
 - Concurrency, non-determinism, simple data types
- **Requirements** language
 - Invariants, deadlocks, temporal logics
- □ Search algorithms
 - Enumerative vs symbolic + many optimizations
- Debugging feedback

We focus on checking invariants of a single state machine

Reachability Problem

Model variables X ={x1, ... xn}

Each var is of finite type, say, boolean

Initialization: I(X) condition over X

Update: T(X,X')

How new vars X' are related to old vars X as a result of executing one step of the program

Target set: F(X)

Computational problem:

Can F be satisfied starting with I by repeatedly applying T? Graph Search problem

Symbolic Solution

Data type: region to represent state-sets R:=I(X) Repeat If R intersects T report "yes"

Else if R contains Post(R) report "no" Else R := R union Post(R)

Post(R): Set of successors of states in R Termination may or may not be guaranteed

Symbolic Representations

□ Necessary operations on Regions

Union

Intersection

Negation

Projection

Renaming

Equality/containment test

Emptiness test

Different choices for different classes BDDs for boolean variables in hardware verification Size of representation as opposed to number of states

Ordered Binary Decision Diagrams

Popular representations for Boolean functions

Like a decision graph No redundant nodes No isomorphic subgraphs Variables tested in fixed order

Function: (a and b) or (c and d)

Key properties: Canonical! Size depends on choice of ordering of variables Operations such as union/intersection are efficient

Example: Cache consistency: Gigamax

Real design of a distributed multiprocessor

Read-shared/read-owned/write-invalid/write-shared/...

Deadlock found using SMV

Similar successes: IEEE Futurebus+ standard, network RFCs

Reachability for Hybrid Systems

- □ Same algorithm works in principle
- □ What's a suitable representation of regions?
 - Region: subset of R^k
 - Main problem: handling continuous dynamics
- Precise solutions available for restricted continuous dynamics
 - Timed automata
 - Linear hybrid automata
- Even for linear systems, over-approximations of reachable set needed

Talk Outline

- ✓ Symbolic Reachability Analysis
- **Timed Automata (Kronos, Uppaal)**
- □ Linear Hybrid Automata (HyTech)
- Polyhedral Flow-pipe Approximations (CheckMate)
- Orthogonal polyhedra (d/dt)

Timed Automata

- Only continuous variables are timers
- □ Invariants and Guards: x<const, x>=const
- **\Box** Actions: x:=0
- □ Reachability is decidable
- Clustering of regions into zones desirable in practice
- □ Tools: Uppaal, Kronos, RED ...
- □ Symbolic representation: matrices
- Techniques to construct timed abstractions of general hybrid systems

Zones Symbolic computation

Symbolic Transitions

Thus $(n, 1 \le x \le 4, 1 \le y \le 3) = => (m, 3 \le x, y = 0)$

Canonical Data-structures for Zones Difference Bounded Matrices

When are two sets of constraints equivalent?

Difference Bounds Matrices

- Matrix representation of constraints (bounds on a single clock or difference betn 2 clocks)
- Reduced form obtained by running all-pairs shortest path algorithm
- Reduced DBM is canonical
- Operations such as reset, time-successor, inclusion, intersection are efficient
- Popular choice in timed-automata-based tools

Talk Outline

- ✓ Symbolic Reachability Analysis
- ✓ Timed Automata (Kronos, Uppaal)
- Linear Hybrid Automata (HyTech)
- Polyhedral Flow-pipe Approximations (CheckMate)
- Orthogonal polyhedra (d/dt)

Linear Hybrid Automata

- Invariants and guards: linear (Ax <= b)</p>
- □ Actions: linear transforms (x:= Ax)
- Dynamics: time-invarint, state-independent specified by a convex polytope constraining rates E.g. 2 < x <= 3, x = y</p>
- □ Tools: HyTech
- □ Symbolic representation: Polyhedra
- Methodology: abstract dynamics by differential inclusions bounding rates

Example LHA Gate for a railroad controller

Reachability Computation

Basic element: (location I, polyhedron p) Set of visited states: a list of (I,p) pairs Key steps:

- Compute "discrete" successors of (I,p)
- Compute "continuous" successor of (I,p)
- Check if p intersects with "bad" region
- Check if newly found p is covered by already visited polyhedra p1,..., pk (expensive!)

Computing Discrete Successors

Discrete successor of (I,p)

- Intersect p with g (result r is a polyhedron)
- Apply linear transformation a to r (result r' is a polyhedron)
- Successor is (l',r')

Computing Time Successor

- Thm: If initial set p, invariant I, and rate constraint r, are polyhedra, then set of reachable states is a polyhedron (and computable)
- Basically, apply extremal rates to vertices of p

Linear Phase-portrait Approximation

Improving Linear Phase-Portrait Approximations: Mode Splitting

Computing Approximation

Linear Phase-Portrait Approximations

- guaranteed conservative approximations
- refinement introduces more discrete states
- for bounded hybrid automata, arbitrarily close approximation can be attained using mode splitting
- sufficient to use rectangular phase-portrait approximations $(n_i^T = [0...1...0])$

Summary: Linear Hybrid Automata

- □ HyTech implements this strategy
- Core computation: manipulation of polyhedra
- Bottlenecks
 - proliferation of polyhedra (unions)
 - computing with higher dimensional polyhedra
- Many applications (active structure control, Philips audio control protocol, steam boiler...)

Talk Outline

- ✓ Symbolic Reachability Analysis
- ✓ Timed Automata (Kronos, Uppaal)
- ✓ Linear Hybrid Automata (HyTech)
- Polyhedral Flow-pipe Approximations (CheckMate)
- Orthogonal polyhedra (d/dt)

Approximating Reachability

Given a continuous dynamic system, $\mathbf{\dot{x}} = F(\mathbf{x}),$

and a set of initial states, X_o , conservatively approximate Reach_[0,t](X_o , F).

Polyhedral Flow Pipe Approximations

A. Chutinan and B. H. Krogh, Computing polyhedral approximations to dynamic flow pipes, IEEE CDC, 1998

Wrapping Hyperplanes Around a Set

Step 1: Choose normal vectors, c₁,...,c_m

Wrapping Hyperplanes Around a Set

Wrapping a Flow Pipe Segment

Given normal vectors c_i , we wrap $R_{[tk,tk+1]}(X_0)$ in a polytope by solving for each *i*

$$\begin{array}{rcl} \textbf{d}_{i} = & \max & \textbf{c}_{i}^{\mathsf{T}}\textbf{x}(t,\textbf{x}_{0}) \\ & \textbf{x}_{o},t & & \\ & \text{s.t.} & \textbf{x}_{0} {\in} \textbf{X}_{0} \\ & & t \in [t_{k},t_{k+1}] \end{array}$$

Optimization problem is solved by embedding simulation into objective function computation

Flow Pipe Segment Approximation

Improvements for Linear Systems

- $\mathbf{\dot{x}} = \mathbf{A}\mathbf{x} \implies \mathbf{x}(t, \mathbf{x}_0) = e^{\mathbf{A}t}\mathbf{x}_0$
- No longer need to embed simulation into optimization
- Flow pipe segment computation depends only on time step Δt
- A segment can be obtained by applying e^{At} to another segment of the same Δt

$$\hat{R}_{[t,t+\Delta t]}(X_0) = e^{At} \hat{R}_{[0,\Delta t]}(X_0)$$

Example 1: Van der Pol Equation

Example 2: Linear System

 $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -2 & -2 \end{bmatrix}$

Vertices for X_0 $\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 2\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 2\\2\\1 \end{bmatrix}, \text{ and } \begin{bmatrix} 1\\2\\1 \end{bmatrix}$

Uniform time step $\Delta t_k = 0.1$

Summary: Flow Pipe Approximation

- Applies in arbitrary dimensions
- Approximation error doesn't grow with time
- Estimation error (Hausdorff distance) can be made arbitrarily small with $\Delta t < \delta$ and size of $X_0 < \delta$
- Integrated into a complete verification tool (CheckMate)

Talk Outline

- ✓ Symbolic Reachability Analysis
- ✓ Timed Automata (Kronos, Uppaal)
- ✓ Linear Hybrid Automata (HyTech)
- ✓ Polyhedral Flow-pipe Approximations (CheckMate)
- Orthogonal Polyhedra (d/dt)

Approximations by Orthogonal Polyhedra

Non-convex orthogonal polyhedra (unions of hyperrectangles)

Motivations

• canonical representation, efficient manipulation in *any*

dimension \Rightarrow *easy extension to hybrid systems*

• *termination* can be guaranteed

Under-approximation

Reachability Analysis of Continuous Systems

A continuous system $\dot{\mathbf{x}} = f(\mathbf{x})$; f is Lipschitz

 $\mathbf{x}(0) \in \mathbf{F}$, set of *initial states*

Problem

Find an *orthogonal polyhedron over-approximating* the *reachable set* from F

Successor Operator

Reachable set from F: $\delta(F) = \delta_{[0,\infty)}(F)$

Algorithm for Calculating $\delta(F)$

r : *time step*

$$\begin{array}{l} P^{0} := \mathbf{F} \ ; \\ \textbf{repeat} \ \ k = 0, \ 1, \ 2 \ .. \\ P^{k+1} := P^{k} \cup \delta_{[0,r]}(P^{k}) \ ; \\ \textbf{until} \ P^{k+1} = P^{k} \end{array}$$

Use orthogonal polyhedra to

- represent **P**^k
- approximate $\delta_{[0,r]}$

Reachability of Linear Continuous Systems A linear system $\dot{\mathbf{x}} = A\mathbf{x}$; F is the set of initial states $\delta_{\mathbf{r}}(F) = e^{A\mathbf{r}} F$

F is a convex polyhedron: $\mathbf{F} = \operatorname{conv}\{\mathbf{v}_1, ..., \mathbf{v}_m\}$

Over-Approximating the Reachable Set

Extension to under-approximations

Example

$$\dot{\mathbf{x}} = A\mathbf{x}, \ \mathbf{F} = [0.025, 0.05] \times [0.1, 0.15] \times [0.05, 0.1]$$
$$\mathbf{A} = \begin{pmatrix} 1.0 & 4.0 & 0.0 \\ 4.0 & 1.0 & 0.0 \\ 0.0 & 0.0 & 0.5 \end{pmatrix}$$

Nonlinear Systems

- A continuous system $\dot{\mathbf{x}} = f(\mathbf{x})$; f is Lipschitz
- $\mathbf{x}(0) \in \mathbf{F}$, set of initial states

→ 'Face lifting' technique, inspired by [Greenstreet 96]

• *Continuity* of trajectories ⇒ compute from the boundary of F

• The initial set F is a *convex polyhedron* The boundary of F: union of its *faces*

Over-Approximating $\delta_{[0,r]}$ **(F)**

Step 1: *rough approximation* N(F)

Step 2: *more accurate approximation*

 f_e : projection of f on the outward normal to face e \hat{f}_e : maximum of f_e over the neighborhood N(e) of e

Computation Procedure

- Decompose **F** into non-overlapping hyper-rectangles
- Apply the lifting operation to each hyper-rectangle (faces on the boundary of F)
- Make the union of the new hyper-rectangles

Example: Collision Avoidance

 x_1 : velocity; x_2 : flight path angle

$$\dot{x}_{1} = \frac{a_{D}x_{1}^{2}}{m} - g\sin x_{2} + \frac{u_{1}}{m} \qquad \dot{x}_{2} = \frac{a_{L}x_{1}(1 - cx_{2})}{m} - \frac{g\cos x_{2}}{x_{1}} + \frac{a_{L}cx_{1}}{m}u_{2}$$
$$u_{1} = [T_{\min}, T_{\max}] \text{ (thrust); } u_{2} = [\Theta_{\min}, \Theta_{\max}] \text{ (pitch angle)}$$
$$\mathbf{P} = [\mathbf{V}_{\min}, \mathbf{V}_{\max}] \times [\gamma_{\min}, \gamma_{\max}]$$

d/dt Summary

Techniques generalize to

Hybrid Systems Dynamics with uncertain inputs Controller synthesis problems

Tool available from Verimag

Applications

- collision avoidance (4 continuous variables, 1 discrete state)
- double pendulum (3 continuous variables, 7 discrete states)
- freezing system (6 continuous variables, 9 discrete states)