
Lecture 3.
Reachability Analysis

Talk Outline

! Symbolic Reachability Analysis
" Timed Automata (Kronos, Uppaal)
" Linear Hybrid Automata (HyTech)
" Polyhedral Flow-pipe Approximations
(CheckMate)

" Orthogonal polyhedra (d/dt)

Model Checker

Advantages
Automated formal verification, Effective debugging tool

Moderate industrial success
In-house groups: Intel, Microsoft, Lucent, Motorola…
Commercial model checkers: FormalCheck by Cadence

Obstacles
Scalability is still a problem (about 100 state vars)
Effective use requires great expertise

model

temporal
property

yes

error-trace

Components of a Model Checker

" Modeling language
Concurrency, non-determinism, simple data types

" Requirements language
Invariants, deadlocks, temporal logics

" Search algorithms
Enumerative vs symbolic + many optimizations

" Debugging feedback

We focus on checking invariants of a single state machine

Reachability Problem
Model variables X ={x1, … xn}

Each var is of finite type, say, boolean
Initialization: I(X) condition over X
Update: T(X,X’)

How new vars X’ are related to old vars X as a result of
executing one step of the program

Target set: F(X)
Computational problem:

Can F be satisfied starting with I by repeatedly applying T ?
Graph Search problem

Symbolic Solution
Data type: region to represent state-sets
R:=I(X)
Repeat

If R intersects T report “yes”
Else if R contains Post(R) report “no”
Else R := R union Post(R)

Post(R): Set of successors of states in R
Termination may or may not be guaranteed

Symbolic Representations

" Necessary operations on Regions
Union
Intersection
Negation
Projection
Renaming
Equality/containment test
Emptiness test

"Different choices for different classes
BDDs for boolean variables in hardware verification
Size of representation as opposed to number of states

Ordered Binary Decision Diagrams

Popular representations for Boolean functions

Key properties:
Canonical!
Size depends on choice of ordering of variables
Operations such as union/intersection are efficient

a

bc

d

0

0
0

0

0

1

1

1 1
1

Function: (a and b) or (c and d)

Like a decision graph
No redundant nodes
No isomorphic subgraphs
Variables tested in fixed order

Example: Cache consistency: Gigamax

Real design of a distributed multiprocessor

Similar successes: IEEE Futurebus+ standard, network RFCs

Deadlock found using SMV

M P

UICUIC

UIC

M P

Global bus

Cluster bus

Read-shared/read-owned/write-invalid/write-shared/…

Reachability for Hybrid Systems

" Same algorithm works in principle
" What’s a suitable representation of regions?

Region: subset of Rk

Main problem: handling continuous dynamics

" Precise solutions available for restricted
continuous dynamics

Timed automata
Linear hybrid automata

" Even for linear systems, over-approximations of
reachable set needed

Talk Outline

Symbolic Reachability Analysis
! Timed Automata (Kronos, Uppaal)
" Linear Hybrid Automata (HyTech)
" Polyhedral Flow-pipe Approximations
(CheckMate)

" Orthogonal polyhedra (d/dt)

Timed Automata

" Only continuous variables are timers
" Invariants and Guards: x<const, x>=const
" Actions: x:=0
" Reachability is decidable
" Clustering of regions into zones desirable in

practice
" Tools: Uppaal, Kronos, RED …
" Symbolic representation: matrices
" Techniques to construct timed abstractions of

general hybrid systems

Zones
Symbolic computation

State
(n, x=3.2, y=2.5)

x

y

x

y

Symbolic state (set)
(n,)

Zone:
conjunction of
x-y<=n, x<=>n

3y4,1x1 ≤≤≤≤

Symbolic Transitions

n

m

x>3

y:=0

x

y
delays to

x

y

x

y
conjuncts to

x

y

projects to

1<=x<=4
1<=y<=3

1<=x, 1<=y
-2<=x-y<=3

3<x, 1<=y
-2<=x-y<=3

3<x, y=0

Thus (n,1<=x<=4,1<=y<=3) ==> (m,3<x, y=0)

x<=1
y-x<=2
z-y<=2
z<=9

x<=1
y-x<=2
z-y<=2
z<=9

x<=1
y-x<=2
y<=3
z-y<=2
z<=7

x<=1
y-x<=2
y<=3
z-y<=2
z<=7

D1

D2

When are two sets of constraints equivalent?
x x

0 y

z

1 2

29

Shortest
Path

Closure

Shortest
Path

Closure

0 y

z

1 2

25

0

x

y

z

1 2

27

0

x

y

z

1 2

25

3

3 3

Graph

Graph

Canonical Data-structures for Zones
Difference Bounded Matrices

Difference Bounds Matrices

" Matrix representation of constraints (bounds
on a single clock or difference betn 2 clocks)

" Reduced form obtained by running all-pairs
shortest path algorithm

" Reduced DBM is canonical
" Operations such as reset, time-successor,

inclusion, intersection are efficient
" Popular choice in timed-automata-based tools

Talk Outline

Symbolic Reachability Analysis
Timed Automata (Kronos, Uppaal)
! Linear Hybrid Automata (HyTech)
" Polyhedral Flow-pipe Approximations
(CheckMate)

" Orthogonal polyhedra (d/dt)

Linear Hybrid Automata

" Invariants and guards: linear (Ax <= b)
" Actions: linear transforms (x:= Ax)
" Dynamics: time-invarint, state-independent

specified by a convex polytope constraining rates
E.g. 2 < x <= 3, x = y

" Tools: HyTech
" Symbolic representation: Polyhedra
" Methodology: abstract dynamics by differential

inclusions bounding rates

Example LHA
Gate for a railroad controller

Open
h = 90
dh = 0

lowering
h >= 0

-10<dh < 9

raising
h <= 90

8< dh <10

closed
h = 0
dh = 0

h = 90 lower

lower

raise

raise

h = 90 h = 0

Reachability Computation
Basic element: (location l, polyhedron p)
Set of visited states: a list of (l,p) pairs
Key steps:
• Compute “discrete” successors of (l,p)
• Compute “continuous” successor of (l,p)
• Check if p intersects with “bad” region
• Check if newly found p is covered by already

visited polyhedra p1,…, pk (expensive!)

Computing Discrete Successors

Discrete successor of (l,p)
• Intersect p with g (result r is a polyhedron)
• Apply linear transformation a to r (result r’ is a

polyhedron)
• Successor is (l’,r’)

l l’
g(x)-> x := a(x)

Computing Time Successor

x

y

x

y

(3,2)

(1,4)

Rate Polytope

(1,4)

(3,2)p

Reach(p)

• Thm: If initial set p, invariant I, and rate
constraint r, are polyhedra, then set of reachable
states is a polyhedron (and computable)

• Basically, apply extremal rates to vertices of p

Linear Phase-portrait Approximation

x

xdot

Fk(x)

range of x for mode=k

valid trajectory for H

xo

approximating
“polydedron” Pk

valid trajectory for A

minP

maxP

minX maxX

Improving Linear Phase-Portrait
Approximations: Mode Splitting

x

xdot

Fk(x)

valid trajectory for H

xo

minX1
maxX2X’

maxP2

minP2

Pk2

mk2mk1

Pk1

minP1

maxP1

Computing Approximation

xdot1

xdot2 Fk(Xk)
Pk

n1

n2

n3

n4

In general find Pk by
solving the following
optimization problem
in a set of face-
normal directions:

Problem: How to choose the ni.

max ni
T xdot

x, xdot

s.t. xdot ∈ Fk(x)
x ∈ Xk

Linear Phase-Portrait Approximations

• guaranteed conservative approximations
• refinement introduces more discrete states
• for bounded hybrid automata, arbitrarily

close approximation can be attained using
mode splitting

• sufficient to use rectangular phase-portrait
approximations (ni

T = [0…1…0])

Summary: Linear Hybrid Automata

" HyTech implements this strategy
" Core computation: manipulation of
polyhedra

" Bottlenecks
" proliferation of polyhedra (unions)
" computing with higher dimensional polyhedra

" Many applications (active structure
control, Philips audio control protocol,
steam boiler…)

Talk Outline

Symbolic Reachability Analysis
Timed Automata (Kronos, Uppaal)
Linear Hybrid Automata (HyTech)
! Polyhedral Flow-pipe Approximations
(CheckMate)

" Orthogonal polyhedra (d/dt)

Approximating Reachability

Given a continuous dynamic system,

and a set of initial states, X0 ,
conservatively approximate
Reach[0,t](Xo,F).

x = F(x),

Polyhedral Flow Pipe Approximations

A. Chutinan and B. H. Krogh, Computing polyhedral approximations to dynamic flow pipes,
IEEE CDC, 1998

X0

t1

t2

t3
t4

t5 t6 t7

t8

t9
• divide R[0,T](X0) into [tk,tk+1] segments

• enclose each segment with a convex polytope

• RM
[0,T](X0) = union of polytopes

Wrapping Hyperplanes Around a Set

S

c4

c3

c2c1
Step 1:
Choose normal vectors, c1,...,cm

S

c4

c3

c2
c1

Step 2:
Compute optimal d in Cx ≤ d,
CT = [c1

... cm]:

di = max ci
Tx

x∈ S

Wrapping Hyperplanes Around a Set

Wrapping a Flow Pipe Segment

Given normal vectors ci, we wrap R[tk,tk+1](X0)
in a polytope by solving for each i

Optimization problem is solved by embedding
simulation into objective function computation

di = max ci
Tx(t,x0)

xo,t

s.t. x0∈ X0
t ∈ [tk,tk+1]

Flow Pipe Segment Approximation

Vertices(X0) at tk

Vertices(X0) at tk+1

Step 1.
a. Simulate
trajectories from each
vertex of X0.

Step 2.
Solve
optimization
for di

flow pipe segment
approximated by
{ x | ci

Tx ≤ di, ∀ i }

b. Take the convex hull
and identify outward
normal vectors.

Improvements for Linear Systems

• x = Ax ⇒ x(t, x0) = eAtx0
• No longer need to embed simulation

into optimization
• Flow pipe segment computation

depends only on time step ∆t
• A segment can be obtained by

applying eAt to another segment of
the same ∆t

)(ˆ)(ˆ
0],0[0],[XReXR t

At
ttt ∆∆+ =

Example 1: Van der Pol Equation

X x x0 1 20 8 1 0= ≤ ≤ ={ . , }

&

& . ()
x x
x x x x

1 2

2 1
2

2 10 2 1
=
= − − −

Van der Pol Equation

Uniform time step
∆tk = 0.5

Initial Set

−2 −1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

x
1

x 2

X
0

Example 2: Linear System

A =
− − −

















0 1 0
0 0 1
1 2 2

1
1
1

2
1
1

2
2
1

1
2
1

































































, , , and

Vertices for X0

Uniform time step
∆tk = 0.1

Summary: Flow Pipe Approximation

• Applies in arbitrary dimensions
• Approximation error doesn't grow

with time
• Estimation error (Hausdorff

distance) can be made arbitrarily
small with ∆t < δ and size of X0 < δ

• Integrated into a complete
verification tool (CheckMate)

Talk Outline

Symbolic Reachability Analysis
Timed Automata (Kronos, Uppaal)
Linear Hybrid Automata (HyTech)
Polyhedral Flow-pipe Approximations
(CheckMate)

! Orthogonal Polyhedra (d/dt)

Approximations by Orthogonal Polyhedra

Non-convex orthogonal polyhedra (unions of hyperrectangles)

Motivations
$ canonical representation, efficient manipulation in any

dimension ⇒ easy extension to hybrid systems
$ termination can be guaranteed

Over-approximation Under-approximation

Reachability Analysis of Continuous Systems

Problem

Find an orthogonal polyhedron over-approximating the
reachable set from F

x(0)∈ F, set of initial states

Lipschitzisf);(fsystemcontinuousA xx =&

δ[0,r](F)

Successor Operator

δr(F)

F

Reachable set from F: δ(F) = δ[0,∞)(F)

Algorithm for Calculating δδδδ(F)

P0 := F ;
repeat k = 0, 1, 2 ..

Pk+1 := Pk ∪∪∪∪ δ [0,r](Pk) ;
until Pk+1 = Pk

Use orthogonal polyhedra to

• represent Pk

• approximate δ[0,r]

r : time step

Reachability of Linear Continuous Systems
;AsystemlinearA xx =&

F is a convex polyhedron: F = conv{v1,..,vm}

δr(F) = eAr F

F

vi δr(vi)=eAr vi

F is the set of initial states

δr(F) = conv{δr(v1),.., δr(vm)}

Over-Approximating the Reachable Set

δ[0,2r] (F) ⊆ P2 = G1∪ G2

X2

P2

δ[0,r](F) ⊆ G1

P1=G1

δ[r,2r](F) ⊆ G2

X1

X2

G2

X0=F

δr(v2)

X1= δr(X0)

v1

v2

δr(v1) X1 X1

X0

C1=conv{X1,X0}

C1
Cb1

ε

Extension to under-approximationsExtension to under-approximations

Example
















=

××==

5.00.00.0
0.00.10.4
0.00.40.1

A

]1.0,05.0[]15.0,1.0[]05.0,025.0[F,Axx&

Nonlinear Systems

yF
x

Lipschitzisf);(fsystemcontinuousA xx =&

% ‘Face lifting’ technique, inspired by [Greenstreet 96]

x(0)∈ F, set of initial states

• Continuity of trajectories ⇒
compute from the boundary of F

• The initial set F is a convex polyhedron
The boundary of F: union of its faces

N(e)

H(e)

Over-Approximating δδδδ[0,r](F)
Step 1: rough approximation N(F)

F

e

fe : projection of f on the outward normal to face e
ef̂ : maximum of fe over the neighborhood N(e) of e

ef̂

H’(e)

r

e1N(F)

Step 2: more accurate approximation

Computation Procedure

• Decompose F into non-overlapping hyper-rectangles

• Apply the lifting operation to each hyper-rectangle (faces
on the boundary of F)

• Make the union of the new hyper-rectangles

F

Example: Collision Avoidance

[] [])anglepitch(,u);thrust(T,Tu

u
m
cxa

x
xcosg

m
)cx1(xax

m
uxsing

m
xax

anglepathflight:x;velocity:x

maxmin2maxmin1

2
1L

1

221L
2

1
2

2
1D

1

21

ΘΘ==

+−−=+−= &&

P = [Vmin,Vmax]×[γmin,γmax]

d/dt Summary
Techniques generalize to

Hybrid Systems
Dynamics with uncertain inputs
Controller synthesis problems

Tool available from Verimag

Applications
& collision avoidance (4 continuous variables, 1 discrete state)
& double pendulum (3 continuous variables, 7 discrete states)
& freezing system (6 continuous variables, 9 discrete states)

