
Model Checking
Accomplishments and Opportunities

Rajeev Alur
Systems Design Research Lab
University of Pennsylvania
www.cis.upenn.edu/~alur/

Debugging Tools

q Program Analysis
Type systems, pointer analysis, data-flow analysis

q Simulation
Effective in discovering bugs in early stages

q Testing
Expensive!

q Formal Verification
Mathematical proofs, Not yet practical

Quest for Better Debugging

q Bugs are expensive!
Pentium floating point bug, Arian-V disaster

q Testing is expensive!
More time than design and implementation

q Safety critical applications
Certification mandated

Model Checker

Advantages
Automated formal verification, Effective debugging tool

Moderate industrial success
In-house groups: Intel, Microsoft, Lucent, Motorola…
Commercial model checkers: FormalCheck by Cadence

Obstacles
Scalability is still a problem (about 100 state vars)
Effective use requires great expertise

model

temporal
property

yes

error-trace

Cache consistency: Gigamax

Real design of a distributed multiprocessor

Similar successes: IEEE Futurebus+ standard, network RFCs

Deadlock found using SMV

M P

UICUIC

UIC

M P

Global bus

Cluster bus

Read-shared/read-owned/write-invalid/write-shared/…

Talk Outline

ü Introduction
Ü Foundations
q MOCHA
q Current Trends and Future

Components of a Model Checker

q Modeling language
Concurrency, non-determinism, simple data types

q Requirements language
Invariants, deadlocks, temporal logics

q Search algorithms
Enumerative vs symbolic + many optimizations

q Debugging feedback

Reachability Problem
Model variables X ={x1, … xn}

Each var is of finite type, say, boolean
Initialization: I(X) condition over X
Update: T(X,X’)

How new vars X’ are related to old vars X as a result of
executing one step of the program

Target set: F(X)
Computational problem:

Can F be satisfied starting with I by repeatedly applying T ?
Graph Search problem

Symbolic Solution
Data type: region to represent state-sets
R:=I(X)
Repeat

If R intersects T report “yes”
Else if R contains Post(R) report “no”
Else R := R union Post(R)

Post(R(X))= (Exists X. R(X) and T(X,X’))[X’ -> X]
Termination may or may not be guaranteed

Symbolic Representations

q Necessary operations on Regions
Union
Intersection
Negation
Projection
Renaming
Equality/containment test
Emptiness test

qDifferent choices for different classes
BDDs for boolean variables in hardware verification
Size of representation as opposed to number of states

Binary Decision Diagrams

Popular representations for Boolean functions

Key properties:
Canonical!
Size depends on choice of ordering of variables
Operations such as union/intersection are efficient

a

bc

d

0

0
0

0

0

1

1

1 1
1

Function: (a and b) or (c and d)

Like a decision graph
No redundant nodes
No isomorphic subgraphs
Variables tested in fixed order

Battling Complexity

q State-space search is expensive!
Typical computational complexity: PSPACE

q Symbolic search is a partial solution
Running out of memory is the norm

q Secret of success
Great flexibility in setting up the problem
Abstract many details, and simplify

q Cache coherence
Test with 2 processors, 1 bus, 1-bit memory

Requirements

q Safety properties
Mutual exclusion
Deadlock freedom

q Liveness properties
Every request is followed by response
Every reachable state has a path to reset state

qTemporal logic
Linear-time (LTL) vs Branching-time (CTL)
Sample formulas:
[] (pc1=cs -> pc2!=cs)
[] (req -> <> response)

Liveness Properties

Beautiful theory of w-regular languages

Verification of liveness properties:
Find a reachable cycle satisfying certain properties
Analysis of strongly connected components
Nested fixpoint computation

a
a

b
b

Buchi automata: Automata accepting infinite words

L(A) = All infinite words over {a,b} with infinitely many a’s

Talk Outline

ü Introduction
ü Foundations
Ü MOCHA
q Current Trends and Future

MOCHA
Goals:

Exploit design structure for scalable model checking
Coherent integration of techniques

Key features
Compositional modeling language: Reactive Modules
Game-based requirements of open systems: ATL
Refinement checking by assume-guarantee rules
Hierarchical reduction algorithms
Java-based implementation with extensive GUI

Joint project with UC Berkeley, Funded by DARPA/SRC

Visit www.cis.upenn.edu/~mocha/

Assume-Guarantee Rule
To prove

refinesI1 I2 S2

It suffices to prove

and

refines

refines

I1

I2

S2

S2S1

S1

S1

Alternating Temporal Logic
Suitable for requirements of open systems

explicit distinction between choices of system vs env
Sample game: system and env take turns

EF p AF p <sys> F p

Alternating Temporal Logic
In Mocha, multiple players that execute concurrently
Sample property <A,B> G p

can agents A and B collaborate to maintain invariant p?
existential over choices of A & B, universal over others

Can specify games and controllability
More expressive than CTL

model checking via symbolic fixpoint computation

Talk Outline

ü Introduction
ü Foundations
ü MOCHA
Ü Current Trends and Future

Current Research Trends

q Compositional model checking
Exploit modularity and hierarchy for efficient analysis

q Abstraction of programs
Automatic extraction of finite-state machines from

code (C/Java): Bandera, JavaPathFinder

q Beyond finite-state systems
Hybrid systems, Recursive programs…

q Better Search Technology
BDDs + SAT solvers, Decision procedures for other

logics (theory of uniterpreted functions with equality)

Hierarchical State Machines

tel

onHook offHook

onH

call

answ
rtB

tel?onH

bus

rtB

rtB
answ

onH

connecting

talking

ok

call gettingNo
ok

HeRMes: How to exploit hierarchy during search?
Use scoping/typing information about variables

Hybrid Systems

State machines

offon

+ Dynamical systems

dx=kx
x<70

dx=-k’x
x>60

x>68

x<63

Embedded software interacting with physical processes

Analysis of Hybrid Systems

q Timed Automata
Only continuous variables are timers
Can express lower/upper bounds on delays
Reachability analysis is decidable
Representation for state-sets: Matrices (DBMs)
Tools: Cospan, Kronos, Uppaal

q Linear Hybrid Automata
Dynamics approximated by differential inclusions
Expressions in guards/assignments are linear
Representation for state-sets: polyhedra
Tools: HyTech

Program Abstraction

Successful applications:
Lucent: Pathstar switch
NASA: Space shuttle control

int x, y;
if x>0 {
…………
y:=x+1
……….}
else {
…………
y:=x+1
……….}

bool bx, by;
if bx {
…………
by:=true
……….}
else {
…………
by:={true,false}
……….}

Predicate Abstraction

bx: x>0; by : y>0

Emerging Trends

q Past success: hardware and protocols
Model-based/principled design methodology in place

q Improved computing technology
Greater speed, more memory

q Model-based software design
UML

q Embedded software
Small and critical

Long-Term Future

q Problem is REAL!!
System design methodology will constantly evolve

q Model-based design of Systems-on-chip
Precise specs of interface behavior

q Next-generation programming languages
Will be designed with model checking as a concern, and

will support some checks based on it

q Embedded software
Key app with special-purpose tools

Perspectives on Model Checking

q Theoreticians
Automata + Logic + Graphs

q Tool Builders
Optimizations + Memory management

q Verification Engineers
Abstractions + Expertise + Frustration

q Enterpreneurs
Tools don’t sell, Cost-benefits tradeoff unclear

