Model Checking

Accomplishments and Opportunities

Rajeev Alur

Systems Design Research Lab
University of Pennsylvania
WwWWw. cis.upenn.edu/~alur/



Debugging Tools

d Program Analysis

¢+ Type systems, pointer analysis, data-flow analysis

d Simulation
¢ Effective In discovering bugs In early stages

1 Testing

* Expensive!

J Formal Verification

+ Mathematical proofs, Not yet practical



Quest for Better Debugging

1 Bugs are expensive!

¢ Pentium floating point bug, Arian-V disaster

1 Testing Is expensive!
¢ More time than design and implementation

d Safety critical applications

+ Certification mandated



model ves
temporal Model Checker

property error-trace

Advantages
Automated formal verification, Effective debugging tool

Moderate industrial success

In-house groups: Intel, Microsoft, Lucent, Motorola...
Commercial model checkers: FormalCheck by Cadence

Obstacles

Scalability is still a problem (about 100 state vars)
Effective use requires great expertise



Cache consistency: Gigamax

Real design of a distributed multiprocessor

UIC

UIC

Global bus

UIC

Cluster bus

M

Deadlock found using SMV

Read-shared/read-owned/write-invalid/write-shared/ ...

Similar successes: IEEE Futurebus+ standard, network RFCs



Talk Outline

v Introduction
< Foundations
J MOCHA

] Current Trends and Future




Components of a Model Checker

d Modeling language

+ Concurrency, non-determinism, simple data types

d Requirements language
¢ Invariants, deadlocks, temporal logics

d Search algorithms

¢ Enumerative vs symbolic + many optimizations

d Debugging feedback



Reachability Problem

Model variables X ={x1, ... Xxn}
Each var is of finite type, say, boolean

Initialization: 1(X) condition over X
Update: T(X,X)

How new vars X' are related to old vars X as a result of
executing one step of the program

Target set: F(X)
Computational problem:

Can F be satisfied starting with I by repeatedly applying T ?
Graph Search problem



Symbolic Solution

Data type: region to represent state-sets
R:=1(X)

Repeat

IT R Intersects T report “yes”

Else If R contains Post(R) report “no”
Else R := R union Post(R)

Post(R(X))= (Exists X. R(X) and T(X,X))[X -> X]
Termination may or may not be guaranteed



Symbolic Representations

d Necessary operations on Regions
Union
Intersection
Negation
Projection
Renaming
Equality/containment test
Emptiness test

A Different choices for different classes
BDDs for boolean variables in hardware verification
Size of representation as opposed to number of states



Binary Decision Diagrams

Popular representations for Boolean functions

Like a decision graph
0 Q 1 grap
5 No redundant nodes
(c) (b No isomorphic subgraphs
0

. Variables tested in fixed order
(092D o
Function: (a and b) or (c and d)

Key properties:
Canonical!
Size depends on choice of ordering of variables
Operations such as union/intersection are efficient



Battling Complexity

] State-space search Is expensive!
+ Typical computational complexity: PSPACE

d Symbolic search is a partial solution
¢ Running out of memory iIs the norm

1 Secret of success
* Great flexibility in setting up the problem
¢ Abstract many details, and simplify

1 Cache coherence
® Test with 2 processors, 1 bus, 1-bit memory



Requirements

d Safety properties

¢ Mutual exclusion
¢ Deadlock freedom

 Liveness properties
¢ Every request is followed by response
¢ Every reachable state has a path to reset state

d Temporal logic
¢ Linear-time (LTL) vs Branching-time (CTL)
¢+ Sample formulas:

[1 (pcl=cs -> pc2!=cs)
[1 (req -> <> response)



Liveness Properties

Beautiful theory of w-reqgular languages

b ..-@ a

b
Buchi automata: Automata accepting infinite words

L(A) = All infinite words over {a,b} with infinitely many a’s

Verification of liveness properties:
Find a reachable cycle satisfying certain properties
Analysis of strongly connected components
Nested fixpoint computation



Talk Outline

v Introduction

v' Foundations

< MOCHA

d Current Trends and Future



MOCHA

Goals:

Exploit design structure for scalable model checking
Coherent integration of techniques

Key features

Compositional modeling language: Reactive Modules
Game-based requirements of open systems: ATL
Refinement checking by assume-guarantee rules
Hierarchical reduction algorithms

Java-based implementation with extensive GUI

Joint project with UC Berkeley, Funded by DARPA/SRC

Visit www.cis.upenn.edu/~mocha/



To prove

Assume-Guarantee Rule

11

—@ refines

It suffices to prove

and

11

:@ refines

S1

S1

—(s2)

S1

@ refines :@



Alternating Temporal Logic

Suitable for requirements of open systems
explicit distinction between choices of system vs env

Sample game: system and env take turns

o oo o g

EF p AF p <sys> F p




Alternating Temporal Logic

In Mocha, multiple players that execute concurrently
Sample property <AB>Gp
can agents A and B collaborate to maintain invariant p?
existential over choices of A & B, universal over others

Can specify games and controllability

More expressive than CTL

model checking via symbolic fixpoint computation



Talk Outline

v Introduction
v Foundations

v MOCHA
<@ Current Trends and Future



Current Research Trends

1 Compositional model checking
Exploit modularity and hierarchy for efficient analysis

d Abstraction of programs

Automatic extraction of finite-state machines from
code (C/Java): Bandera, JavaPathFinder

1 Beyond finite-state systems

Hybrid systems, Recursive programs...

d Better Search Technology

BDDs + SAT solvers, Decision procedures for other
logics (theory of uniterpreted functions with equality)



Hierarchical State Machines

teID J tel?onH |

onH”

call B
onL—l _ogk OS] oﬂl—l _Ofk
bus-
onH
@

call gettingNo]Lk[connecting] rtB

o reB
(ﬁ(ing

answ

HeRMes: How to exploit hierarchy during search?
Use scoping/typing information about variables



Hybrid Systems

State machines + Dynamical systems

x>68 of f
dx=-k’'x
& x>60
X<63

Embedded software interacting with physical processes




Analysis of Hybrid Systems

J Timed Automata

Only continuous variables are timers

Can express lower/upper bounds on delays
Reachability analysis Is decidable
Representation for state-sets: Matrices (DBMs)
Tools: Cospan, Kronos, Uppaal

 Linear Hybrid Automata
Dynamics approximated by differential inclusions
EXpressions in guards/assignments are linear
Representation for state-sets: polyhedra
Tools: HyTech



Program Abstraction

Int X, VY, bool bx, by;

IT x>0 { I bx {

yr=x+1 Predicate Abstraction by —true

S L L R I ey

yzx;l Itl)l)l/”:l;{}ljcrue,false}

Successful applications:
Lucent: Pathstar switch
NASA: Space shuttle control



Emerging Trends

d Past success: hardware and protocols
+ Model-based/principled design methodology in place

d Improved computing technology

¢ Greater speed, more memory

1 Model-based software design
¢ UML

J Embedded software

+ Small and critical



Long-Term Future

d Problem i1s REAL!
System design methodology will constantly evolve
d Model-based design of Systems-on-chip
Precise specs of interface behavior

d Next-generation programming languages

Will be designed with model checking as a concern, and
will support some checks based on it

Jd Embedded software

Key app with special-purpose tools



Perspectives on Model Checking

1 Theoreticians

Automata + Logic + Graphs

J Tool Builders

Optimizations + Memory management

d Verification Engineers
Abstractions + Expertise + Frustration

d Enterpreneurs

Tools don’t sell, Cost-benefits tradeoff unclear



