
Pattern-Based Refinement of Assume-Guarantee
Specifications in Reactive Synthesis?

Rajeev Alur, Salar Moarref, and Ufuk Topcu

University of Pennsylvania, Philadelphia, USA
{alur,moarref,utopcu}@seas.upenn.edu

Abstract. We consider the problem of compositional refinement of com-
ponents’ specifications in the context of compositional reactive synthe-
sis. Our solution is based on automatic refinement of assumptions and
guarantees expressed in linear temporal logic (LTL). We show how be-
haviors of the environment and the system can be inferred from counter-
strategies and strategies, respectively, as formulas in special forms called
patterns. Instantiations of patterns are LTL formulas which hold over all
runs of such strategies, and are used to refine the specification by adding
new input assumptions or output guarantees. We propose three different
approaches for compositional refinement of specifications, based on how
much information is shared between the components, and demonstrate
and compare the methods empirically.

1 Introduction

Given a specification in a formal language such as linear temporal logic (LTL),
reactive synthesis problem is to find a finite-state system that satisfies the spec-
ification, no matter how its environment behaves. The synthesis problem can be
viewed as a game between two players: the system and its environment. The sys-
tem attempts to satisfy the specification, while its environment tries to violate
it. The specification is realizable, if there is a system that can satisfy it. Other-
wise, a counter-strategy can be computed for the environment which describes
the way it can behave so that no system can satisfy the specification.

The reactive synthesis problem is known to be intractable for general LTL
specifications [1]. However, there are fragments of LTL, such as Generalized
Reactivity(1) (GR(1)), for which the realizability and synthesis problems can
be solved in polynomial time in the number of states of the reactive system
[2]. Yet scalability is a big challenge as increasing the number of formulas in a
specification may cause an exponential blowup in the size of its state space [2].
Compositional synthesis techniques can potentially address this issue by solving
the synthesis problem for smaller components and merging the results such that
the composition satisfies the specification. The challenge is then to find proper

? This research was partially supported by NSF Expedition in Computing project
ExCAPE (grant CCF 1138996) and AFOSR (grant number FA9550-12-1-0302).

decompositions and assumptions-guarantees such that each component is realiz-
able, its expectations of its environment can be discharged on the environment
and other components, and circular reasoning is avoided, so that the local con-
trollers can be implemented simultaneously and their composition satisfies the
original specification [3].

We study the problem of compositional refinement of components’ specifica-
tions in the context of compositional reactive synthesis. We consider the special
case in which the system consists of two components C1 and C2 and that a global
specification is given which is realizable and decomposed into two local specifi-
cations, corresponding to C1 and C2, respectively. Furthermore, we assume that
there is a serial interconnection between the components [3], i.e., only the output
variables of C2 depend on those of C1. We are interested in computing refine-
ments such that the refined local specifications are both realizable and when
implemented, the resulting system satisfies the global specification.

Our solution is based on automated refinement of assumptions and guaran-
tees expressed in LTL. In [4] we showed how an unrealizable specification can be
refined by adding assumptions on its environment. The core of the method is the
synthesis of a set of LTL formulas of special form, called patterns, which hold
over all runs of an abstraction of the counter-strategy computed for the unreal-
izable specification. If the local specification for a component C2 is unrealizable,
we refine its environment assumptions, while ensuring that the other compo-
nent C1 can indeed guarantee those assumptions. To this end, it is sometimes
necessary to refine C1’s specification by adding guarantees to it. We extend the
methods in [4] to be able to refine guarantees as well as assumptions.

The main contributions of the paper are as follow. We extend our work in
[4] in several aspects. We improve the scalability of the methods proposed in
[4] by showing how a more compact abstraction can be constructed for counter-
strategies and strategies. We extend the forms of patterns that can be synthe-
sized, and show how a similar technique for refining unrealizable specifications
can be used to refine the requirements of the system. We propose three differ-
ent approaches that can be used to refine the specifications of the components
in the context of compositional synthesis. Intuitively, these approaches differ in
how much information about one component is shared with the other one. We
show that providing more knowledge of one component’s behavior for the other
component can make it significantly easier to refine the local specifications, with
the expense of increasing the coupling between the components. We illustrate
and compare the methods with examples and a case study.

Related Work. The problem of refining the environment assumptions is also
considered in [5,6]. Synthesizing distributed systems from global specification is
a hard problem [7]. However, distributed controller synthesis algorithms exists
for special architectures [8]. Assume-guarantee synthesis problem is considered
in [9] and solved by computing secure-equilibrium strategies. We use a different
approach for refining the specifications which is based on strategies and counter-
strategies.

2 Preliminaries

Let P be the set of atomic propositions (Boolean variables) partitioned into input
I and output O propositions. Linear temporal logic (LTL) is a formal specifi-
cation language with two types of operators: logical connectives (¬ (negation),
∨ (disjunction), ∧ (conjunction), and → (implication)) and temporal operators
(e.g.,© (next), 3 (eventually), and 2 (always)). An LTL formula is interpreted
over infinite words w ∈ (2P)ω. The language of an LTL formula φ, denoted by
L(φ), is the set of infinite words that satisfy φ, i.e., L(φ) =

{
w ∈ (2P)ω | w |= φ

}
.

We assume some familiarity of the reader with LTL. In this paper, We consider
GR(1) specifications which are of the form φ = φe → φs, where φα for α ∈ {e, s}
can be written as a conjunction of the following parts:

– φαi : A Boolean formula over I if α = e and over I∪O otherwise, characterizing
the initial state.

– φαg : A formula of the form
∧
i23Bi characterizing fairness/liveness, where

each Bi is a Boolean formula over I ∪O.
– φαt : An LTL formula of the form

∧
i2ψi characterizing safety and transition

relations, where ψi is a Boolean formula over expressions v and ©v′ where
v ∈ I ∪O and, v′ ∈ I if α = e and v′ ∈ I ∪O if α = s.

Intuitively, φe indicates the assumptions on the environment and φs characterizes
the requirements of the system. Any correct implementation that satisfies the
specification guarantees to satisfy φs, provided that the environment satisfies φe.

A labeled transition system (LTS) is a tuple T = 〈Q,Q0, δ,L〉 where Q is a
finite set of states, Q0 ⊆ Q is a set of initial states, δ ⊆ Q × Q is a transition
relation, and L : Q → φ is a labeling function which maps each state to a
propositional formula φ =

∧
i lpi expressed as a conjunction of literals lpi over

propositions pi ∈ P . The projection of a label φ with respect to a set of variables
U ⊆ P is defined as the propositional formula φ↓U where any literal `pi over
pi ∈ P\U in φ is replaced by True, i.e., φ↓U only contains the variables from U .
A run of an LTS is an infinite sequence of states σ = q0q1q2... where q0 ∈ Q0

and for any i ≥ 0, qi ∈ Q and (qi, qi+1) ∈ δ. The language of an LTS T is defined
as the set L(T) = {w ∈ Qω | w is a run of T }, i.e., the set of (infinite) words
generated by the runs of T .

A Moore transducer is a tuple M = (S, s0, I,O, δ, γ), where S is a set of
states, s0 ∈ S is an initial state, I = 2I is the input alphabet, O = 2O is the
output alphabet, δ : S × I → S is a transition function and γ : S → O is
a state output function. A Mealy transducer is similar, except that the state
output function is γ : S × I → O. For an infinite word w ∈ Iω, a run of
M is an infinite sequence σ ∈ Sω such that σ0 = s0 and for all i ≥ 0 we
have σi+1 = δ(σi, ωi). The run σ on input word w produces an infinite word
M(w) ∈ (2P)ω such that M(w)i = γ(σi) ∪ wi for all i ≥ 0. The language of M
is the set L(M) = {M(w) | w ∈ Iω} of infinite words generated by runs of M .

An LTL formula φ is satisfiable if there exists an infinite word w ∈ (2P)ω such
that w |= φ. A Moore (Mealy) transducer M satisfies an LTL formula φ, written
as M |= φ, if L(M) ⊆ L(φ). An LTL formula φ is Moore (Mealy) realizable

if there exists a Moore (Mealy, respectively) transducer M such that M |= φ.
The realizability problem asks whether there exists such a transducer for a given
φ. Given an LTL formula φ over P and a partitioning of P into I and O, the
synthesis problem is to find a Mealy transducer M with input alphabet I = 2I

and output alphabet O = 2O that satisfies φ. A counter-strategy for the synthesis
problem is a strategy for the environment that can falsify the specification, no
matter how the system plays. Formally, a counter-strategy can be represented by
a Moore transducer Mc = (S′, s′0, I ′,O′, δ′, γ′) that satisfies ¬φ, where I ′ = O
and O′ = I are the input and output alphabet for Mc which are generated by
the system and the environment, respectively.

For a specification φ = φe → φs, we define an assumption refinement ψe =∧
i ψei as a conjunction of a set of environment assumptions such that (φe∧ψe)→

φs is realizable. Similarly, ψs =
∧
i ψsi is a guarantee refinement if φe → (φs∧ψs)

is realizable. An assumption refinement ψe is consistent with φ if φe ∧ ψe is
satisfiable. Note that an inconsistent refinement φe ∧ ψe = False, leads to an
specification which is trivially realizable, but neither interesting nor useful.

3 Overview

Assume a global LTL specification is given which is realizable. Furthermore, as-
sume the system consists of a set of components, and that a decomposition of
the global specification into a set of local ones is given, where each local speci-
fication corresponds to a system component. The decomposition may result in
components whose local specifications are unrealizable, e.g., due to the lack of
adequate assumptions on their environment. The general question is how to re-
fine the local specifications such that the refined specifications are all realizable,
and when implemented together, the resulting system satisfies the global speci-
fication. In this paper we consider a special case of this problem. We assume the
system consists of two components C1 and C2, where there is a serial intercon-
nection between the components [3]. Intuitively, it means that the dependency
between the output variables of the components is acyclic, as shown in Fig. 2.
Let I be the set of input variables controlled by the environment and O be the
set of output variables controlled by the system, partitioned into O1 and O2,
the set of output variables controlled by C1 and C2, respectively. Formally, we
define the problem as follows.

Problem Statement. Consider a realizable global specification φ = φe → φs.
We assume φ is decomposed into two local specifications φ1 = φe1 → φs1 and
φ2 = φe2 → φs2 such that φe → (φe1 ∧φe2) and (φs1 ∧φs2)→ φs. We assume φe,
φs, φe1 , φs1 , φe2 , and φs2 are GR(1) formulas which contain variables only from
the sets I, I ∪O, I, I ∪O1, I ∪O1, and I ∪O, respectively. We would like to find
refinements ψ and ψ′ such that the refined specifications φref1 = φe1 → (φs1∧ψ′)
and φref2 = (φe2 ∧ ψ)→ φs2 are both realizable and ψ′ → ψ is valid.

From Proposition 2 in [3] it follows that if such refinements exist, then the
resulting system from implementing the refined specifications satisfies the global

specification φ. We use this fact to establish the correctness of the decompo-
sition and refinements in our proposed solutions. As φ is realizable, and C1 is
independent from C2, it follows that φ1 (in case it is not realizable) can become
realizable by adding assumptions on its environment. Especially, providing all
the environment assumptions of the global specification for C1 is enough to make
its specification realizable. However, it might not be the case for φ2. In the rest
of the paper, we assume that φ1 is realizable, while φ2 is not. We investigate how
the strategy and counter-strategy computed for C1 and C2, respectively, can be
used to find suitable refinements for the local specifications.

Our solution is based on an automated refinement of assumptions and guar-
antees expressed in LTL. In [4], we showed how an unrealizable specification
can be refined by adding assumptions on the environment. The refinement is
synthesized step by step guided by counter-strategies. When the specification is
unrealizable, a counter-strategy is computed and a set of formulas of the forms
32ψ, 3ψ, and 3(ψ ∧©ψ′), which hold over all runs of the counter-strategy, is
inferred. Intuitively, these formulas describe potentially “bad” behaviors of the
environment that may cause unrealizability. Their complements form the set of
candidate assumptions, and adding any of them as an assumption to the spec-
ification will prevent the environment from behaving according to the counter-
strategy (without violating its assumptions). We say the counter-strategy is ruled
out from the environment’s possible behaviors. Counter-strategy-guided refine-
ment algorithm in [4] iteratively chooses and adds a candidate assumption to the
specification, and the process is repeated until the specification becomes realiz-
able, or the search cannot find a refinement within the specified search depth.
The user is asked to specify a subset of variables to be used in synthesizing
candidate assumptions. This subset may reflect the designer’s intuition on the
source of unrealizability and help search for finding a proper refinement.

In this paper, we extend the algorithms in [4] to refine the guarantees of
a specification. When the specification is realizable, a winning strategy can be
computed for the system. We can use patterns to infer the behaviors of the
strategies as LTL formulas. Formulas of the form 23ψ, 2ψ, and 2(ψ → ©ψ′)
can be used to infer implicit guarantees provided by the given strategy, i.e., they
can be added to the original specification as guarantees, and the same strategy
satisfies the new specification as well as the original one. These formulas can
be seen as additional guarantees a component can provide in the context of
compositional synthesis. Formulas of the form 32ψ, 3ψ, and 3(ψ ∧©ψ′) can
be used to restrict the system by adding their complements to the specifications
as guarantees. As a result, the current strategy is ruled out from system’s possible
strategies and hence, the new specification, if still realizable, will have a different
strategy which satisfies the original specification, and also provides additional
guarantees. Algorithm 1 shows how a set of additional guarantees P is computed
for the specification φ and subset of variables U . For the computed strategy
Ms, the procedure Infer-GR(1)-Formulas synthesizes formulas of the forms
23ψ,2ψ, and 2(ψ →©ψ′) which hold over all runs of the strategy. Similarly,
the procedure Infer-Complement-GR(1)-Formulas synthesizes formulas of

Algorithm 1: FindGuarantees

Input: φ = φe → φs: a realizable specification, U : subset of variables
Output: P: A set of formulas ψ such that φe → (φs ∧ ψ) is realizable

1 Ms = ComputeStrategy(φ1);
2 P := Infer-GR(1)-Formulas(Ms, U);
3 P ′ := Infer-Complement-GR(1)-Formulas(Ms, U);
4 foreach ψ ∈ P ′ do
5 if (φe → (φs ∧ ¬ψ)) is realizable then
6 P = P ∪ ¬ψ ;

7 return P ;

1 2 3 4

5 6 7 8

Fig. 1: Room in Ex. 1
Fig. 2: Serial intercon-
nection.

1 2 3 5

6 7 8 10

11 12 13 14 15

16 18 19 20

21 23 24 25

Fig. 3: Grid-world for
the case study

the form 32ψ,3ψ, and 3(ψ∧©ψ′). These procedures are explained in Sect. 4.
In what follows, we will use grid-world examples commonly used in robot motion
planning case studies to illustrate the concepts and techniques [10].

Example 1. Assume there are two robots, R1 and R2, in a room divided into
eight cells as shown in Fig. 1. Both robots must infinitely often visit the goal cell
4. Besides, they cannot be in the same cell simultaneously (no collision). Finally,
at any time step, each robot can either stay put or move to one of its neighbor
cells. In the sequel, assume i ranges over {1, 2}. We denote the location of robot
Ri with LocRi , and cells by their numbers. Initially LocR1

= 1 and LocR2
= 8.

The global specification is realizable. Note that in this example, all the vari-
ables are controlled and there is no external environment. Assume that the spec-
ification is decomposed into φ1 and φ2, where φi = φei → φsi is the local speci-
fication for Ri. Assume φe1 = True, and φs1 only includes the initial location of
R1, its transition rules, and its goal to infinitely often visit cell 4. φs2 includes
the initial location of R2, its transition rules, its objective to infinitely often visit
cell 4, while avoiding collision with R1. Here R1 serves as the environment for
R2 which can play adversarially. φe2 only includes the initial location of R1.

Inferring formulas: φ1 is realizable. A winning strategy MS1
for R1 is

to move to cell 2 from the initial location, then to cell 3, and then to move
back and forth between cells 4 and 3 forever. The following are examples of
formulas inferred from this strategy: eventually always: 32(LocR1

∈ {3, 4}),
eventually: 3(LocR1

= 3), eventually next: 3(LocR1
= 3∧©LocR1

= 4), always
eventually: 23(LocR1

= 3), always: 2(LocR1
∈ {1, 2, 3, 4}), and always next:

2(LocR1 = 2→©LocR1 = 3).

Refining assumptions: Note that φ2 includes no assumption on R1 other
than its initial location. Specifically, φ2 does not restrict the way R1 can move.
The specification φ2 is unrealizable. A counter-strategy for R1 is to move from
cell 1 to the goal cell 4, and stay there forever, preventing R2 from fulfilling
its requirements. Using the method of [4] for refining the assumptions on the
environment, we find the refinements ψ1 = 23(LocR1

6= 4), ψ2 = 2(LocR1
6= 4),

and ψ3 = 2(LocR1
= 4 → ©LocR1

6= 4). Intuitively, these refinements suggest
that R1 is not present in cell 4 at some point during the execution. Adding any
of these formulas to the assumptions of φ2 makes it realizable.

Refining guarantees: Formula ϕ = 32(LocR1
∈ {3, 4}) is satisfied by

MS1 , meaning that R1 eventually reaches and stays at the cells 3 and 4 forever.
An example of a guarantee refinement is to add the guarantee ¬ϕ to φ1. A
winning strategy for the new specification is to move back and forth in the first
row between initial and goal cells. That is,R1 has the infinite run (1, 2, 3, 4, 3, 2)ω.

We use these techniques to refine the interface specifications. We propose
three different approaches for finding suitable refinements, based on how much
information about the strategy of the realizable component is allowed to be
shared with the unrealizable component. The first approach has no knowledge
of the strategy chosen by C1, and tries to find a refinement by analyzing counter-
strategies. The second approach iteratively extracts some information from the
strategies computed for φ1, and uses them to refine the specifications. The third
approach encodes the strategy as a conjunction of LTL formulas, and provides
it as a set of assumptions for C2, allowing it to have a full knowledge of the
strategy. These approaches are explained in detail in Sect. 5.

Compositional Refinement: Assume MS1
is the computed strategy for

R1. The first approach, computes a refinement for the unrealizable specification,
then checks if the other component can guarantee it. For example, ψ3 is a can-
didate refinement for φ2. φ1 can be refined by ψ3 added to its guarantees. The
strategy MS1 still satisfies the new specification, and refined specifications are
both realizable. Thus, the first approach returns ψ3 as a possible refinement.
Using the second approach, formula ψ4 = 23(LocR1

= 3) is inferred fromMS1
.

Refining both specifications with ψ4 leads to two realizable specifications, hence
ψ4 is returned as a refinement. The third approach encodesMS1

as conjunction

of transition formulas ψ5 =
∧3
i=1 2(LocR1 = i→©LocR1 = i+ 1)∧2(LocR1 =

4→©LocR1
= 3). Refining assumptions of φ2 with ψ5 makes it realizable.

4 Inferring Behaviors as LTL Formulas

In this section we show how certain types of LTL formulas which hold over all
runs of a counter-strategy or strategy can be synthesized. The user chooses the
subset of variables U to be used in synthesizing the formulas. These formulas
are computed as follows: First an LTS T is obtained from the given Moore
(Mealy) transducer M which represents the counterstrategy (strategy, respec-
tively). Next, using the set U , an abstraction T a of T is constructed which is

q0start q1 q2 q3

Fig. 4: An LTS T

qa0startstart qa1 qa2

Fig. 5: Abstract LTS T a of T

also an LTS. A set of patterns which hold over all runs of T a is then synthesized.
The instantiations of these patterns form the set of formulas which hold over all
runs of the input transducer. Next we explain these steps in more detail.

4.1 Constructing the Abstract LTS

We briefly show how an abstraction of a given strategy or counter-strategy is
obtained as an LTS. Given a Moore (Mealy) transducer M, first an LTS T =
(Q, {q0} , δT ,L) is obtained which keeps the structure of M while removing its
input and output details. The states of T are labeled in a way that is consistent
with the input/output valuations of M. Next, using a user-specified subset of
variables U ⊆ I ∪ O, an abstraction T a = (Qa, Qa0 , δT a ,La) of T is computed
based on the state labels L. There is a surjective function F : Q → Qa which
maps each state of T to a unique state of T a. Intuitively, the abstraction T a
has a unique state for each maximal subset of states of T which have the same
projected labels with respect to U , and if there is a transition between two states
of T , there will be a transition between their mapped states in T a. It can be
shown that T a simulates T . Therefore, any formula ϕ which is satisfied by T a
is also satisfied by T .

Remark 1. Patterns can be synthesized from either T or T a. It is sometimes
necessary to use T a due to the high complexity of the algorithms for computing
certain types of patterns (e.g., eventually patterns), as T a may have significantly
less number of states compared to T which improves the scalability of the meth-
ods. However, abstraction may introduce additional non-determinism into the
model, leading to refinements which are more “conservative.” Besides, some of
the formulas which are satisfied by T , cannot be computed from T a. It is up to
the user to choose techniques which serve her purposes better.

4.2 Synthesizing Patterns

Next we discuss how patterns of certain types can be synthesized from the given
LTS T . A pattern ψP is an LTL formula which is satisfied over all runs of T , i.e.,
T |= ψP . We are interested in patterns of the forms 32ψP , 3ψP , 3(ψP∧©ψ′P),
23ψP , 2ψP , and 2(ψP →©ψ′P), where ψP and ψ′P are propositional formulas
expressed as a disjunction of subset of states of T . Patterns are synthesized
using graph search algorithms which search for special configurations. For an
LTS T = (Q,Q0, δ,L), a configuration C ⊆ Q is a subset of states of T . A
configuration C is a ./-configuration where ./∈ {2,23,3,32} if T |=./

∨
q∈C q.

For example, C is an 23-configuration if any run of T always eventually visits

a state from C. A ./-configuration C is minimal, if there is no configuration
C ′ ⊂ C which is an ./-configuration, i.e., removing any state from C leads to a
configuration which is not a ./-configuration anymore. Minimal ./-configurations
are interesting since they lead to the strongest patterns of ./-form [4]. Algorithms
for computing 32ψP , 3ψP , and 3(ψP ∧ ©ψ′P) patterns can be found in [4].
Here we give algorithms for computing patterns of the forms in GR(1).

23ψP Patterns: The following theorem establishes the complexity of com-
puting all minimal always eventually patterns over a given LTS.

Theorem 1. Computing all minimal 23-configurations is NP-hard.1

Consequently, computing all minimal (always) eventually patterns is infeasible
in practice even for medium sized specifications. We propose an alternative al-
gorithm which computes some of the always eventually patterns.2 Although the
algorithm has an exponential upper-bound, it is simpler and terminates faster in
our experiments, as it avoids enumerating all configurations. It starts with the
configuration {q0}, and at each step computes the next configuration, i.e., the
set of states that the runs of T can reach at the next step from the current con-
figuration. A sequence C0, C1, ..., Cj of configurations is discovered during the
search, where C0 = {q0} and j ≥ 0. The procedure terminates when a configura-
tion Ci is reached which is already visited, i.e., there exists 0 ≤ j < i such that
Cj = Ci. There is a cycle between Cj and Ci−1 and thus, all the configurations
in the cycle will always eventually be visited over all runs of T .

2ψP Pattern: For a given LTS T , a safety pattern of the form 2ψ is synthe-
sized where ψ is simply the disjunction of all the states in T , i.e., ψ =

∨
q∈Q q.

It is easy to see that removing any state from ψ leads to a formula which is not
satisfied by T anymore. The synthesis procedure is of complexity O(|Q|).

2(ψP → ©ψ′P) Patterns: For a given LTS T , a set of transition patterns
of the form 2(ψ →©ψ′) is synthesized. Each ψ consists of a single state q ∈ Q,
for which the ψ′ is disjunction of its successors, i.e. ψ′ =

∨
q′∈Next(q) q

′ where

Next(q) = {q′ ∈ Q | δ(q) = q′}. Intuitively, each transition pattern states that
always when a state is visited, its successors will be visited at the next step. The
synthesis procedure is of complexity O(|Q|+ |δ|).

4.3 Instantiating the Patterns

To obtain LTL formulas over a specified subset U of variables from patterns, we
replace the states in patterns by their projected labels. For example, from an
eventually pattern 3ψP = 3(

∨
q∈QψP

q) where QψP ⊆ Q is a configuration for

T = (Q, {q0} , δ,L), we obtain the formula ψ = 3(
∨
q∈QψP

L(q)↓U).

Example 2. Let Σ = {a, b, c} be the set of variables. Consider the LTS T shown
in Fig. 4, where L(q0) = ¬a∧¬b∧¬c, L(q1) = ¬a∧ b∧¬c, L(q2) = a∧¬b∧¬c,
L(q3) = ¬a ∧ b ∧ ¬c. Let U = {a, b} be the set of variables specified by the

1 Computing all minimal eventually patterns is also NP-hard
2 We use a similar algorithm for computing some of the eventually patterns.

designer to be used in all forms of formulas. Figure 5 shows T a which is an
abstraction of T with respect to U , where the mapping function F is defined
such that F−1(qa0) = {q0}, F−1(qa1) = {q1, q3}, and F−1(qa2) = {q2}, and the
labels are defined as L(qa0) = ¬a ∧ ¬b, L(qa1) = ¬a ∧ b, and L(qa2) = a ∧ ¬b. A
set of patterns are synthesized using the input LTS. For example, ψP = 3(qa1)
is an eventually pattern where T a |= ψP , meaning that eventually over all runs
of the T a the state qa1 is visited. An LTL formula is obtained using the patterns,
labels and specified subset of variables. For example, ψ = 3(¬a ∧ b) is obtained
from the pattern ψP , where the states qa1 is replaced by its label. Note that
the formula ψ′ = 3((¬a ∧ b) ∧©(a ∧ ¬b)) can be synthesized from the pattern
ψ′P = 3(q1∧©q2) from T , however, T a does not satisfy ψ′. A more conservative
formula 3((¬a∧ b)∧©((a∧¬b)∨ (¬a∧¬b)) is obtained using the abstraction.

5 Compositional Refinement

We propose three approaches for compositional refinement of the specifications
φ1 and φ2 in the problem stated in Sect. 3. These approaches differ mainly in how
much information about the strategy of the realizable component is shared with
the unrealizable component. All three approaches use bounded search to compute
the refinements. The search depth (number of times the refinement procedure can
be called recursively) is specified by the user. Note that the proposed approaches
are not complete, i.e., failure to compute a refinement does not mean that there
is no refinement.

Approach 1 (“No knowledge of the strategy of C1”): One way to
synthesize the refinements ψ and ψ′ is to compute a refinement ψ′ for the un-
realizable specification φ2 using the counter-strategy-guided refinement method
in [4]. The specification φ2 is refined by adding assumptions on its environment
that rule out all the counter-strategies for φ2, as explained in Sect. 3, and the
refined specification φref2 = (φe1 ∧ ψ′) → φs1 is realizable. We add ψ = ψ′ to

guarantees of φ1 and check if φref1 is realizable. If φref1 is not realizable, another
assumption refinement for φ2 must be computed, and the process is repeated
for the new refinement. Note that if adding ψ to the guarantees of φ1 does not
make it realizable, there is no ψ′′ such that ψ′′ → ψ, and adding ψ′′ keeps φ1
realizable. Therefore, a new refinement must be computed.

An advantage of this approach is that the assumption refinement ψ′ for φ2
is computed independently using the weakest assumptions that rule out the
counter-strategies. Thus, ψ′ can be used even if C1 is replaced by another com-
ponent C ′1 with different specification, as long as C ′1 can still guarantee ψ′.

Approach 2 (“Partial knowledge of the strategy of C1”): For a given
counter-strategy, there may exist many different candidate assumptions that can
be used to refine the specification. Checking the satisfiability and realizability of
the resulting refined specification is an expensive process, so it is more desirable
to remove the candidates that are not promising. For example, a counter-strategy
might represent a problem which cannot happen due to the strategy chosen by
the other component. Roughly speaking, the more one component knows about

the other one’s implementation, the less number of scenarios it needs to con-
sider and react to. The second approach shares information about the strategy
synthesized for C1 with C2 as follows. It computes a set P of candidate LTL
formulas which can be used to refine guarantees of φ1. Then at each iteration,
a formula ψ ∈ P is chosen, and it is checked if the counter-strategy for φ2 sat-
isfies ¬ψ (similar to assumption mining in [5]). If it does and ψ is consistent
with φ2, it is checked if ψ is an assumption refinement for φ2, in which case
ψ can be used to refine the guarantees (assumptions) of φ1 (φ2 , respectively),
and ψ is returned as a suggested refinement. Otherwise, the local specifications
are refined by ψ and the process is repeated with the new specifications. In this
approach, some information about C1’s behavior is shared as LTL formulas ex-
tracted from the C1’s strategy. Only those formulas which completely rule out
the counter-strategy are kept, hence reducing the number of candidate refine-
ments, and keeping the more promising ones, while sharing as much information
as needed from one component to the other one.

Approach 3 (“Full knowledge of the strategy of C1”) It might be
preferred to refine the specification by adding formulas that are already satisfied
by the current implementation of the realizable component in order not to change
the underlying implementation. For example, assume a strategy MS is already
computed and implemented for φ1, and the designer prefers to find a refinement
ψ that is satisfied byMS . Yet in some cases, the existing strategy for C1 must be
changed, otherwise C2 will not be able to fulfill its requirements. In this setting,
the guarantees of C1 can be refined to find a different winning strategy for it.
The third approach is based on this idea. It shares the full knowledge of strategy
computed for C1 with C2 by encoding the strategy as an LTL formula and
providing it as an assumption for φ2. Knowing exactly how C1 plays might make
it much easier for C2 to synthesize a strategy for itself, if one exists. Furthermore,
a counter-strategy produced in this case indicates that it is impossible for C2 to
fulfill its goals if C1 sticks to its current strategy. Therefore, both specifications
are refined and a new strategy is computed for the realizable component.

Algorithm 2 summarizes the third approach. Once a strategy is computed
for the realizable specification, its corresponding LTS T = (Q, {q0} , δ,L) is ob-
tained, and encoded as a conjunction of transition formulas as follows. We define
a set of new propositions Z =

{
z0, z1, · · · , zdlog|Q|e

}
which encode the states Q

of T . Intuitively, these propositions represent the memory of the strategy in
generated transition formulas, and are considered as environment variables in
the refined specification φ′2. For ease of notation, let |Z|i indicate the truth as-
signment to the propositions in Z which represents the state qi ∈ Q. We encode
T with the conjunctive formula ψ = (|Z|0 ∧ L(q0) ∧

∧
qi∈Q2((|Z|i ∧ L(qi)) →

©(
∨
qj∈Next(qi)

|Z|j ∧ L(qj)), where Next(qi) is the set of states in T with a
transition from qi to them. We refer to ψ as full encoding of T . Intuitively, ψ
states that always when the strategy is in state qi ∈ Q with truth assignment to
the variables given as L(qi), then at next step it will be in one of the adjacent
states qj ∈ Next(qi) with truth assignment L(qj) to the variables, and initially it
is in state q0. The procedure Encode-LTS in Alg. 2 takes an LTS and returns
a conjunctive LTL formula representing it.

The unrealizable specification φ2 is then refined by adding the encoding of the
strategy as assumptions to it. If the refined specification φ′2 is realizable, there
exists a strategy for C2, assuming the strategy chosen for C1, and the encoding
is returned as a possible refinement. Otherwise, the produced counter-strategy
CS ′ shows how the strategy for C1 can prevent C2 from realizing its specifica-
tion. Hence, the specification of both components need to be refined. Procedure
findCandidateAssumptions computes a set P of candidate assumptions that
can rule out CS ′, and at each iteration, one candidate is chosen and tested by
both specifications for satisfiability and realizability. If any of these candidate
formulas can make both specifications realizable, it is returned as a refinement.
Otherwise, the process is repeated with only those candidates that are consis-
tent with φ2, and keep φ1 realizable. As a result, the set of candidate formulas
is pruned and the process is repeated with the more promising formulas. If no
refinement is found within the specified search depth, False is returned.

Remark 2. Introducing new propositions representing the memory of the strat-
egy S1 computed for φ1 leads to assumptions that provide C2 with full knowledge
of how C1 reacts to its environment. Therefore, if the new specification refined
by these assumptions is not realizable, the counter-strategy would be an exam-
ple of how S1 might prevent φ2 from being realizable, giving the designer the
certainty that a different strategy must be computed for C1, or in other words
both specifications must be refined. However, if introducing new propositions
is undesirable, an abstract encoding of the strategy (without memory variables)
can be obtained by returning conjunction of all transition formulas 2(ψ →©ψ′)
computed over the strategy. The user can specify the set of variables in which
she is interested. This encoding represents an abstraction of the strategy that
might be non-deterministic, i.e., for the given truth assignment to environment
variables, there might be more than one truth assignment to outputs of C1 that
are consistent with the encoding. Such relaxed encoding can be viewed as sharing
partial information about the strategy of C1 with C2.

As an example, consider the LTS T in Fig. 4 which can be encoded as (q0 ∧
¬a ∧ ¬b ∧ ¬c) ∧ 2((q0 ∧ ¬a ∧ ¬b ∧ ¬c) → ©(q1 ∧ ¬a ∧ b ∧ ¬c)) ∧ · · · ∧ 2((q3 ∧
¬a∧ b∧¬c)→©(q0∧¬a∧¬b∧¬c)). An abstract encoding without introducing
new variables and considering only a and b results in formula 2((¬a ∧ ¬b) →
©(¬a∧ b))∧2((¬a∧ b)→©((¬a∧¬b)∨ (a∧¬b))∧2((a∧¬b)→©(¬a∧ b)).

6 Case Study

We now demonstrate the techniques on a robot motion planning case study. We
use RATSY [11] for computing counter-strategies, JTLV [12] for synthesizing
strategies, and Cadence SMV model checker [13] for model checking. The exper-
iments are performed on a Intel core i7 3.40 GHz machine with 16GB memory.

Consider the robot motion planning example over the discrete workspace
shown in Fig. 3. Assume there are two robots R1 and R2 initially in cells 1
and 25, respectively. Robots can move to one of their neighbor cells at each step.

Algorithm 2: CompositonalRefinement3

Input: φ1 = φe1 → φs1 : a realizable specification, φ2 = φe2 → φs2 : an
unrealizable specification, α: search depth, U : subset of variables

Output: ψ such that φe1 → (φs2 ∧ ψ) and (φe2 ∧ ψ)→ φs2 are realizable
1 if α < 0 then
2 return False;

3 Let S be the strategy for φ1;
4 ψ := Encode-LTS(S);
5 φ′

2 := (ψ ∧ φe2)→ φs2 ;
6 if φ′

2 is realizable then
7 return ψ;
8 else
9 Let CS ′ be a counter-strategy for φ′

2;
10 P := findCandidateAssumptions(CS ′, U);
11 foreach ϕ ∈ P do
12 Let φ′′

2 be (ϕ ∧ φe2)→ φs2 ;
13 Let φ′′

1 be φe1 → (φs1 ∧ ϕ);
14 if φ′′

1 is realizable and φ′′
2 is satisfiable then

15 if φ′′
2 is realizable then

16 return ϕ;
17 else
18 ψ := compositionalRefinement3(φ′′

1 , φ
′′
2 , α− 1, U);

19 if ψ 6= False then
20 return ψ ∧ ϕ;

21 return False;

There are two rooms in bottom-left and the upper-right corners of the workspace
protected by two doors D1 (cell 10) and D2 (cell 16). The robots can enter or
exit a room through its door and only if it is open. The objective of R1 (R2)
is to infinitely often visit the cell 5 (21, respectively). The global specification
requires each robot to infinitely often visit their goal cells, while avoiding collision
with each other, walls and the closed doors, i.e., the robots cannot occupy the
same location simultanously, or switch locations in two following time steps, they
cannot move to cells {4, 9, 17, 22} (walls), and they cannot move to cells 10 or 16
if the corresponding door is closed. The doors are controlled by the environment
and we assume that each door is always eventually open.

The global specification is realizable. We decompose the specification as fol-
lows. A local specification φ1 = φe1 → φs1 for R1 where φe1 is the environment
assumption on the doors and φs1 is a conjunction of R1’s guarantees which con-
sist of its initial location, its transition rules, avoiding collision with walls and
closed doors, and its goal to visit cell 5 infinitely often. A local specification
φ2 = φe2 → φs2 for R2 where φe2 includes assumptions on the doors, R1’s initial
location, goal, and its transition rules, and φs2 consists of R2’s initial location, its
transition rules, avoiding collision with R1, walls and closed doors while fulfilling
its goal. The specification φ1 is realizable, but φ2 is not. We use the algorithms

outlined in Sect. 5 to find refinements for both components. We slightly modified
the algorithms to find all refinements within the specified search depth. We use
the variables corresponding to the location of R1 for computing the abstraction
and generating the candidate formulas. Furthermore, since the counter-strategies
are large, computing all eventually and always eventually patterns is not feasible
(may take years), and hence we only synthesize some of them.

Using the first approach along with abstraction, three refinements are found
in 173 minutes which are conjunctions of safety and transition formulas. One of
the computed refinements is ψ1 = 2(LocR1

= 7 → ©(LocR1
6∈ {7, 8, 12})) ∧

2(LocR1
= 13 → ©(LocR1

6∈ {12, 14})) ∧ 2(LocR1
= 11 → ©(LocR1

6=
16)) ∧ 2(LocR1

= 2 → ©(LocR1
6= 7)) ∧ 2(LocR1

6∈ {2, 12}). Intuitively, ψ1

assumes some restrictions on how R1 behaves, in which case a strategy for R2

can be computed. Indeed, R1 has a strategy that can guarantee ψ1. Without
using abstraction, four refinements are found within search depth 1 in 17 min-
utes. A suggested refinement is 2(LocR1

6∈ {7, 12, 16}), i.e., if R1 avoids cells
{7, 12, 16}, a strategy for R2 can be computed. Using abstraction reduces the
number of states of the counter-strategy from 576 to 12 states, however, not all
the formulas that are satisfied by the counter-strategy, can be computed over
its abstraction, as mentioned in Remark 1. Note that computing all the refine-
ments within search depth 3 without using abstraction takes almost 5 times more
time compared to when abstraction is used. Using the second approach (with
and without abstraction) the refinement ψ2 = 2(LocR1

= 10 → LocR1
= 5) is

found by infering fromulas from the strategy computed for R1. Using abstraction
slightly improves the process. Finally, using the third approach, providing either
the full encoding or the abstract encoding of the strategy computed for φ1 as
assumptions for φ2, makes the specification realizable. Therefore, no counter-
strategy is produced, as knowing how R1 behaves enables R2 to find a strategy
for itself.

Table 1 shows the experimental results for the case study. The columns spec-
ify the approach, whether abstraction is used or not, the total time for the
experiment in minutes, number of strategies (counter-strategies) and number of
states of the largest strategy (counter-strategy, respectively), the depth of the
search, number of refinements found, and number of candidate formulas gener-
ated during the search. As it can be seen from the table, knowing more about
the strategy chosen for the realizable specification can significantly reduce the
time needed to find suitable refinement (from hours for the first approach to
seconds for the third approach). However, the improvement in time comes with
the cost of introducing more coupling between the components, i.e., the strategy
computed for C2 can become too dependent on the strategy chosen for C1.

7 Conclusion and Future Work

We showed how automated refinement of specifications can be used to refine
the specifications of the components in the context of compositional synthesis.
We proposed three different approaches for compositional refinement of specifica-
tions. The choice of the appropriate approach depends on the size of the problem

Table 1: Evaluation of approaches on robot motion planning case study
Appr. abstraction time (min) #S max |Q|S #CS max |Q|CS depth #ref. #candid.

1 yes 173.05 - - 17 12 3 3 104

1 no 17.18 - - 1 576 1 4 22

1 no 869.84 - - 270 644 3 589 7911

2 yes 69.21 1 8 18 576 1 2 19

2 no 73.78 1 22 19 576 1 2 24

3 yes 0.01 1 8 0 0 1 1 0

3 no 0.02 1 22 0 0 1 1 0

(e.g., number of states in strategies and counter-strategies) and the level of ac-
ceptable coupling between components. Supplying more information about the
strategies of the components with realizable local specifications to unrealizable
specification under refinement, reduces the number of scenarios the game solver
needs to consider, and facilitates the synthesis procedure, while increasing the
coupling between components. Overall, patterns provide a tool for the designer
to refine and complete temporal logic specifications. In future we plan to extend
the methods to more general architectures.

References

1. Rosner, R.: Modular synthesis of reactive systems. Ann Arbor 1050 (1991) 48106–
1346

2. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive
(1) designs. Journal of Computer and System Sciences 78(3) (2012) 911–938

3. Ozay, N., Topcu, U., Murray, R.: Distributed power allocation for vehicle manage-
ment systems. In: CDC-ECC. (2011) 4841–4848

4. Alur, R., Moarref, S., Topcu, U.: Counter-strategy guided refinement of GR(1)
temporal logic specifications. In: FMCAD. (2013) 31–44

5. Li, W., Dworkin, L., Seshia, S.: Mining assumptions for synthesis. In: MEM-
OCODE. (2011) 43–50

6. Chatterjee, K., Henzinger, T., Jobstmann, B.: Environment assumptions for syn-
thesis. In: CONCUR. Springer (2008) 147–161

7. Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In:
FoCS. (1990) 746–757

8. Finkbeiner, B., Schewe, S.: Uniform distributed synthesis. In: LICS, IEEE (2005)
321–330

9. Chatterjee, K., Henzinger, T.A.: Assume-guarantee synthesis. In: Tools and Algo-
rithms for the Construction and Analysis of Systems. Springer (2007) 261–275

10. LaValle, S.M.: Planning algorithms. Cambridge university press (2006)
11. Bloem, R., Cimatti, A., Greimel, K., Hofferek, G., Könighofer, R., Roveri, M.,

Schuppan, V., Seeber, R.: RATSY–a new requirements analysis tool with synthesis.
In: CAV, Springer (2010) 425–429

12. Pnueli, A., Sa’ar, Y., Zuck, L.D.: JTLV: A framework for developing verification
algorithms. In: CAV, Springer (2010) 171–174

13. McMillan, K.: Cadence SMV. http://www.kenmcmil.com/smv.html

	Pattern-Based Refinement of Assume-Guarantee Specifications in Reactive Synthesis

