
Modeling and Verification of a Dual Chamber
Implantable Pacemaker?

Zhihao Jiang, Miroslav Pajic, Salar Moarref, Rajeev Alur, Rahul Mangharam
University of Pennsylvania, Philadelphia PA, USA

Abstract. The design and implementation of software for medical de-
vices is challenging due to their rapidly increasing functionality and the
tight coupling of computation, control, and communication. The safety-
critical nature and the lack of existing industry standards for verification,
make this an ideal domain for exploring applications of formal modeling
and analysis. In this study, we use a dual chamber implantable pace-
maker as a case study for modeling and verification of control algorithms
for medical devices in UPPAAL. We begin with detailed models of the
pacemaker, based on the specifications and algorithm descriptions from
Boston Scientific. We then define the state space of the closed-loop sys-
tem based on its heart rate and developed a heart model which can non-
deterministically cover the whole state space. For verification, we first
specify unsafe regions within the state space and verify the closed-loop
system against corresponding safety requirements. As stronger assertions
are attempted, the closed-loop unsafe state may result from healthy open-
loop heart conditions. Such unsafe transitions are investigated with two
clinical cases of Pacemaker Mediated Tachycardia and their correspond-
ing correction algorithms in the pacemaker. Along with emerging tools
for code generation from UPPAAL models, this effort enables model-
driven design and certification of software for medical devices.

Keywords: Medical Devices, Implantable Pacemaker, Software Verifi-
cation, Cyber-Physical Systems

1 Introduction
Over the past four decades, cardiac rhythm management devices such as pace-
makers have expanded their role from “keeping the patient alive” to “making the
patient’s life comfortable”. The addition of more safety and efficacy features has
resulted in increased complexity, inevitably leading to more safety violations.
From 1996-2006, the percentage of software-related causes in medical device re-
calls have grown from 10% to 21% [1]. During the first half of 2010, the US
Food and Drug Administration (FDA) issued 23 recalls of defective devices, all
of which are categorized as Class I, meaning there is a “reasonable probabil-
ity that use of these products will cause serious adverse health consequences or
death.” At least six of the recalls were caused by software defects [2]. Unlike other
industries such as aviation and automotive, the safety concern in the medical
device domain is focused on the physical plant, the patient in this case, rather
than the controller. As a result, although in aviation and automotive industries,

? This research was partially supported by NSF research grants MRI 0923518, CNS
0931239, CNS 1035715 and CCF 0915777.

II

standards are enforced during software development, manufacturing, and post-
market change [3, 4], there are no well-established standards for development of
software for medical devices. There is a pressing need for standards and tools
to certify and verify the safety of software in medical devices. For device man-
ufacturers, this has prompted recent interest in applying formal modeling and
verification techniques in medical devices software development [5, 6].

In this effort, we propose a Timed Automata representation of the heart and
a dual chamber pacemaker. Our models and specifications are designed based
on descriptions available from Boston Scientific [7, 8], a leading manufacturer of
pacemakers, and extensive medical literature on this topic. We then demonstrate
how a model checker, like UPPAAL [9], can be used to find safety violations and
prove the correctness of medical device algorithms. We define the state space
of the closed-loop system based on its heart rate. Unsafe regions can then be
specified and the closed-loop system is verified against corresponding safety re-
quirements. We also define unsafe transitions as the controller drives the open-
loop plant from a safe state into an unsafe closed-loop state. We focus on two
cases of unsafe transitions which are referred to as “Pacemaker Mediated Tachy-
cardia (PMT)”. Modern pacemakers are equipped with correction algorithms to
terminate these behaviors. We demonstrate how to identify known unsafe tran-
sitions and prove the correctness of corresponding correction algorithms using
model checker. The UPPAAL model developed in this paper is freely available
online [10]. These models can be used as a starting point for many purposes
(e.g. to build models with costs and probabilities for quantitative analysis of the
efficacy of pacemaker algorithms; development of patient-specific algorithms). In
particular, the verified pacemaker model can be automatically translated into
Stateflow charts in Simulink for test generation and code generation [11].

The paper is organized as follows: In Section 2, we introduce the physiological
and timing basics of the heart and pacemaker. Section 3 presents UPPAAL
models of the basic DDD pacemaker and the heart. In Section 4, we define
unsafe regions and verify the basic pacemaker model against corresponding safety
requirements. In Section 5, we proposed a procedure for identifying and verifying
unsafe transitions and demonstrated using two cases of PMT.

2 Heart and Pacemaker Basics

The coordinated contraction of the heart is governed by its Electrical Conduction
System (see Fig. 1). The Sinoatrial (SA) node, which is a collection of specialized
tissue at the top of the right atrium, periodically spontaneously generates elec-
trical pulses that can cause muscle contraction. The SA node is controlled by the
nervous system and acts as the natural pacemaker of the heart. The electrical
pulses first cause both atria to contract, forcing the blood into the ventricles. The
electrical conduction is then delayed at the Atrioventricular (AV) node, allowing
the ventricles to fill fully. Finally the fast-conducting His-Pukinje system spreads
the electrical activation within both ventricles, causing simultaneous contraction
of the ventricular muscles, and pumps the blood out of the heart.

III

Right
Atrium

Atrioventricular
(AV) node

Right
Ventricle

His
Bundle

Fig. 1. Cardiac electrical system

Due to aging and/or diseases, the con-
duction properties of heart tissue may
change. These changes may cause timing
anomalies in heart rhythm, thus decrease the
blood pumping efficiency of the heart. These
timing anomalies are referred to as arrhyth-
mias, and are categorized into Tachycardia
and Bradycardia. Tachycardia features unde-
sirable fast heart rate which impairs hemo-
dynamics. Bradycardia features slow heart
rate which results in insufficient blood sup-
ply. Bradycardia maybe due to failure of im-
pulse generation with anomalies in the SA node, or failure of impulse propagation
where the conduction from atria to the ventricles is delayed or blocked.

Since the heart tissue can be activated by external electrical pulses, Brady-
cardia can be treated by providing electrical pulses when the heart rate is low.
Implantable Pacemakers have been developed to deliver timely electrical pulses
to the heart to maintain an appropriate heart rate and Atrial-Ventricular syn-
chrony. Implantable pacemakers normally have two leads fixed on the wall of
the right atrium and the right ventricle respectively. Activation of local tissue
is sensed by the leads, triggering Atrial Sense (AS) and Ventricular Sense (VS)
events. Atrial Pacing (AP) and Ventricular Pacing (VP) are delivered if no sensed
events occur within deadlines.

In order to deal with different heart conditions, modern pacemakers are able
to operate in different modes. The modes are labeled using a three character
system. The first character describes the pacing locations, the second charac-
ter describes the sensing locations, and the third character describes how the
pacemaker software responds to sensing. In this work we describe the most com-
monly used mode of pacemaker, the dual-chamber DDD mode that paces both
the atrium and the ventricle, senses both chambers, and sensing can both activate
or inhibit further pacing. Similarly, the VDI mode paces only in the ventricle,
senses both chambers, and inhibits pacing if event is sensed. [12]

3 System Modeling

3.1 Timed Automata and UPPAAL

Timed automaton [13] is an extension of a finite automaton with a finite set of
real-valued clocks. It has been used for modeling and verifying systems which are
triggered by events and have timing constraints between events. From the Boston
Scientific pacemaker specification [7], the pacemaker can be modeled using this
Extended Timed Automata notation, which is a subset of formal semantics in
UPPAAL. UPPAAL ([9, 14]) is a standard tool for modeling and verification of
real-time systems, based on networks of timed automata. The graphical and text-
based interface makes modeling more intuitive. Requirements can be specified
using Computational Tree Logic (CTL) [15] and violations can be visualized in
the simulation environment.

IV

3.2 System Overview

The function of a pacemaker is to manage the timing relationship between the
atrial and ventricular events. Thus Timed Automata is suitable for modeling
both the deterministic behavior of a pacemaker and the non-deterministic behav-
ior of the heart. The overview of the closed-loop system is showed in Fig. 2(a).
The heart and the pacemaker communicate with each other using broadcast
channels. The heart generates Aget! and Vget! actions, representing atrial and
ventricular events that the pacemaker take as inputs. The pacemaker processes
the signals and generates pacing actions AP! and VP! to the corresponding
components in the heart.

3.3 Basic DDD pacemaker modeling

The DDD pacemaker has 5 basic timing cycles triggered by events, as shown
in Fig. 2(b). We decomposed our pacemaker model into 5 components which
correspond to the 5 counters. These components communicate with each other
using broadcast channels and shared variables (as shown in Fig. 3).

Lower Rate Interval (LRI): This component keeps the heart rate above a
minimum value. In DDD mode, the LRI component models the basic timing cycle
which defines the longest interval between two ventricular events. The clock is
reset when a ventricular event (VS, VP) is received. If no atrial event has been
sensed (AS), the component will deliver atrial pacing (AP) after TLRI-TAVI.
The UPPAAL design of LRI component is shown in Fig. 3(a).

Atrio-Ventricular Interval (AVI) and Upper Rate Interval (URI): The
function of the AVI component is to maintain the appropriate delay between the
atrial activation and the ventricular activation. It defines the longest interval
between an atrial event and a ventricular event. If no ventricular event has been
sensed (VS) within TAVI after an atrial event (AS, AP), the component will
deliver ventricular pacing (VP). In order to prevent the pacemaker from pacing
the ventricle too fast, a URI component uses a global clock clk to track the time
after a ventricular event (VS, VP). The URI limits the ventricular pacing rate
by enforcing a lower bound on the times between consecutive ventricle events.
If the global clock value is less than TURI when the AVI component is about to
deliver VP, AVI will hold VP and deliver it after the global clock reaches TURI.
The UPPAAL design of AVI and URI component is shown in Fig. 3(b) and (c).

Heart Pacemaker

Aget !

Vget !

VP !

AP !

1 2
3

Fig. 2. (a) System Overview, (b) Basic 5 timing cycles of DDD pacemaker

V

PVARP

Aget?
VS?
VP?

AS!

AR!

LRI

AS?
VS?
VP?

AP!
AVI

AS?

VS?
VP?

VP! VS?
URI VP?

VRP
Vget?

VS!
VP?

(a) LRI component (b) AVI component (c) URI component

(d) PVARP component (e) VRP component

Fig. 3. Components of the pacemaker model in UPPAAL

Post Ventricular Atrial Refractory Period (PVARP) and Post Ventric-
ular Atrial Blanking (PVAB): Not all atrial events (Aget!) are recognized
as Atrial Sense (AS!). After each ventricular event, there is a blanking period
(PVAB) followed by a refractory period (PVARP) for the atrial events in order
to filter noise. Atrial events during PVAB are ignored and atrial events dur-
ing PVARP trigger AR! event which can be used in some advanced diagnostic
algorithms. The UPPAAL design of PVARP component is shown in Fig. 3(d).

Ventricular Refractory Period (VRP): Correspondingly, the VRP follows
each ventricular event (VP, VS) to filter noise and early events in the ventricular
channel which could otherwise cause undesired pacemaker behavior. Fig. 3(e)
shows the UPPAAL design of VRP component.

Parameter Selection: Each timing parameter of the pacemaker has a feasible
range. However, after those parameters are programmed, they are fixed during
pacemaker operation. Consider all possible combinations of feasible parameter
values is infeasible. In this work, we only verify one instance of a DDD pacemaker
with nominal values in clinical settings [8]. The values we choose are TAVI=150,
TLRI=1000, TPVARP=100, TVRP=150, TURI=400, TPVAB=50.

3.4 Random Heart Model (RHM)
RHM-A

AP? Aget!

Fig. 4. RHM for the Atrial Channel

In order to verify pacemaker algorithm,
we need to first define the state space for
the closed-loop system. The state space
definition should not only cover all possible pacemaker operations, but also be

VI

physiologically intuitive for safety requirement specification. To this end, we
define the state space of the closed-loop system by the atrial interval (interval
between atrial events ∈ {AS,AP}) and ventricular interval (interval between
ventricular events ∈ {V S, V P}). This heart rate representation enables us to
define unsafe regions for bradycardia and tachycardia.

The Random Heart Model (RHM) is designed to cover open-loop heart be-
haviors. It non-deterministically generates an intrinsic heart event Xget! within
[Xminwait, Xmaxwait] after each intrinsic heart event Xget or pacing XP. Here
we use two RHMs for the atrial and ventricular channel where X can be atrial
(A) or ventricular (V). RHM covers all possible input to the pacemaker if the
interval [Xminwait, Xmaxwait] is set to [0,∞]. It can also cover subset of pos-
sible heart conditions by assigning appropriate values to those two parameters.
The UPPAAL model of the atrial RHM is shown in Fig. 4.

4 Verification regarding unsafe regions

In this section, we define unsafe regions regarding bradycardia and tachycardia
and specify two basic safety properties. These two basic safety properties are
strict so that they must be satisfied by any pacemaker under all heart conditions.
We then discuss refinement of the safe regions and make stronger assertions.

4.1 Lower Rate Limit

The most essential function for the pacemaker is to treat bradycardia by main-
taining the ventricular rate above a certain threshold. We define the region where
the ventricular rate is slow, as unsafe. The monitor Pvv is designed to measure
interval between ventricular events and is shown in Fig. 5(a). The property A[]
(Pvv.two a imply Pvv.t≤TLRI) is satisfied by the basic DDD pacemaker.

4.2 Upper Rate Limit

The pacemaker is not designed to treat tachycardia so it can only pace the heart
to increase its rate and cannot slow it down. However, it is still important to
guarantee it does not pace the ventricles beyond a maximum rate to ensure safe
operation. To this effect, an upper rate limit is specified such that the pacemaker
can increase the ventricular rate up to this limit.

We require that a ventricle pace (VP) can only occur at least TURI after
a ventricle event (VS, VP). The monitor for the property is shown in Fig. 5(b)
and the property A[] (PURI test.interval imply PURI test.t≥TURI) is satisfied
by the basic DDD pacemaker model.

(a)

intervalwait_vpwait_v

VS?
t=0

t=0

VP?

VS?t=0

VP?

t=0

(b)

Fig. 5. (a) Monitor for LRL: Interval between two ventricular events should be less than
TLRI, (b) Monitor for URL: Interval between a ventricular event and a VP should be
longer than TURI

VII

0 1000 2000 3000 4000

AS AS AS AS AS AS AS AS AS

VS VS VS VS VS

AS

ms

SVT Bradycardia

(a)

0 1000 2000 3000 4000

AS
[AR]

AS AS AS AP AP

VP VP VP VP VS VS

[AR] [AR]

ms

PMT Appropriate

(b)

Fig. 6. (a) SVT with ODO pacemaker (b) SVT with DDD pacemaker

5 Verification regarding unsafe transitions
The two unsafe regions, introduced above, are intuitive but provide for loose
safety properties. One may wonder if we can further reduce the safe region.
When the closed-loop system is in some unsafe state, there are two possible
scenarios. One is when, the open-loop plant without the controller, is also in
unsafe state. In our case, if the heart is in tachycardia, the pacemaker is not
supposed to react so that this case is of little value to us. The other scenario is
that the open-loop plant is in a safe state and the controller is driving the closed-
loop system into some unsafe states. We call this scenario Unsafe Transition. In
our case, the pacemaker may increase the heart rate inappropriately, which is
referred to as Pacemaker Mediate Tachycardia (PMT).

We now introduce two cases of PMT and their corresponding correction
algorithms. Since one closed-loop state may correspond to multiple execution
traces, these PMT scenarios will not be returned by the model checker as counter-
examples of safety requirements. However, we can still identify known PMT by
adding constraints to the heart model or developing more complex requirements.

5.1 Verification Procedure
The pacemaker manufacturers have developed anti-PMT algorithms to termi-
nate different PMT scenarios. In this section, we propose a general procedure
to identify PMT scenarios and verify the safety and correctness of anti-PMT
algorithms. The general steps for the procedure include:
1. Show existence of PMT behaviors in the closed-loop system
2. Introduce anti-PMT algorithms and check whether the two basic safety re-

quirements still hold
3. Prove correctness of anti-PMT algorithms by showing the non-existence of

PMT scenarios
Here we use two well-identified PMT cases to demonstrate the methodology.

5.2 Verification of the Mode-Switch algorithm

Supraventricular Tachycardia (SVT): SVT is an arrhythmia which fea-
tures an abnormally fast atrial rate. Typically the AV node, which has a long
refractory period, can filter most of the fast atrial activations during SVT thus
the ventricular rate remains relatively normal. Fig. 6(a) demonstrates a pace-
maker event trace during SVT, with a ODO mode pacemaker which just sensing
in both channels. In this particular case, every 3 atrial events (AS) correspond
to 1 ventricular event (VS) during SVT.

VIII

As an arrhythmia, SVT is still considered as a safe heart condition since the
ventricles operate under normal rate can still maintain adequate cardiac output.
However, the AVI component of a dual chamber pacemaker is equivalent to a
virtual pathway in addition to the intrinsic conduction pathway between the atria
and the ventricles. The pacemaker tries to maintain 1:1 A-V conduction and thus
increases the ventricular rate inappropriately. Fig. 6(b) shows the pacemaker
trace of the same SVT case with DDD pacemaker. Although half of the fast atrial
events are filtered by the PVARP period ([AR]s), the DDD pacemaker still drives
the closed-loop system into 2:1 A-V conduction with faster ventricular rate,
which is inappropriate. This problem can be resolved by switching pacemaker
into single chamber mode to maintain appropriate ventricular rate.

Fig. 7. Monitor for SVT: Check exis-
tence of an endless sequence where the
ventricular event interval ≤TURI

Existence of PMT during SVT:
Since PMT during SVT is an unsafe tran-
sition, we need to first adjust the heart
model so that the open-loop behaviors
covers SVT and are in the safe region. To
this end, the interval for the ventricular
RHM is set to [500,800]. This rate is slow
enough not to be considered as tachycardia, but faster than the Lower Rate
Limit of the pacemaker so that pacemaker should not intervene. The monitor
Pv v is designed to show existence of PMT during SVT. It goes to the error
state if the ventricular rate drops below the Upper Rate Limit (Fig. 7).

The existence property E[](notPv v.err) is specified, which verifies if there
exists an execution in which the ventricular interval is always less or equal to
TURI. The property is first verified on pacemaker without the mode-switch
algorithm. The property is satisfied during verification.

Mode-Switch algorithm: Intuitively, the mode-switch algorithm first detects
SVT. After confirmed detection, it switches the pacemaker from a dual-chamber
mode to a single-chamber mode. During the single-chamber mode, the A-V syn-
chrony function of the pacemaker is deactivated thus the ventricular rate is
decoupled from the fast atrial rate. After the algorithm determines the end of
SVT, it will switch the pacemaker back to the dual chamber mode.

The mode-switch algorithm specification we use is the same as the one used
in Boston Scientific pacemakers [8]. The algorithm first measures the interval
between atrial events outside the blanking period (AS, AR). The interval is
considered as fast if it is above a threshold (Trigger Rate) and slow otherwise
(see Fig. 8 (1)). A counter increments for fast events and decrement for slow
events (see Fig. 8 (2)). After the counter value reaches the Entry Count, the
algorithm will start a Duration which is a time interval used to confirm the
detection of SVT (see Fig. 8 (3)). In the Duration, the counter keeps counting. If
the counter value is still positive after the Duration, the pacemaker will switch
to the VDI mode (Fallback mode). In the VDI mode, the pacemaker only senses
and paces the ventricle. At any time if the counter reaches zero, the Duration
will terminate and the pacemaker is switched back to DDD mode.

IX

Counter

Fast?
Slow?

du_end?

DDD!
VDI!

du_beg!

Duration

VS?
VP?

du_beg?
du_end!

Interval

AS?
AR?
AP?

Fast!

Slow! 1

2

3

Fig. 8. Mode-Switch algorithm

In our UPPAAL model of the mode-switch algorithm, we use nominal param-
eter values from the clinical setting. We define trigger rate at 170bpm (350ms),
entry count at 8, duration for 8 ventricular events and fallback mode as VDI.

In order to model both DDD and VDI modes and the switching between
them, we made modifications to the AVI and LRI components. In each com-
ponent two copies for both modes are modeled, and switch between each other
when switching events (DDD, VDI) are received. During VDI mode, VP is de-
livered by the LRI component instead of the AVI component. The clock values
are shared between both copies in order to preserve essential intervals even after
switching. The modified AVI and LRI components are shown in Fig. 9.

Verification against basic safety requirements: We verify the same basic
safety requirements on the pacemaker model with mode-switch algorithm. The
Upper Rate Limit property still holds but the Lower Rate Limit property is
violated. When the pacemaker is switching from VDI mode to DDD mode, the
responsibility to deliver VP switched from LRI component to AVI component.
Since the clock reference is different (Ventricular events in LRI and Atrial events
in AVI), the clock value for delivering the next VP is not preserved. As a result,
if an atrial event which triggered the mode-switch from VDI to DDD happens
within [TLRI-TAVI, TLRI) after the last ventricular event, the next ventricular
pacing will be delayed by at most TAVI time, which violates the Lower Rate
Limit property (Fig. 11(a)).

LRI-
MS

AS?
VS?
VP? AP!

DDD?
VDI?

AVI-
MS

AS?
VS?
AP? VP!

DDD?
VDI?

Fig. 9. New LRI & AVI components

X

Fig. 10. Monitor for Mode-Switch: Check if mode-switch to VDI mode will always
eventually happen.

Verification of the algorithm: We now present the verification of the cor-
rectness of the mode-switch algorithm by checking the same existence property
E[] (not Pv v.err) on pacemaker with mode-switch algorithm. We expect the vi-
olation of this property, since during VDI mode the ventricular rate of the heart
model is less than the Upper Rate Limit and will not trigger ventricular pacing.
The counter example of the violation should show that mode-switch algorithm
successfully switches the mode of the pacemaker to VDI mode. However, this
property is still satisfied, indicating the mode-switch algorithm failed to elim-
inate the PMT scenario. Then we further restrict the atrial interval of RHM
to [100, 200]. Since the atrial rate for the new heart model is always above the
trigger rate, mode switch to VDI mode should always eventually happen. The
monitor PMS for the new property is shown in Fig. 10.

The property A<> (PMS.err) is not satisfied. The counter-example shows
that some of the atrial events fall into the Post Ventricular Atrial Blanking period
(PVAB) and got ignored. As a result, two fast intervals may be considered as
one slow interval (see Fig. 11(b)). If this happens more than one out of the Entry
Count, mode-switch from DDD to VDI may never happen.

Discussion: We demonstrated that model checking techniques can be used to
identify unknown violations which cannot be identified during open-loop testing,
showing the necessity and usefulness of formal verification in medical device
software development and certification. We also showed that adding new features
to the verified system is a potential source for safety violations.

5.3 Verification of Endless Loop Tachycardia (ELT) algorithm

ELT overview: The AVI component of a dual-chamber pacemaker introduces
a virtual A-V pathway which forms a loop with the intrinsic A-V conduction
pathway (see Fig. 12(a)). In this scenario, a ventricular event (VS) triggers a
V-A conduction through the intrinsic pathway (Marker 1 in Fig. 12(b)). The
pacemaker registers this signal as an Atrial Sense (AS) (Marker 2 in Fig. 12(b)).
This event triggers VP after TAVI, as if the signal conducts through the virtual
A-V pathway (Marker 3 in Fig. 12(b)). The VP will trigger another V-A con-
duction and this VP-AS-VP-AS looping behavior will continue (see Fig. 12(b)).

AS AS

VS (VP) VP

MS

TLRI

VDI DDD

TAVI

(a)

PVAB

VS

AS Aget AS

Fast Fast

Slow

(b)
Fig. 11. (a) Safety Violation: VP is delayed due to the reset of timer during mode-
switch, (b) Correctness Violation: The blocking period may block some atrial events,
turning two Fast events to one Slow event

XI

Intrinsic pathway

Fast “pathway”: pacemaker
A-V synchrony

(a) Virtual circuit formed by the
pacemaker and the heart

0 1000 2000 3000 4000

AS AS AS AS AS

VS VP VP VP VP VP
ms

AS

1

2

3

(b) Pacemaker trace for ELT initialized by a
early ventricular signal

Fig. 12. Endless Loop Tachycardia case study demonstrating the situation when the
pacemaker drives the heart into an unsafe state [16]

The interval between atrial events is TAVI plus the V-A conduction delay, which
will drive the ventricular rate as high as the Upper Rate Limit.

From the pacemaker’s point of view, the pacemaker paces the ventricles
as specified for every AS. That is why open-loop testing is unable to detect
this closed-loop behavior. Modern pacemakers are equipped with anti-ELT algo-
rithms to identify and terminate potential ELT. One common algorithm identi-
fies ELT by the ELT pattern and terminates ELT by increasing TPVARP time
once to block the AS caused by the V-A conduction.

Existence of ELT: As another case of unsafe transition, we again constrain
the open-loop heart model into healthy heart. We set both the atrial interval
and the ventricular interval above TURI so that ELT behavior is not covered
by the heart model. Two monitors were designed to show the existence of ELT.
One monitor, PELT det, shows the persistence of the VP-AS pattern and the
other monitor, Pvv, shows that the ventricular rate is always no slower than the
upper rate limit (Fig. 13). The existence property E[] ((not PELT det.err) &&
(not Pvv.err)) fails on pacemaker without an anti-ELT algorithm.

The reason for the failure is that in our closed-loop system, AS can only
be triggered by Aget signal from the atrial heart model, where in ELT case
the AS is triggered by backward V-A conduction, which is not covered by our
heart model. In order to solve this problem, we model the A-V conduction of
the heart in addition to the orignal RHM. The adjusted RHM and the conduc-
tion component is shown in Fig. 14. For each atrial event Aget, the conduction
component generates V act after certain delay and vice versa. The conduction is
non-deterministic so that the old RHM is a special case for the new RHM. The
PVARP and VRP components are also modified to accommodate new events
A act and V act.

PELT_det Pv_v
Fig. 13. Monitor for ELT: VP-AS pattern detection and Upper Rate detection

XII

RHM-A
AP? Aget!

RHM-V
VP? Vget!

Cond

A_act!

V_act!

(a) Adjusted RHM (b) New heart model (c) Conduction component

Fig. 14. Modified heart model and the conduction component

After introducing the conduction component, the existence property holds,
indicating the closed-loop system with new heart model covers ELT.

The ELT-termination algorithm: The ELT detection algorithm by Boston
Scientific [7] utilizes these three features:

– Ventricular rate at Upper Rate Limit
– VP-AS pattern
– Fixed V-A conduction delay

The pacemaker first monitors VP-AS pattern with ventricular rate at upper
rate limit. Then it compares the VP-AS interval with previous intervals. ELT
is confirmed if the difference between the current VP-AS interval and the first
VP-AS interval are within ±32ms for 16 consecutive times. Then the pacemaker
increases the PVARP period to 500ms once so that the next AS will be blocked
and will not trigger a VP. ELT will then be terminated.

As the V-A conduction delays are patient-specific, the algorithm compares
VP-AS interval to a previously sensed value instead of an absolute value. Since
we can not store past clock values in UPPAAL, we can not explicitly model
this ELT detection algorithm. However, since the conduction delay in our heart
model is within a known range, we can compare the VP-AS interval with this
range. The VP-AS pattern detection module for our anti-ELT algorithm is shown
in Fig. 15 (1). It detects the VP-AS pattern with ventricular rate at upper rate
limit and sends out VP AS event if the interval qualifies.

A counter counts the number of qualified VP-AS patterns. It increases the
PVARP period to 500ms if eight consecutive VP-AS patterns are detected.
(Fig. 15 (2)) The PVARP component is also modified so that the PVARP period
can only be changed once by the anti-ELT algorithm. (Fig. 15 (3))

Verification against bottom-line safety requirements: The two bottom-
line safety requirements still hold when the anti-ELT algorithm is introduced.

Verification of the algorithm: The existence property E[]((not PELT det.err)
&& (not Pvv.err)) is not satisfied after the anti-ELT algorithm is introduced, in-
dicating the algorithm successfully terminates ELT. We successfully reproduced
the case when the algorithm works in the simulation environment of UPPAAL.

XIII

2

1

3

Fig. 15. Counter for VP-AS pattern

Discussion: In this case study, we showed that we may require the heart model
to provide more physiological details when verifying more complex properties.
We also observed some limitations of Timed Automata when modeling more
complex algorithms.

6 Related Work
Jee et. al present a safety assured development approach of real-time software
using pacemaker as their case study in [17]. They formally model and verify a
single chamber VVI pacemaker using UPPAAL and then implement it and check
the preservation of properties transferred from model to implementation code.
Tuan et. al propose an RTS formal model for pacemaker and its environment
and verified it against number of safety properties and timed constraints using
PAT model checker [18]. They have modeled the pacemaker for all 18 operating
modes as described in Boston scientific, but their work lacks specification and
analysis os complex behaviors of the pacemaker, such as mode-switch.

Wiggelinkhuizen uses mCRL2 and UPPAAL to formally model the pace-
maker from the firmware design of Vitatron’s DA+ pacemaker [19]. Two main
approaches have been used to investigate the feasibility of applying formal model
checking to the design of device firmware. The main approach consists of verify-
ing the firmware model in context of a formal heart model and a formal model
of a hardware module which fails for high heart rates because of the state explo-
sion. Another approach is to verify a part of firmware design which was feasible
and was able to detect a known deadlock rather soon.

Macedo et. al have developed a concurrent and distributed real-time model
for a cardiac pacemaker through a pragmatic incremental approach. The models
are expressed using the VDM and are validated primarily by scenario-based
test, where test scenarios are defined to model interesting situations such as the
absence of input pulses [20]. The models cover 8 modes of pacemaker operation.

Gomes et. al present a formal specification of pacemaker system using the Z
notation in [21]. They have also tried to validate that the formal specification
satisfies the informal requirements of Boston Scientific by using a theorem prover,
ProofPower-Z. They have partially checked the consistency of their specification

XIV

through reasoning. No validation experiment regarding safety conditions were
performed yet. [21]

Mery et. al in [22], formally model all operational modes of a single electrode
pacemaker system using event-B and prove them. They use an incremental proof-
based approach to refine the basic abstract model of the system and add more
functional and timing properties. They use the ProB tool to validate their mod-
els in different situations such as absence of input pulses.

7 Conclusion and Future Work

In this paper, we modeled a dual-chamber pacemaker with advanced features us-
ing Timed Automata. Timed automaton captures key features of the closed-loop
system and enables the use of tools like UPPAAL in verification. We then ver-
ified one instance of a dual chamber pacemaker model with nominal parameter
values since it is impossible to consider all possible combinations. We defined a
heart rate representation of closed-loop state space and identified unsafe regions
and unsafe transitions. We demonstrated that model checking techniques can
be used to reveal safety violations which cannot be identified during open-loop
testing. We also showed that adding features to previously verified system may
result in safety violations. Furthermore, we showed that more complex heart
model is need to provide more physiological insights during property specifica-
tion. The UPPAAL model developed in this paper is freely available online [10].
We hope that these models can be used as a starting point for many purposes
(e.g. to build models with costs and probabilities for quantitative analysis).

In this paper, we only verified the safety and correctness of pacemaker algo-
rithms. However, the ultimate goal for a pacemaker is to maintain the efficiency
of the heart. As future work, we would like to evaluate the efficiency of those al-
gorithms by assigning costs for different heart conditions. The evaluation can be
used to develop better treatment for general and specific patients. More complex
heart models are therefore needed to provide physiological insights. However, rig-
orous heart model refinement should be considered to ensure model consistency.
While Timed Automata is a good fit for the problem studied here, it also has
some drawbacks as it can not capture certain behaviors of some advanced algo-
rithms like memorizing difference of clocks, and is also not scalable enough. Our
future work will also focus on improving the efficiency of verification toolchain
for medical device certification.

References

[1] List of Device Recalls, U.S. Food and Drug Admin., (last visited Jul. 19, 2010).
[2] K. Sandler, L. Ohrstrom, L. Moy, and R. McVay. Killed by Code: Software Trans-

parency in Implantable Medical Devices. Software Freedom Law Center, 2010.
[3] AUTOSAR website: www.autosar.org/.
[4] AVSI website: http://www.avsi.aero.
[5] R. Alur, D. Arney, E. L. Gunter, I. Lee, J. Lee, W. Nam, F. Pearce, S. Van Al-

bert, and J. Zhou. Formal Specifications and Analysis of the Computer-Assisted

XV

Resuscitation Algorithm (CARA) Infusion Pump Control System. Intl. Journal
on Software Tools for Technology Transfer (STTT), 5:308–319, 2004.

[6] Annette ten Teije et. al. Improving medical protocols by formal methods. Artificial
Intelligence in Medicine, 36(3):193 – 209, 2006.

[7] PACEMAKER System Specification. Boston Scientific. 2007.
[8] The Compass - Technical Guide to Boston Scientific Cardiac Rhythm Management

Products. 2007.
[9] K.G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a Nutshell. International

Journal on Software Tools for Technology Transfer (STTT), pages 134–152, 1997.
[10] Zhihao Jiang, Miroslav Pajic, Salar Moarref, Rajeev Alur, and Rahul Mang-

haram. Pacemaker UPPAAL model download: http://www.seas.upenn.edu/∼
zhihaoj/VHM/PM verify.zip.

[11] M. Pajic, Z. Jiang, O. Sokolsky, I. Lee, and R. Mangharam. From Verification to
Implementation: A Model Translation Tool and a Pacemaker Case Study. In 18th
IEEE Real-Time and Embedded Technology and Applications Symposium (IEEE
RTAS), 2012.

[12] S. Barold, R. Stroobandt, and A. Sinnaeve. Cardiac Pacemakers Step by Step.
Blackwell Futura, 2004.

[13] R. Alur and D. L. Dill. A Theory of Timed Automata. Theoretical Computer
Science, 126:183–235, 1994.

[14] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A Tutorial on Uppaal.
Formal Methods for the Design of Real-Time Systems, Lecture Notes in Computer
Science, pages 200–236, 2004.

[15] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization
skeletons using branching-time temporal logic. In Logic of Programs, Workshop,
pages 52–71, 1982.

[16] Z. Jiang, M. Pajic, and R. Mangharam. Model-based Closed-loop Testing of
Implantable Pacemakers. In ICCPS’11: ACM/IEEE 2nd Intl. Conf. on Cyber-
Physical Systems, 2011.

[17] E. Jee, S. Wang, J. K. Kim, J. Lee, O. Sokolsky, and I. Lee. A Safety-Assured
Development Approach for Real-Time Software. The Proceedings of 16th IEEE
International Conference on Embedded and Real-Time Computing Systems and
Applications, pages 133–142, 2010.

[18] L. A. Tuan, M. C. Zheng, and Q. T. Tho. Modeling and Verification of Safety
Critical Systems: A Case Study on Pacemaker. Fourth International Conference
on Secure Software Integration and Reliability Improvement, pages 23–32, 2010.

[19] J. E. Wiggelinkhuizen. Feasibility of Formal Model Checking in the Vitatron
Environment. Master thesis, Eindhoven University of Technology, 2007.

[20] Macedo H. D., Larsen P. G., and Fitzgerald J. Incremental Development of a
Distributed Real-Time Model of a Cardiac Pacing System using VDM. Formal
Methods, pages 28–30, 2008.

[21] A. O. Gomes and M. V. Oliveira. Formal Specification of a Cardiac Pacing System.
In Proceedings of the 2nd World Congress on Formal Methods (FM ’09), pages
692–707, 2009.

[22] D. Mery and N. K. Singh. Pacemaker’s Functional Behaviors in Event-B. Research
report, INRIA, 2009.

