
Marrying Words and Trees

Rajeev Alur
University of Pennsylvania

ABSTRACT
Traditionally, data that has both linear and hierarchical
structure, such as annotated linguistic data, is modeled us-
ing ordered trees and queried using tree automata. In this
paper, we argue that nested words and automata over nested
words offer a better way to capture and process the dual
structure. Nested words generalize both words and ordered
trees, and allow both word and tree operations. We study
various classes of automata over nested words, and show
that while they enjoy expressiveness and succinctness bene-
fits over word and tree automata, their analysis complexity
and closure properties are analogous to the corresponding
word and tree special cases. In particular, we show that
finite-state nested word automata can be exponentially more
succinct than tree automata, and pushdown nested word au-
tomata include the two incomparable classes of context-free
word languages and context-free tree languages.

Categories and Subject Descriptors
F.4.3 [Theory of computation]: Formal languages; H.2.3
[Database management]: Query languages

General Terms
Theory

Keywords
Tree automata, Pushdown automata, Nested words, XML,
Query languages

1. INTRODUCTION
Linearly structured data is usually modeled as words, and

queried using word automata and related specification lan-
guages such as regular expressions. In many applications
including executions of structured programs, annotated lin-
guistic data, and primary/secondary bonds in genomic se-
quences, the data has a hierarchical structure in addition to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’07, June 11–14, 2007, Beijing, China.
Copyright 2007 ACM 978-1-59593-685-1/07/0006 ...$5.00.

the linear order. For example, in natural language process-
ing, the sentence is a linear sequence of words, and parsing
into syntactic categories imparts the hierarchical structure.
Even though the only logical structure on data is hierarchi-
cal, sometimes linear sequencing is added either for storage
or for stream processing. For example, in SAX representa-
tion of XML data, the document is a linear sequence of text
characters, along with a hierarchically nested matching of
open-tags with closing tags.

Data with dual linear-hierarchical structure is tradition-
ally modeled using binary, and more generally, using or-
dered unranked, trees, and queried using tree automata (see
[17, 13, 18] for recent surveys on applications of unranked
trees and tree automata to XML processing). In ordered
trees, nodes with the same parent are linearly ordered, and
the classical tree traversals such as infix (or depth-first left-
to-right) can be used to define an implicit ordering of all
nodes. While ordering only the siblings is natural in many
database applications (indeed, this is the DOM representa-
tion of XML), the lack of explcit ordering of all nodes do
have some consequences. First, tree-based approach implic-
itly assumes that the input linear data can be parsed into a
tree, and thus, one cannot represent and process data that
may not parse correctly. Word operations such as prefixes,
suffixes, and concatenation, while natural for document pro-
cessing, do not have analogous tree operations. Second, tree
automata can naturally express constraints on the sequence
of labels along a hierarchical path, and also along the left-to-
right siblings, but they have difficulty to capture constraints
that refer to the global linear order. For example, the query
that patterns p1, . . . pn appear in the document in that or-
der (that is, the regular expression Σ∗p1Σ

∗ . . . pnΣ∗ over the
linear order) compiles into a deterministic word automaton
of linear size, but standard deterministic bottom-up tree au-
tomaton for this query must be of size exponential in n. This
exponential gap is unsurprising in retrospect since complex-
ity of a bottom-up tree automaton is related to the index
of the congruence induced by the query, while complexity
of a word automaton is related to the index of the right-
congruence induced by the query. This deficiency shows
up more dramatically if we consider pushdown acceptors:
a query such as “the document contains an equal number
of occurrences of patterns p and q” is a context-free word
language but is not a context-free tree language.

In this paper, we show that the model of nested words,
recently proposed in the context of specification and ver-
ification of structured programs [4], allows a better inte-
gration of the two orderings. A nested word consists of a

sequence of linearly ordered positions, augmented with hi-
erarchical edges connecting calls to returns (or open-tags to
close-tags). The edges create a properly nested hierarchical
structure, while allowing some of the edges to be pending.
This nesting structure can be uniquely represented by a se-
quence specifying the types of positions (calls, returns, and
internals). Words are nested words where all positions are
internals. Ordered trees can be interpreted as nested words
using the following traversal: to process an a-labeled node,
first print an a-labeled call, process all children in order,
and print an a-labeled return. Note that this is a combina-
tion of top-down and bottom-up traversals, and each node is
processed twice. Word operations such as prefixes, suffixes,
concatenation, reversal, as well as tree operations, can be
defined easily on nested words. Binary trees, ranked trees,
unranked trees, forests, and documents that do not parse
correctly, all can be represented with equal ease. Finally,
since the SAX representation of XML documents already
contain tags that specify the position type, they can be in-
terpreted as nested words without any preprocessing.

A nested-word automaton is similar to a classical finite-
state word automaton, and reads the input from left to right
according to the linear sequence, processing each symbol
based to its type [4]. At a call, it can propagate states along
both linear and hierarchical outgoing edges, and at a return,
the new state is determined based on states labeling both the
linear and hierarchical incoming edges. The resulting class
of regular languages of nested words seems to have all the
appealing theoretical properties that the classes of classical
regular word and tree languages enjoy. Deterministic nested
word automata are as expressive as their nondeterministic
counterparts. The class is closed under boolean operations
as well as a variety of word and tree operations. Decision
problems such as membership, emptiness, language inclu-
sion, and language equivalence are all decidable, typically
with the same complexity as the corresponding problem for
tree automata. Finally, the notion of regularity can be char-
acterized in multiple equivalent ways, and in particular, us-
ing definability in monadic second order logic.

In order to study the relationship of nested word automata
to various kinds of word and tree automata, we define re-
stricted classes of nested word automata and study the im-
pact of these restrictions on expressiveness and succinctness.
Flat automata do not propagate information along the hier-
archical edges at calls, and correspond to classical word au-
tomata accepting the weaker class of regular word languages.
Bottom-up automata, on the other hand, do not propagate
information along the linear edges at calls. Over the sub-
class of nested words corresponding to ordered trees, these
automata correspond exactly to bottom-up tree automata
for binary trees and stepwise bottom-up tree automata [5]
for unranked trees. We show that there is an exponential
price in terms of succinctness due to this restriction. Our
definition of joinless automata avoids a nontrivial join of in-
formation along the linear and hierarchical edges at returns,
and this concept is a generalization of the classical top-down
tree automata. While deterministic joinless automata are
strictly less expressive, nondeterministic ones can accept all
regular languages of nested words. The succinctness gap be-
tween nested word automata and traditional tree automata
holds even if we restrict attention to paths (that is, unary
trees): nested word automata are exponentially more suc-
cinct than both bottom-up and top-down automata.

We also introduce and study pushdown nested word au-
tomata by adding a stack to the finite-state control of non-
deterministic joinless automata. We show that both push-
down word automata and pushdown tree automata are spe-
cial cases, but pushdown nested word automata are strictly
more expressive than both. In terms of complexity of anal-
ysis problems, they are similar to pushdown tree automata:
membership is Np-complete and emptiness is Exptime-complete.
Our decision procedure for emptiness generalizes the corre-
sponding checks for pushdown word automata and for push-
down tree automata.

Related Work
Languages of words with well-bracketed structure have been
studied as Dyck languages and parenthesis languages, and
shown to have some special properties compared to context-
free languages (for example, decidable equivalence problem) [16,
9]. The new insight is that the matching among left and
right parantheses can be considered to be an explicit com-
ponent of the input structure, and this leads to a robust no-
tion of regular languages using finite-state acceptors. This
was first captured using visibly pushdown automata [3], and
later, a cleaner and improved reformulation using nested
word automata [4]. There is a lot of recent work on visibly
pushdown automata and/or nested word automata (see [14,
2, 1, 10]). However, none of this addresses succinctness com-
pared to tree automata. Recent work proposes the notion of
XVPA for processing XML schema [11]. These automata,
however, are a particular form of bottom-up automata stud-
ied in this paper, and thus, do not process linear structure
well.

There is a rich literature on tree automata, and we used
[18, 6] for our research. Besides classical top-down and
bottom-up automata over binary trees, stepwise bottom-up
tree automata for processing unranked ordered trees [15, 5]
and pushdown tree automata [8, 12] are the most relevant
to this paper. Deterministic word automata have been also
used for stream processing of XML documents [7], where
the authors argue, with experimental supporting data, that
finite-state word automata may be good enough given that
hierarchical depth of documents is small.

2. LINEAR HIERARCHICAL MODELS

2.1 Nested Words
Given a linear sequence, we add hierarchical structure us-

ing edges that are well nested (that is, they do not cross).
We will use edges starting at −∞ and edges ending at +∞
to model “pending” edges. Assume that −∞ < i < +∞ for
every integer i.

A matching relation ; of length `, for ` ≥ 0, is a subset
of {−∞, 1, 2, . . . `} × {1, 2, . . . `, +∞} such that

1. if i ; j then i < j;

2. if i ; j and i ; j′ and i 6= −∞ then j = j′, and
if i ; j and i′ ; j and j 6= +∞ then i = i′

3. if i ; j and i′ ; j′ then it is not the case that
i < i′ ≤ j < j′

When i ; j holds for 1 ≤ i < j ≤ `, the position i is
a call with the position j being its return-successor , and
the position j is a return with i being its call-predecessor .
When −∞ ; j holds, the position j is a return, but without

a b a a b a b a a b a a

a a a b b a

a

a b

a a b a a a a

n
1

n
2

n
3

<a <b a a> <b a b> a> <a b a a>

a a> <b a a> <a <a

<a <a a> <b b> a> a(a(),b())

Figure 1: Sample nested words

a matching call, and when i ; +∞ holds, the position i is a
call, but without a matching return. Our definition requires
that a position has at most one return-successor and at most
one call-predecessor, and a position cannot be both a call
and a return. A position i that is neither a call or a return
is called internal.

A nested word n over an alphabet Σ is a pair (a1 . . . a`, ;),
for ` ≥ 0, such that ai, for each 1 ≤ i ≤ `, is a symbol in
Σ, and ; is a matching relation of length `. Let us denote
the set of nested words over Σ as NW (Σ). A language of
nested words over Σ is a subset of NW (Σ).

A nested word n with matching relation ; is said to be
well-matched if there is no position i such that −∞ ; i
or i ; +∞. Thus, in a well-matched nested word, ev-
ery call has a return-successor and every return has a call-
predecessor. We will use WNW (Σ) ⊆ NW (Σ) to denote the
set of all well-matched nested words over Σ. A nested word
n of length ` is said to be rooted if 1 ; ` holds. Observe
that a rooted word must be well-matched.

While the length of a nested word captures its linear com-
plexity, its (nesting) depth captures its hierarchical complex-
ity. The depth of a nested word is the maximum number d
such that there exist call positions i1, . . . id with correspond-
ing return-successors j1, . . . jd such that i1 < i2 < · · · < id <
jd · · · < j2 < j1.

It is convenient to define a notion of call-parent for all
positions. Let n be a nested word of length `. The call-
parent of position 1 is defined to be 0. For 1 ≤ i < `, if i is
a call then the call-parent of i+1 is i; if i is an internal then
the call-parent of i+1 is same as the call-parent of i; if i is a
return such that j ; i, then if j = −∞ then call-parent of
i + 1 is 0, otherwise it is same as the call-parent of j. Thus,
if i is at top-level then its call-parent is 0 otherwise it is the
smallest call position whose return-successor is after i.

Figure 1 shows three nested words over the alphabet {a, b}.
The nested word n1 is well-matched, and has length 12 and
depth 2. The nested word n2 has an unmatched return and
two unmatched calls, and the nested word n3 is rooted.

2.2 Relation to Words
Nested words over Σ can be encoded by words in a natural

way by using the tags 〈 and 〉 to denote calls and returns, re-
spectively. We assume that 〈 and 〉 are special symbols that

do not appear in the alphabet Σ. Then, given an alphabet
Σ, define the tagged alphabet Σ̂ to be the set that contains
the symbols 〈a, a, and a〉 for each a ∈ Σ. Formally, we de-

fine the mapping nw w : NW (Σ) 7→ Σ̂∗ as follows: given a
nested word n = (a1, . . . a`, ;) of length ` over Σ, nw w(n)

is a word b1, . . . b` over Σ̂ such that for each 1 ≤ i ≤ `,
bi = ai if i is an internal, bi = 〈ai if i is a call, and bi = ai〉
if i is a return.

Figure 1 also shows the tagged words corresponding to
each nested word. Since we allow unmatched calls and re-
turns, every word over the tagged alphabet Σ̂ corresponds to
a nested word: the transformation nw w : NW (Σ) 7→ W (Σ̂)
is a bijection. The inverse of nw w is a transformation func-
tion that maps words over Σ̂ to nested words, and will be
denoted w nw : W (Σ̂) 7→ NW (Σ). This one-to-one corre-
spondence shows that there are exactly 3` distinct matching
relations of length `, and the number of nested words of
length ` is 3`|Σ|`. Observe that if w is a word over Σ, then
w nw(w) is the corresponding nested word with the empty
matching relation.

We will also consider a mapping that views a word as a se-
quence of symbols along a hierarchical path. More precisely,
consider the transformation function path : Σ∗ 7→ NW (Σ)
such that path(a1 . . . a`) is w nw(〈a1 . . . 〈a`a`〉 . . . a1〉). Note
that for a word w, path(w) is rooted and has depth |w|.

2.3 Relation to Ordered Trees
Ordered trees can be interpreted as nested words. In this

representation, it does not really matter whether the tree is
binary, ranked, or unranked.

The set OT (Σ) of ordered trees over an alphabet Σ is
defined inductively:

1. ε ∈ OT (Σ): this is the empty tree;

2. if t1, . . . tn ∈ OT (Σ), for n ≥ 0, with each ti 6= ε, and
a ∈ Σ, then a(t1, . . . tn) ∈ OT (Σ): this represents the
tree whose root is labeled a, and has n children t1 . . . tn

in that order.

Consider the transformation t w : OT (Σ) 7→ W (Σ̂) that

encodes an ordered tree over Σ as a word over Σ̂: t w(ε) = ε;
and t w(a(t1, . . . tn)) = 〈a t w(t1) · · · t w(tn) a〉. This trans-
formation can be viewed as a traversal of the tree, where
processing an a-labeled node corresponds to first printing
an a-labeled call, followed by processing all the children in
order, and then printing an a-labeled return. Note that each
node is visited and copied twice. An a-labeled leaf corre-
sponds to the word 〈aa〉, we will use 〈a〉 as its abbreviation.

The transformation t nw : OT (Σ) 7→ NW (Σ) is the func-
tional composition of t w and w nw . However, not all nested
words correspond to ordered trees. A nested word n =
(a1 . . . a`, ;) is said to be a tree word if (1) it is rooted,
(2) has no internals, and (3) for all i ; j, ai = aj . The
first condition ensures that the nested word is well-matched
and has a single root. The latter two conditions ensure one-
to-one correspondence between matching calls and returns.
Let TW (Σ) ⊆ NW (Σ) denote the set of all tree words over
Σ. Then, the transformation t nw : OT (Σ) 7→ NW (Σ) is a
bijection between OT (Σ) and TW (Σ). The inverse of t nw
then is a transformation function that maps tree words to
ordered trees, and will be denoted nw t : TW (Σ) 7→ OT (Σ).

In Figure 1, only the nested word n3 is a tree word, and
corresponds to the binary tree shown there.

2.4 Operations on Nested Words
Due to the correspondence between nested words and tagged

words, every classical operation on words and languages of
nested words can be defined for nested words and languages
of nested words. Operations on ordered trees and tree lan-
guages can be lifted to nested words and their languages.
We list a few operations below.

Concatenation: Concatenation of two nested words n and
n′ is the nested word w nw(nw w(n)nw w(n′)). Notice that
the matching relation of the concatenation can connect un-
matched calls of the first with the unmatched returns of the
latter.

Subwords, prefixes, and suffixes: Given a nested word
n = w nw(b1 . . . b`), its subword from position i to j, de-
noted n[i, j], is the nested word w nw(bi . . . bj), provided
1 ≤ i ≤ j ≤ `, and the empty nested-word otherwise. Note
that if i ; j in a nested word, then in the subword that
starts before i and ends before j, this hierarchical edge will
change to i ; +∞; and in the subword that starts after
i and ends after j, this hierarchical edge will change to
−∞ ; j; Subwords of the form n[1, j] are prefixes of n
and subwords of the form n[i, `] are suffixes of n. Note that
for 1 ≤ i ≤ `, concatenting the prefix n[1, i] and the suffix
n[i + 1, `] gives back n.

Reverse: Reverse of a nested word n is defined to be
w nw(b` . . . b2b1), where for each 1 ≤ i ≤ `, bi = ai if i is an
internal, bi = 〈ai if i is a return, and bi = ai〉 if i is a call.
That is, to reverse a nested word, we reverse the underlying
word as well as all the hierarchical edges.

Insertion: If n is a nested word, a ∈ Σ, and n′ is a well-
matched nested word, then the result of inserting n′ into
n after every a-labeled position, written Insert(n, a, n′) is
defined to be n if ai 6= a for all 1 ≤ i ≤ `, and the concate-
nation of n[1, i] and n′ and Insert(n[i + 1, `], a, n′) if ai = a
such that aj 6= a, for 1 ≤ j < i. Note that insertion of a tree
word into another tree word is same as tree insertion. Other
tree operations such as subtree deletion and substitution can
be defined similarly.

3. FINITE-STATE AUTOMATA

3.1 Nested Word Automata
Now we define finite-state acceptors over nested words

that can process both linear and hierarchical structure.
A nested word automaton (NWA) A over an alphabet Σ

is a structure (Q, q0, F, δc, δi, δr) consisting of

• a finite set Q of states,

• an initial state q0 ∈ Q,

• a set of final states F ⊆ Q,

• a call-transition function δc : Q× Σ 7→ Q×Q,

• an internal-transition function δi : Q× Σ 7→ Q, and

• a return-transition function δr : Q×Q× Σ 7→ Q.

The automaton A starts in the initial state, and reads the
nested word from left to right. The state is propagated along
the linear edges as in case of a standard word automaton.
However, at a call, the nested word automaton can propa-
gate a state along the outgoing hierarchical edge also. At
a return, the new state is determined based on the states

propagated along the linear as well as the hierarchical in-
coming edges. Formally, a run r of the automaton A over
a nested word n = (a1 . . . a`, ;) is a sequence q0, . . . , q` of
states corresponding to linear edges, and a sequence qij , for
i ; j, of states corresponding to hierarchical edges, such
that for each position 1 ≤ i ≤ `,

• if i is a call with i ; j, then δc(qi−1, ai) = (qi, qij);

• if i is an internal, then δi(qi−1, ai) = qi;

• if i is a return such that j ; i, then δr(qi−1, qji, ai) =
qi, where if j = −∞ then qji = q0.

One can view nested word automata as graph automata over
the acyclic graph of linear and hierarchical edges (see [19]):
a run is a labeling of the edges such that the states on the
outgoing edges at a node are determined by the states on the
incoming edges and the symbol labeling the node. For the
hierarchical edges of the form −∞ ; i, the corresponding
state is the initial state q0. Verify that for a given nested
word n, the automaton has precisely one run over n. The
automaton A accepts the nested word n if in this run, q` ∈
F . The language L(A) of a nested-word automaton A is the
set of nested words it accepts.

There is a close similarity to tree automata: at calls, the
automaton behaves like a top-down tree automaton forking
states, and at returns, it acts like a bottom-up tree automa-
ton joining states.

3.2 Regular Languages
A language L of nested words over Σ is regular if there

exists a nested word automaton A over Σ such that L =
L(A). We recall the main properties of this class [4].

Closure: The class of regular languages of nested words is
(effectively) closed under union, intersection, complementa-
tion, concatenation, and Kleene-∗. If L is a regular language
of nested words then all the following languages are regular:
the set of all prefixes of all the words in L; the set of all
suffixes of all the words in L; the set of reversals of all the
words in L.

Regular languages are closed under tree-like operations
that use hierarchical structure. For example, if L and L′ are
regular languages of nested words then the set of all nested
words of the form Insert(n, a, n′) for n ∈ L and n′ ∈ L′, is
a regular language.

Logic-based characterization: The classical correspon-
dence between monadic second order logic and finite recog-
nizability for words and trees continues to hold for nested
words. The monadic second-order logic of nested words is
given by the syntax:

φ := Qa(x) | x ≤ y | x ; y | φ ∨ φ | ¬φ | ∃x.φ | ∃X.φ,

where a ∈ Σ, x, y are first-order variables, and X is a second
order variable. The semantics is defined over nested words
in a natural way. A language L of nested words over Σ is
regular iff there is an MSO sentence φ over Σ such that L is
the set of all nested words that satisfy φ.

Nondeterministic Automata: A nondeterministic NWA
A has finite set Q of states, initial states Q0 ⊆ Q, a set F ⊆
Q of final states, a call-transition relation δc ⊆ Q×Σ×Q×Q,
an internal-transition relation δi ⊆ Q×Σ×Q, and a return-
transition relation δr ⊆ Q × Q × Σ × Q. The notion of a
run over a nested word and the language L(A) is defined in

the obvious way. Nondeterministic nested word automata
are no more expressive than the deterministic ones: given
a nondeterministic automaton A with s states, one can ef-

fectively construct a deterministic NWA B with 2s2
states

such that L(B) = L(A).

Decision Problems: Given a nested word automaton A
and a nested word n, the membership problem (is n in
L(A)?) can be solved in linear time. The space required is
proportional to the depth of n since one needs to remember
the labeling of pending hierarchical edges at every position.
If A is nondeterministic, membership problem can be solved
in time O(|A|3`) using dynamic programming similar to the
one used for membership for pushdown word automata.

The emptiness problem for nested word automata(is L(A)
empty?) can be solved in cubic time using techniques sim-
ilar to the ones used for pushdown word automata or tree
automata.

Problems such as language inclusion and language equiv-
alence are decidable. These problems can be solved using
constructions for complementation and language intersec-
tion, and emptiness test. If one of the automata is nondeter-
ministic, then this would require determinization, and both
language inclusion and equivalence are Exptime-complete
for nondeterministic NWAs.

Weak Automata: Note that the call-transition function
δc of a nested word automaton A has two components that
specify, respectively, the states to be propagated along the
linear and the hierarchical edges. We will refer to these two
components as δl

c and δh
c . That is, δc(q, a) = (δl

c(q, a), δh
c (q, a)).

In terms of expressiveness, it suffices if the hierarchical com-
ponent simply propagates the current state. A nested word
automaton A with call-transition function δc is said to be
weak if for all states q and symbols a, δh

c (q, a) = q. Weak
NWAs can capture all regular languages:

Theorem 1. Given a nested word automaton A with s
states over Σ, one can effectively construct a weak NWA B
with s|Σ| states such that L(B) = L(A).

Proof. Consider an NWA A = (Q, q0, F, δc, δi, δr). The
weak automaton B remembers, in addition to the state of A,
the symbol labeling the call-parent of the current position
so that it can be retrieved at a return and the hierarchi-
cal component of the call-transition function of A can be
applied. The desired automaton B is (Q × Σ, (q0, a0), F ×
Σ, δ′c, δ

′
i, δ

′
r) (here a0 is some arbitrarily chosen symbol in Σ).

The transitions are defined by: δ′i((q, a), b) = (δi(q, b), a);
δ′c((q, a), b) = ((δl

c(q, b), b), (q, a)); and
δ′r((q, a), (q′, b), c) = (δr(q, δ

h
c (q′, a), c), b).

3.3 Relation to Word Languages
A nested word automaton A = (Q, q0, F, δc, δi, δr) is said

to be flat if for all a ∈ Σ and q ∈ Q, δh
c (q, a) = q0. Thus, in a

run of a flat automaton over a nested word, all the hierarchi-
cal edges are labeled with the initial state, and hence, there
is no information propagated across these edges to the re-
turns. Consequently, a flat NWA is equivalent to a classical
finite-state word automaton. The only difference is that such
an automaton updates its state not only based on its current
state and the symbol being read, but also based on whether
the current position is a call, internal, or return. Conversely,
a classical word automaton A = (Q, q0, F, δ) over Σ̂ can be

interpreted as a flat NWA A′ = (Q, q0, F, δc, δi, δr), where
for every q, q′ ∈ Q and a ∈ Σ, δc(q, a) = (δ(q, 〈a), q0),
δi(q, a) = δ(q, a), and δr(q, q

′, a) = δ(q, a〉). This is sum-
marized in the following:

Theorem 2. A nested word language L over Σ is ac-
cepted by a flat nested word automaton with s states iff the
corresponding language nw w(L) of tagged words over Σ̂ is
accepted by a deterministic word automaton with s states.

In general, due to the ability to pass information across
hierarchical edges, for a regular language L nested words,
nw w(L) need not be a regular word language. In particular,
the set nw w(WNW (Σ)) is not regular. One can interpret
the nested word automaton as a pushdown word automaton
that is required to push while reading a call and pop while
reading a return. The height of the stack is determined
by the input word, and equals the depth of the prefix read.
Such restricted form of pushdown automata are called visibly
pushdown automata [3].

When a language L of nested words is accepted by a flat
NWA, then using the classical algorithms for minimizing de-
terministic word automata, one can construct a minimal (in
terms of number of states) flat NWA accepting L. How-
ever, such minimal automata can be exponentially larger
than NWAs that use the hierarchical edges for information
propagation. This exponential price in succinctness is es-
tablished by the following theorem.

Theorem 3. There exists a family Ls, s ≥ 1, of regular
word languages over Σ̂ such that each w nw(Ls) is accepted
by a NWA with O(s) states, but every word automaton ac-
cepting Ls must have 2s states.

Proof. Let Σ = {a, b}. For s ≥ 1, let Ls = {path(w) |
w ∈ Σs}. To accept Ls, the automaton must check that
the input word is of the form 〈a1〈a2 . . . 〈asas〉 . . . a2〉a1〉. It
is easy to check that Ls is regular, but a word automaton
accepting Ls must have 2s states (in fact, even nondeter-
minism won’t help in this case).

The NWA simply needs a counter to ensure that the depth
is s, and at each call, it passes the current symbol along
the hierarchical edge. At a return, the symbol along the
hierarchical edge must match the symbol being read. In
fact, s + 2 states suffice to accept Ls.

3.4 Bottom-up Automata
A nested word automaton A = (Q, q0, F, δc, δi, δr) is said

to be bottom-up iff the linear component of the call-transition
function does not depend on the current state: δl

c(q, a) =
δl

c(q
′, a) for all q, q′ ∈ Q and a ∈ Σ. Consider the run of a

bottom-up NWA A on a nested word n, let i be a call with
return-successor j. Then, A processes the rooted subword
n[i, j] without using the prefix of n upto i. This does not
limit expressiveness provided there are no unmatched calls.
However, if i ; +∞, then the acceptance of n by A does not
depend at all on the prefix n[1, i− 1], and this causes prob-
lems. In particular, for Σ = {a, b}, the language containing
the single nested word a〈a can be accepted by a flat NWA,
but not by a bottom-up NWA (if a bottom-up NWA ac-
cepts a〈a, then it will also accept n〈a, for every nested word
n). To avoid this anomaly, we will assume that bottom-up
automata process only well-matched words.

Theorem 4. Given an NWA A with s states, one can
effectively construct a weak bottom-up NWA B with ss|Σ|
states such that L(A) ∩WNW (Σ) = L(B) ∩WNW (Σ).

Proof. Recall that we can transform any NWA into a
weak one, and this transformation increases the number of
states by a factor of |Σ|. Let A = (Q, q0, F, δl

c, δi, δr) be a
weak NWA. A state of B is a function f : Q 7→ Q. The
automaton B simulates the behavior of A in the following
way. Consider a nested word n and a position i with call-
parent j. The state of B before processing position i is f
such that the subword n[j, i− 1] takes A from q to f(q), for
each q ∈ Q.

The initial state of B is the identity function. A state
f is final if f(q0) ∈ F . After reading an a-labeled call,
the state of B is f such that f(q) = δl

c(q, a). While read-
ing an a-labeled internal in state f , B updates its state
to f ′ such that f ′(q) = δi(f(q), a). While reading an a-
labeled return in state f , if the state along the hierarchi-
cal edge is g, then B updates its state to f ′ such that
f ′(q) = δr(f(g(q)), g(q), a).

A variety of definitions of bottom-up tree automata have
been considered in the literature. All of these can be viewed
as special cases of bottom-up NWAs. In particular, bottom-
up stepwise tree automata are very similar and process the
input in the same order [5, 15]. The only difference is that
stepwise automata were defined to read only tree words, and
process the symbol at a call when first encountered. That is,
a stepwise bottom-up tree automaton is a weak bottom-up
NWA on tree words with the restriction that δr : Q×Q×Σ 7→
Q does not depend on its third argument.

Lemma 1. If L ⊆ OT (Σ) is accepted by a stepwise bottom-
up tree automaton with s states, then there exists a bottom-
up NWA A with s states such that nw t(L(A)) = L.

Since stepwise bottom-up tree automata accept all regular
tree languages, it follows that NWAs can define all regular
tree languages. Also, stepwise automata have been shown
to be more succinct than many other classes of tree au-
tomata [15], so succinctness gap of NWAs with respect to
bottom-up NWAs carries over to these classes. Over word
encoding, the number of states of a minimal word automa-
ton accepting a language L is the index of the corresponding
right-congruence (two words u and v are equivalent iff for
all suffixes w, uw ∈ L iff vw ∈ L), while the number of
states of a minimal bottom-up tree automaton accepting a
language L is the index of the corresponding congruence
(two well-matched words u and v are equivalent iff for all
prefixes w and suffixes w′, wuw′ ∈ L iff wvw′ ∈ L). The
right congruence induced by a language can have exponen-
tially less number of classes than the congruence induced by
L. This leads to the following exponential gap, shown us-
ing techniques developed for defining congruences for nested
words [2]:

Theorem 5. There exists a family Ls, s ≥ 1, of regular
languages of tree words such that each Ls is accepted by a flat
NWA with O(s2) states, but every bottom-up NWA accepting
Ls must have 2s states.

Proof. Let Σ = {a, b}. We will use L to denote the set
{〈a〉, 〈b〉}. For s ≥ 1, consider the language Ls of tree words
of the form 〈a〈b〉m〈aLi−1〈a〉Ls−ia〉a〉, where i = m mod s.

First, we want to establish that there is a deterministic
word automaton with O(s2) states accepting Ls. The au-
tomaton can compute the value of i = m mod s after reading

〈a〈b〉m〈a by counting the number of repetitions of 〈b〉 mod-
ulo s using O(s) states. Then, it must ensure that what
follows is Li−1〈a〉Ls−ia〉a〉. For each value of i, this can be
done using O(s) states.

Let A be a bottom-up NWA accepting Ls. Let q be the
unique state of A having read the prefix 〈a〈b〉m〈a. This
state q is independent of m since A is bottom up. The set
Ls contains 2s well-matched words. If A has less than 2s

states then there must exist two distinct words n and n′ in
Ls such that A goes to the same state q′ after reading both
n and n′ starting in state q. Since n and n′ are distinct, they
must differ in some block. That is, there must exist 1 ≤ i ≤ s
such that n is of the form Li−1〈a〉Ls−i and n′ is of the form
Li−1〈b〉Ls−i. Now consider the words 〈a〈b〉i〈a n a〉a〉 and
〈a〈b〉i〈a n′ a〉a〉. Only one of them is in Ls, but A will either
accept both or reject both.

3.5 Joinless Automata
A nested word automaton at a return position joins the

information flowing along the linear edge and the hierarchi-
cal edge. In this section, we study the impact of disallowing
such a join. A joinless automaton operates in two modes,
linear and hierarchical. Initially it is in linear mode. At a
call, it decides either to stay in the linear mode propagat-
ing only the dummy initial state along the hierarchical edge,
or to enter the hierarchical mode and process the subword
upto the matching return and the suffix after the return in-
dependently. At a return, if the automaton is in the linear
mode, it checks that the state along the hierarchical edge
is initial, and continues based on the current state. In a
hierarchical mode the automaton behaves like a top-down
tree automaton, and at a return, next state is based upon
the state propagated along the hierarchical edge and the
only information along the linear edge is whether the inside
subword is accepted or not.

A nondeterministic joinless nested word automaton has fi-
nite set Q of states partitioned into Ql and Qh, a set Q0 ⊆ Q
of initial states, a set F ⊆ Q of final states, a call-transition
relation δc ⊆ (Qh × Σ × Qh × Qh) ∪ (Ql × Σ × Q × Q); an
internal-transition relation δi ⊆ (Qh×Σ×Qh)∪(Ql×Σ×Q);
a return-transition relation δr ⊆ (Qh×Σ×Qh)∪(Ql×Σ×Q).
The automaton is deterministic if there is only one initial
state and choice of at most one transition given the cur-
rent state and symbol. A run of A on a nested word n =
(a1, . . . a`, ;) consists of states q0, q1 · · · q` and qij , for i ; j,
(define q−∞j = q0) such that q0 ∈ Q0, for each position 1 ≤
i ≤ `, (1) if i is a call with i ; j then (qi−1, ai, qi, qij) ∈ δc;
(2) if i is an internal then (qi−1, ai, qi) ∈ δi; (3) if i is a
return with j ; i then either qi−1 ∈ Ql and qji = q0 and
(qi−1, ai, qi) ∈ δr, or qi−1 ∈ Qh ∩ F and (qji, ai, qi) ∈ δr.

Note that a flat automaton is joinless with Ql = Q: all
states are linear. We will call a joinless automaton top-down
if Ql is empty and all states are hierarchical. Over tree
words, the standard definition of top-down tree automata is
the same as our notion of top-down automata:

Lemma 2. If L ⊆ OT (Σ), then L is accepted by a
(non)deterministic top-down tree automaton with s states iff
there exists a (non)deterministic top-down NWA A with s
states such that nw t(L(A)) = L.

This implies that the well-known expressiveness deficiency
of deterministic top-down tree automata applies in case of
nested words. Consider the requirement that the nested

word contains some a-labeled symbol. This can be checked
by a flat (and hence, deterministic joinless) automaton, but
not by a top-down automaton. The requirement that the
input word is a tree word can be checked by a deterministic
top-down (and hence, deterministic joinless) automaton, but
not by a flat automaton. Thus, expressiveness of determin-
istic top-down automata and flat automata is incomparable.
The conjunction of these two requirements can be checked
by an NWA but not by a deterministic joinless automaton:

Theorem 6. Deterministic joinless nested word automata
are strictly less expressive than nested word automata.

Proof. Let Σ = {a, b}. Consider the language of tree
words of the form (〈a)s〈b〈c〉b〉〈c〉(a〉)s, for some s ≥ 0 and
c ∈ Σ. We can construct an NWA to accept this language.
Let A be a deterministic joinless automaton with s states.
Consider the run of the automaton on a string of s a-labeled
calls. If the automaton stays in linear mode throughout this,
then one can pump in this part without changing the label-
ing of hierarchical edges, and use that to show that A cannot
accept the language correctly. Hence, the automaton must
be in hierarchical mode at the end of this prefix. Conse-
quently, after reading the b-labeled call, it forks off two in-
dependent copies, with state q1 along linear edge and state
q2 along hierarchical edge. Now the obligation is that the
next symbol read by q1 must match the next symbol read
by q2. We can show that this cannot be enforced by con-
sidering accepting runs for different symbols and combining
them.

Nondeterminism can be used to address this deficiency:

Theorem 7. Given a nondeterministic NWA A with s
states, one can effectively construct a nondeterministic join-
less NWA B with O(s2|Σ|) states such that L(A) = L(B).

Proof. Let A = (Q, Q0, F, δc, δi, δr) be an NWA. For
each state q, B has a corresponding linear state. For every
pair (q, q′) of states of A, B has a hierarchical state meaning
that the current state of A is q and there is an obligation
that the state of A will be q′ at the first unmatched return.
We will also need auxiliary hierarchical states of the form
(q, q′, a) to label hierarchical edges to mean that the symbol
at the return is guessed to be a.

The initial states are Q0. Linear states in F and hierarchi-
cal states of the form (q, q) are accepting. For every internal
transition (q, a, q′) of A, B has a corresponding linear in-
ternal transition and for every q′′, it also has a hierarchical
internal transition ((q, q′′), a, (q′, q′′)). For every call transi-
tion (q, a, ql, qh), there is a linear call transition (q, a, ql, q0)
denoting the guess that there is no matching return, and for
every return transition (q1, qh, b, q2), there is a linear return
transition (q1, b, q2), and for every q′, B has a hierarchical
call transition ((q, q′), a, (ql, q1), (q2, q

′, b)). Note that here
B is demanding a run from ql to q1 on the inside subword,
and the accepting condition ensures that this obligation is
met. The hierarchical return transitions of B are of the form
((q, q′, a), a, (q, q′)).

Note that a similar theorem does not hold for top-down
automata. The reason is that in a top-down automaton
information cannot flow outwards. Hence, if a position is an
unmatched return, then even a nondeterministic top-down
automaton won’t be able to relate the subwords before and
after this position.

3.6 Path Languages
The mix of top-down and bottom-up traversal in nested

word automata can be better explained on unary trees. For
a word language L ⊆ Σ∗, let path(L) = {path(w) | w ∈ L}
be the corresponding language of tree words. We call such
languages path languages. Observe that for unary trees,
the multitude of definitions of tree automata collapse to
two: top-down and bottom-up. Top-down tree automata
for path(L) correspond to word automata accepting L, while
bottom-up tree automata correspond to word automata pro-
cessing the words in reverse. The following lemma follows
from definitions:

Lemma 3. For a word language L, nw t(path(L)) is ac-
cepted by a deterministic top-down tree automaton with s
states iff L is accepted by a deterministic word automaton
with s states, and nw t(path(L)) is accepted by a determinis-
tic bottom-up tree automaton with s states iff LR, the reverse
of L, is accepted by a deterministic word automaton with s
states.

It follows that path(L) is a regular language of nested
words iff L is a regular language of words. Also, for path lan-
guages, deterministic top-down and deterministic bottom-
up automata can express all regular languages. Given that
a word language L and its reverse can have exponentially
different complexities in terms of the number of states of
deterministic acceptors, we get

Theorem 8. There exists a family Ls, s ≥ 1, of regular
path languages such that each Ls is accepted by a NWA with
O(s) states, but every deterministic bottom-up or top-down
NWA accepting Ls must have 2s states.

Proof. For Σ = {a, b}, let Ls be ΣsaΣ∗aΣs. An NWA
with linear number of states can accept the corresponding
path language: it needs to count s calls going down, count s
returns on way back, and also make sure that the input word
is indeed a path word by passing each call-symbol along the
hierarchical edge. It is easy to see that Ls requires 2s states
for a DFA to enforce the constraint that s+1-th symbol from
end is an a. Since Ls is its own reverse, from Lemma 5, the
theorem follows.

4. PUSHDOWN AUTOMATA
In this section, we generalize the classical definitions of

pushdown automata over words and trees to nested words.
Note that pushdown automata over words can be used to im-
plement finite-state NWAs where the stack stores the states
labeling the pending hierarchical edges so that these states
can be accessed at returns. In this section, we will use the
pushdown store for labeling itself so that at a call, the au-
tomaton can fork off two runs each with its own stack.

4.1 Pushdown Nested Word Automata
Given that nondeterministic pushdown automata over words

are more expressive than deterministic ones (and correspond
to the well understood class of context-free languages), we
will consider only nondeterministic automata. Furthermore,
we will restrict attention to joinless automata for two rea-
sons. First, for finite-state acceptors, nondeterministic join-
less automata can specify all regular languages, and gen-
eralize both word automata and top-down tree automata.
Second, in presence of stacks, while there is an obvious and

natural generalization of the transition relation in the join-
less case, it’s not clear how to join two stacks. Consistent
with the classical definitions of pushdown automata, we will
allow ε-transitions, but for simplicity of presentation, we
will assume that the transitions updating the stack are pre-
cisely the ε-transitions. It is easy to verify that this does
not change the class of languages accepted.

A pushdown nested word automaton consists of

• a finite set Q of states, partitioned into linear states
Ql and hierarchical states Qh,

• a set of initial states Q0 ⊆ Q,

• a finite set Γ of stack symbols,

• a bottom symbol ⊥∈ Γ,

• a call-transition relation δc which is a subset of Ql ×
Σ×Q×Q and Qh × Σ×Qh ×Qh,

• an internal-transition relation δi which is a subset of
Ql × Σ×Q and Qh × Σ×Qh,

• a return-transition relation δr which is a subset of Ql×
Σ×Q and Qh × Σ×Qh,

• a push-transition relation δ+ ⊆ Q×Q×Γ \ {⊥}, and

• a pop-transition relation δ− ⊆ Q× Γ×Q.

A configuration is a pair consisting of the automaton state
and a sequence of stack symbols. We will use C = Q × Γ∗

to denote the set of all configurations. The initial configu-
ration of the automaton is (q0,⊥) for some q0 ∈ Q0. The
automaton either processes a position of the input word,
and updates the state exactly as in case of joinless automata
without updating the stack, or it executes a push or a pop
transition updating the state and the stack without pro-
cessing the input. Thus, the automaton can take a sequence
of ε-steps along a linear edge. The automaton accepts by
empty stack. We also assume that the unmatched return
edges are labeled with some default configuration.

To define runs formally, we lift the transition relations
of the automaton to relate configurations. The internal-
transition relation δi defines the relation ∆i ⊆ C × Σ × C
as follows: ((q, α), a, (q′, α)) belongs to ∆i iff (q, a, q′) ∈ δi.
The relations ∆c ⊆ C × Σ × C × C and ∆r ⊆ C × Σ × C
are defined using δc and δr in a similar manner. The push
transition relation δ+ defines the relation ∆+ ⊆ C × C:
((q, α), (q′, γα) belongs to ∆+ iff (q, q′, γ) ∈ δ+. Similarly,
((q, γα), (q′, α)) ∈ ∆− iff (q, γ, q′) is a pop-transition.

A run of A on a nested word n = (a1, . . . a`, ;) is a
sequence c0, c

′
0, c1, c

′
1, · · · c`, c

′
` of configurations correspond-

ing to linear edges, and configurations cij , for i ; j (let
c−∞j = (q0,⊥) for some q0 ∈ Q0), labeling hierarchical
edges, such that, for each i, (1) (ci, c

′
i) is in the reflexive-

transitive closure of ∆+ ∪ ∆−; (2) if i is a call with i ;

j then (c′i−1, ai, ci, cij) ∈ ∆c; (3) if i is an internal then
(c′i−1, ai, ci) ∈ ∆i; (4) if i is a return with j ; i then either
(a) the state of configuration c′i−1 is in Ql and the state of
the configuration cji is q0 and (c′i−1, ai, ci) ∈ ∆r, or (b) the
state of configuration ci−1 is in Qh and (cji, ai, ci) ∈ ∆r.
For such a run, c0 is the start configuration, c′` is the end
configuration, and each c′i−1 such that its state is in Qh and
i is a return, is called a leaf configuration.

The run is initialized if the start configuration is (q0,⊥)
for some q0 ∈ Q0. The run is accepting if the stack in end
configuration as well as each leaf configuration is empty.
The nested word n is accepted by A if there is an initialized
accepting run of A on n, and the language L(A) consists

t1

t2

Level 2

Level 1

ru r’u

u

u

Figure 2: Pumping in trees

of all the nested words accepted by A. A language L ⊆
NW (Σ) of nested words is said to be a pushdown language
if there exists a pushdown nested word automaton A such
that L(A) = L.

4.2 Expressiveness
A nondeterministic joinless NWA canbe easily changed to

a pushdown NWA (by adding ε-transitions from final states
that pop ⊥ from the stack), and hence, pushdown NWAs
can define all regular languages of nested words. A classical
pushdown word automaton accepting by empty stack is also
a special case where all states are linear. This implies that
all context-free word languages are definable:

Lemma 4. If L is a context-free language over Σ̂, then
w nw(L) is a pushdown language of nested words.

Top-down pushdown tree automaton is also a special case
where all states are hierarchical. This implies that context-
free tree languages are definable:

Lemma 5. If L ⊆ OT (Σ) is a context-free tree language,
then t nw(L) is a pushdown language of nested words.

Context-free tree languages can be defined using nonde-
terministic top-down tree automata. Such automata, how-
ever, cannot simulate a linear stack-based information flow.
A top-down automaton splits the run into two independent
ones at a call position (i.e. a tree node). Nondeterminism
can be used to exchange finite amount of information across
the two runs (as in the proof of expressive completeness of
joinless automata). However, this trick fails in case of push-
down automata.

Theorem 9. There exists a language L of nested words
such that nw w(L) is accepted by a pushdown word automa-
ton, but nw t(L) is not a context-free tree language.

Proof. Let Σ = {a, b}. Consider the language L of
nested words n such that the number of a-labeled positions
is equal to the number of b-labeled positions. This is a stan-
dard context-free word requirement. Suppose this language
is accepted by a top-down pushdown tree automaton with s
states. Consider a tree with a stem consisting of 2s a-labeled
nodes, followed by a full binary tree of depth s consisting of
b-labeled nodes. Consider an accepting run of the automa-
ton over this tree. Note that in the run of a pushdown tree

automaton, a push-transition can get matched with multi-
ple pop-transitions. See Figure 2. We can show that there
must exist two positions t1 and t2 along the stem such that
(1) the states labeling t1 and t2 are identical, (2) the pop-
transitions matching the push at t1 and t2, respectively, are
along the frontiers level 1 and 2, respectively and (3) the
set of states labeling the positions at level 1 equals the set
of states labeling level 2. Without loss of generality, we can
assume that if a state appears multiple times at level 1, then
the subtrees rooted at these multiple occurrences are iden-
tical. Same holds for level 2. For each u ∈ U , let ru and
r′u denote the subtrees rooted at an occurrence of u at level
1 and 2, respectively. Now observe that we can delete the
stem from t1 to t2, and replace each subtree r′u by ru, and
this still gives us an accepting run. We can also duplicate
the stem from t1 to t2, and replace each subtree ru at level
1 by a copy of the subtree r′u, while maintaining acceptance.
Note that each pumping increases the depth of every leaf at
least by 1, and hence, at least doubles the current number of
b nodes, while the number of a nodes added is fixed (equal
to the length of the stem from t1 to t2). This leads to a
contradiction.

4.3 Membership
The membership question is to decide, given a pushdown

NWA A and a nested word n, whether n ∈ L(A) holds. For
pushdown word automata as well as for nondeterministic
nested word automata, the membership problem is solvable
in cubic time. For pushdown NWAs, the problem turns out
to be Np-complete.

Theorem 10. The membership question for pushdown nested
word automata is Np-complete.

Proof. For membership in Np, we need to show that if
the nested word is accepted then it is accepted in a run in
which the number of ε-transitions, and hence, the size of the
stack can be polynomially bounded. This can be established
easily.

For hardness, it suffices to consider unary alphabet. The
proof is by reduction from satisfiability of CNF formulas.
Given a formula over v variables and s clauses, consider the
nested word (〈aava〉)s. Initially, the automaton executes v
ε-moves pushing either 0 or 1 onto its stack guessing a truth
assignment to the variables. While reading a call, the au-
tomaton simply propagates the stack along the hierarchical
edge. For the i-th copy of av enclosed between a call and a
return, the automaton pops the stack and checks if the i-th
clause is satisfied according to the popped assignment. The
word is accepted if there exists an assignment satisfying all
the clauses.

Note that the NP-hardness is really due to the ability
to propagate the same stack to distinct branches. Hence,
membership problem is also NP-complete for pushdown tree
automata.

4.4 Emptiness
Given a pushdown nested word automaton A, we want to

decide if it accepts some word. Throughout let F denote the
set of states from which ⊥ can be popped, that is, q ∈ F iff
(q,⊥, q′) ∈ δ− for some q′.

Let’s first briefly recall the emptiness check for pushdown
word automata. The key to the procedure is computing the

so-called “stackless summaries” of runs: we want to define a
relation R ⊆ Q×Q such that R(q, q′) holds precisely when
there is a word w and a run of the automaton over w starting
in the configuration (q, ε) and ending in (q′, ε). This would
also imply a run from the start configuration (q, α) to the
end configuration (q′, α), for all possible stack contents α.
The relation R(q, q′) can be defined using inductive rules. In
particular, if R(q, q′) holds, and there is a push-transition
from q1 to q and a pop-transition from q′ to q2, both involv-
ing the same stack symbol γ, then one can infer R(q1, q2).
The relation R can be computed in polynomial-time. The
language is empty iff R(q0, qf) holds for some qf ∈ F .

For pushdown (top-down) tree automata, the notion of
summaries needs to be generalized. In particular, when a
stack symbol γ is pushed, it can get popped along multiple
branches. The definition of a stackless summary then is
a relation R ⊆ Q × 2Q such that R(q, U) holds precisely
when there is a tree t and a run of the automaton over
t starting in the configuration (q, ε) at the root and each
leaf configuration is of the form (q′, ε) for some q′ ∈ U .
The push-pop rule for words generalizes to: R(q′, U ′) can be
inferred from R(q, U) if there is a stack symbol γ such that
there is a transition from q′ to q that pushes γ, and for each
u ∈ U , there is some u′ ∈ U ′ such that there is a transition
from u to u′ popping γ. The number of summaries now is
exponential, and so is the complexity of the emptiness test.
The language is empty iff R(q0, U) holds for some U ⊆ F .

The summaries for pushdown nested word automata com-
bine these two ideas. Our summaries will be of the form
R(q, U, q′). Intuitively, q is the start state of the run, q′ is
the end state, and U is the set of states labeling the leaf
configurations. The stack is empty in the start, end, and
all leaf configurations. Formally, define R ⊆ Q × 2Qh × Q
such that R(q, U, q′) holds iff there is a nested word n and
a run r of the automaton over n such that the start con-
figuration is (q, ε), the end configuration is (q′, ε), and each
leaf configuration is of the form (u, ε), for some u ∈ U . Note
that all states in U must be hierarchical, and if both q and q′

are hierarchical states, then the word must be well-matched.
The language of a pushdown word automaton A is empty
iff R(q0, U, qf) holds for some U ⊆ F and qf ∈ F . It follows
that emptiness can be checked by computing the relation R.
Let R be the smallest subset of Q × 2Qh × Q that satisfies
the following constraints:

Internal transitions If (q, a, q′) ∈ δi then
(q, ∅, q′) ∈ R.

Linear calls If (q, a, q′, q0) ∈ δc for q ∈ Ql then
(q, ∅, q′) ∈ R.

Linear returns If (q, a, q′) ∈ δr for q ∈ Ql then
(q, ∅, q′) ∈ R.

Hierarchical call-returns If (q, a, ql, qh) ∈ δc with
ql ∈ Qh and (qh, b, q′) ∈ δr then (q, {ql}, q′) ∈ R.

Push-pop transitions If (q, U, q′) ∈ R, (q1, q, γ) ∈ δ+,
(q′, γ, q2) ∈ δ−, and for each u ∈ U , (u, γ, u′) ∈ δ−
for some u′ ∈ U ′. then (q1, U

′, q2) ∈ R.

Linear concatenation If (q, U, q′) and (q′, U ′, q′′) are in R
then so is (q, U ∪ U ′, q′′).

Hierarchical concatenation If (q, U, q′) and (u, U ′, v) are
in R for some u ∈ U , then so is (q, (U ∪ U ′ ∪ {v}) \
{u}, q′).

In the above rules, the internal push-pop rule is the gen-
eralization of the corresponding rules for matching pushes
with pops in case of words and trees. In the hierarchical
mode, the calls and returns must be processed jointly, and
this is captured by the hierarchical call-returns rule. For
concatenating summaries, we need to consider both linear
concatenation at top-level and hierarchical concatenation at
the leaf-level. For correctness, we need to show that the
relation R capturing summaries of runs coincides with the
relation R defined using above derivation rules. The desired
relation R can be computed in exponential time. Putting
all pieces together, and using the fact that emptiness for
pushdown games (or pushdown tree automata) is Exptime-
hard [12], we get

Theorem 11. The language emptiness problem for push-
down nested word automata is Exptime-complete.

5. CONCLUSIONS
We have shown that nested words is a suitable model for

data that has both linear and hierarchical structure. Both
words and ordered trees are special cases of nested words,
and nested words support both word and tree operations.
We have shown that nested word automata combine left-to-
right, top-down, and bottom-up traversals, and are expo-
nentially more succinct than word automata as well as all
varieties of tree automata. We have also introduced push-
down automata over nested words, studied their decision
problems, and shown them to be more expressive than push-
down tree automata.

In terms of future work, on practical side, we need to ex-
plore if compiling existing XML query languages into nested
word automata reduces query processing time. On the-
oretical side, many problems such as algorithms for edit
distances, transducers, and temporal and first-order logics,
seem worth investigating.

Acknowledgements: When I gave a talk on nested words
at the Newton Institute Workshop on Games and Verifica-
tion in June 2006, many people including Thomas Schwentick,
Wolfgang Thomas, and Moshe Vardi, asked questions re-
garding the relationship between ordered trees and nested
words. I thank them for initiating this research, and also the
workshop organizers for a stimulating meeting. I would also
like to thank Swarat Chaudhuri, Kousha Etessami, Neil Im-
merman, Leonid Libkin, P. Madhusudan, Benjamin Pierce,
and Mahesh Viswanathan, for fruitful discussion regarding
nested words. This research was partially supported by US
National Science Foundation under grants CNS 0524059 and
CPA 0541149.

6. REFERENCES
[1] R. Alur, S. Chaudhuri, and P. Madhusudan.

Languages of nested trees. In Proc. 18th International
Conference on Computer-Aided Verification, LNCS
4144, pages 329–342. Springer, 2006.

[2] R. Alur, V. Kumar, P. Madhusudan, and
M. Viswanathan. Congruences for visibly pushdown
languages. In Automata, Languages and Programming:
Proceedings of the 32nd ICALP, LNCS 3580, pages
1102–1114. Springer, 2005.

[3] R. Alur and P. Madhusudan. Visibly pushdown
languages. In Proceedings of the 36th ACM Symposium
on Theory of Computing, pages 202–211, 2004.

[4] R. Alur and P. Madhusudan. Adding nesting structure
to words. In Developments in Language Theory, LNCS
4036, pages 1–13, 2006.

[5] A. Brüggemann-Klein, M. Murata, and D. Wood.
Regular tree and regular hedge languages over
unranked alphabets: Version 1. Technical Report
HKUST-TCSC-2001-0, The Hongkong University of
Science and Technology, 2001.

[6] H. Comon, M. Dauchet, R. Gilleron, D. Lugiez,
S. Tison, and M. Tommasi. Tree automata techniques
and applications. Draft, Available at
http://www.grappa.univ-lille3.fr/tata/, 2002.

[7] T. Green, G. Miklau, M. Onizuka, and D. Suciu.
Processing XML streams with deterministic automata.
In ICDT ’03: Proceedings of the 9th International
Conference on Database Theory, pages 173–189.
Springer, 2003.

[8] I. Guessarian. Pushdown tree automata. Mathematical
Systems Theory, 16:237–264, 1983.

[9] D. Knuth. A characterization of parenthesis languages.
Information and Control, 11(3):269–289, 1967.

[10] V. Kumar, P. Madhusudan, and M. Viswanathan.
Minimization, learning, and conformance testing of
Boolean programs. In CONCUR’06: 17th
International Conference on Concurrency Theory,
LNCS 4137, pages 203–217. Springer, 2006.

[11] V. Kumar, P. Madhusudan, and M. Viswanathan.
Visibly pushdown languages for streaming XML. In
Proceedings of the 16th International World Wide
Web Conference, 2007.

[12] O. Kupferman, N. Piterman, and M. Vardi. Pushdown
specifications. In Proc. 9th Intl. Conf. on Logics for
Programming, Artificial Intelligence, and Reasoning,
LNCS 2514, pages 262–277. Springer, 2002.

[13] L. Libkin. Logics for unranked trees: An overview. In
Automata, Languages and Programming, 32nd
International Colloquium, Proceedings, LNCS 3580,
pages 35–50. Springer, 2005.

[14] C. Löding, P. Madhusudan, and O. Serre. Visibly
pushdown games. In FSTTCS 2004: Foundations of
Software Technology and Theoretical Computer
Science, 24th International Conference, LNCS 3328,
pages 408–420. Springer, 2004.

[15] W. Martens and J. Niehren. Minimizing tree
automata for unranked trees. In Proceedings of the
10th International Symposium on Database
Programming Languages, pages 233–247, 2005.

[16] R. McNaughton. Parenthesis grammars. Journal of the
ACM, 14(3):490–500, 1967.

[17] F. Neven. Automata, logic, and XML. In Proceedings
of the 11th Annual Conference of the European
Association for Computer Science Logic, CSL 2002,
pages 2–26. Springer, 2002.

[18] T. Schwentick. Automata for XML – a survey.
Technical report, University of Dortmund, 2004.

[19] W. Thomas. On logics, tilings, and automata. In
Automata, Languages and Programming, 18th Intl.
Colloquium, LNCS 510, pages 441–454, 1991.

