
Data-Trace Types for Distributed Stream Processing

Systems

Konstantinos Mamouras

Rice University, USA

mamouras@rice.edu

Caleb Stanford

University of Pennsylvania, USA

castan@cis.upenn.edu

Rajeev Alur

University of Pennsylvania, USA

alur@cis.upenn.edu

Zachary G. Ives

University of Pennsylvania, USA

zives@cis.upenn.edu

Val Tannen

University of Pennsylvania, USA

val@cis.upenn.edu

Abstract

Distributed architectures for efficient processing of stream-

ing data are increasingly critical to modern information pro-

cessing systems. The goal of this paper is to develop type-

based programming abstractions that facilitate correct and

efficient deployment of a logical specification of the desired

computation on such architectures. In the proposed model,

each communication link has an associated type specifying

tagged data items along with a dependency relation over tags

that captures the logical partial ordering constraints over

data items. The semantics of a (distributed) stream process-

ing system is then a function from input data traces to output

data traces, where a data trace is an equivalence class of se-

quences of data items induced by the dependency relation.

This data-trace transduction model generalizes both acyclic

synchronous data-flow and relational query processors, and

can specify computations over data streams with a rich vari-

ety of partial ordering and synchronization characteristics.

We then describe a set of programming templates for data-

trace transductions: abstractions corresponding to common

stream processing tasks. Our system automatically maps

these high-level programs to a given topology on the dis-

tributed implementation platform Apache Storm while pre-

serving the semantics. Our experimental evaluation shows

that (1) while automatic parallelization deployed by existing

systems may not preserve semantics, particularly when the

computation is sensitive to the ordering of data items, our

programming abstractions allow a natural specification of

the query that contains a mix of ordering constraints while

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-6712-7/19/06. . . $15.00

https://doi.org/10.1145/3314221.3314580

guaranteeing correct deployment, and (2) the throughput of

the automatically compiled distributed code is comparable

to that of hand-crafted distributed implementations.

CCSConcepts • Information systems→Data streams;

Stream management; • Theory of computation→ Stream-
ing models; • Software and its engineering → General
programming languages.

Keywords distributed data stream processing, types

ACM Reference Format:

Konstantinos Mamouras, Caleb Stanford, Rajeev Alur, Zachary

G. Ives, and Val Tannen. 2019. Data-Trace Types for Distributed

StreamProcessing Systems. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI ’19), June 22–26, 2019, Phoenix, AZ, USA. ACM, New York, NY,

USA, 16 pages. https://doi.org/10.1145/3314221.3314580

1 Introduction

Modern information processing systems increasingly de-

mand the ability to continuously process incoming data

streams in a timely manner. Distributed stream processing ar-

chitectures such as Apache Storm [28], Twitter’s Heron [38,

56], Apache Spark Streaming [27, 58], Google’s MillWheel

[5], Apache Flink [19, 25] and Apache Samza [26, 47] provide

platforms suitable for efficient deployment of such systems.

The focus of the existing systems has been mainly on pro-

viding high throughput, load balancing, load shedding, fault

tolerance and recovery. Less developed, however, is a seman-
tics for streaming computations that enables one to reason

formally about the correctness of implementations and dis-

tributed deployments with respect to a specification, even in

the presence of disorder in the input. This is especially impor-

tant because—as we will discuss in section 2—parallelization

and distribution can cause spurious orderings of the data

items, and it is therefore necessary to have a formal way of

reasoning about these effects. The goal of this paper is to

develop high-level abstractions for distributed stream pro-

cessing by relying on a type discipline that is suitable for

specifying computations and that can be the basis for correct

and efficient deployment.

670

https://doi.org/10.1145/3314221.3314580
https://doi.org/10.1145/3314221.3314580

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA K. Mamouras, C. Stanford, R. Alur, Z. Ives, and V. Tannen

Physically, streams are linearly ordered, of course, and

computations consume one item at a time. However, this is

only one of many possible logical views of streaming data.

Indeed, assuming a strict linear order over input items is

not the ideal abstraction for computation specification, for

two reasons. First, in an actual implementation, there may

be no meaningful logical way to impose a linear ordering

among items arriving at different processing nodes. Second,

for many computations it suffices to view the input logically

as a relation, that is, a bag of unordered data items. Such lack

of ordering often has computational benefits for optimization

and/or parallelization of the implementation. Between linear

ordering at one extreme and lack of ordering at the other

we have the large space of partial orders and capturing these

orders is the main focus of our type discipline.

We use partially ordered multisets (pomsets), a structure

studied extensively in concurrency theory [48]. Pomsets

generalize both sequences and bags, as well as sequences

of bags, bags of sequences, etc., and we have found them

sufficient and appropriate for our formal development. To

specify the types that capture these partial orders as well as

a logical type-consistent semantics for stream computations,

we model—inspired by the definition of Mazurkiewicz traces
[44] in concurrency theory—input and output streams as

data traces. We assume that each data item consists of a tag
and a value of a basic data type associated with this tag. The

ordering of items is specified by a (symmetric) dependency
relation over the set of tags. Two sequences of data items

are considered equivalent if one can be obtained from the

other by repeatedly commuting two adjacent items with

independent tags, and a data trace is an equivalence class of

such sequences. A data-trace type is given by a tag alphabet,

a type of values for each tag, and a dependency relation.

For instance, when all the tags are mutually dependent,

a sequence of items represents only itself, and when all the

tags are mutually independent, a sequence of items repre-

sents the bag of items it contains. A suitable choice of tags

along with the associated dependency relation, allows us to

model streams with a rich variety of logical ordering and syn-

chronization characteristics. As another example, consider a

system that implements key-based partitioning by mapping

a linearly ordered input sequence to a set of linearly ordered

sub-streams, one per key. To model such a system the output

items corresponding to distinct keys should be unordered.

For this purpose, we allow the output items to have their

own tags along with a dependency relation over these tags,

and a sequence of outputs produced by the system is inter-

preted as the corresponding data trace. This representation

can be easily presented programmatically and is also easily

related to physical realizations.

While a system processes the input in a specific order by

consuming items one by one in a streaming manner, it is

required to interpret the input sequence as a data trace, that

is, outputs produced while processing two equivalent input

sequences should be equivalent. Formally, this means that

a stream processor defines a function from input data traces
to output data traces. Such a data-trace transduction is the

proposed semantic model for distributed stream processing

systems, and is a generalization of existing models in liter-

ature such as acyclic Kahn process networks [36, 39] and

streaming extensions of database query languages [15, 40].

Our formal model is described in section 3.

In section 4 we propose a programming model where the

overall computation is given as an acyclic dataflow graph,

where every communication link is annotated with a data-
trace type that specifies the ordering characteristics of the

stream flowing through the link. In order to make the type

annotation easier for the application developer, we restrict

our framework to data-trace types that have two features: (1)

the traces contain linearly ordered periodic synchronization
markers for triggering the output of blocking operations

and forcing progress (similar to the punctuations of [40] or

the heartbeats of [50]), and (2) the data items of traces are

viewed as key-value pairs in order to expose opportunities

for key-based data parallelism. To ensure that each individual

computational element of the dataflow graph respects the

data-trace types of its input and output channels, we provide

a set of operator templates for constraining the computation

appropriately. For example, when the input data-trace type

specifies that the items are unordered, their processing is

described by a commutative monoid (a structure with an

identity element and an associative, commutative binary

operation), which guarantees that the output is independent

of the order in which the items are processed.

When a programmer uses these typed abstractions to de-

scribe an application, she secures the global guarantee that

the overall computation has a well-defined semantics as a

data-trace transduction, and therefore its behavior is pre-

dictable and independent of any arbitrary data item inter-

leaving that is imposed by the network or the distribution

system (Theorem 4.2). Moreover, the operator templates al-

low for data parallelism that always preserves the semantics

of the original specification (Theorem 4.3, Corollary 4.4).

We have implemented data-trace types, operator tem-

plates and typed dataflow DAGs in Java as an embedded

domain-specific language. Our system compiles the specifi-

cation of the computation into a “topology” [29] that can be

executed using Storm (see section 5). In section 6 we present

an experimental evaluation where we address the follow-

ing questions: (1) Is the code that our framework generates

as efficient as a handcrafted implementation? (2) Does our

framework facilitate the development of complex streaming

applications? To answer the first question, we used a slight

variant of the Yahoo Streaming Benchmark [35] and com-

pared a generated implementation (that we built using our

typed abstractions) against a handcrafted one. The experi-

mental results show very similar performance. This provides

671

Data-Trace Types for Distributed Stream Processing Systems PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

evidence that our approach does not impose a computa-
tional overhead, while offering guarantees of type correct-

ness, predictable behavior, and preservation of semantics

when data parallelism is introduced. To address the second

question, we consider a significant case study on prediction

of power usage. This case study is inspired by the DEBS’14

Grand Challenge [22], which we adapted to incorporate a

more realistic prediction technique based on machine learn-

ing. This application requires a mix of ordering constraints

over data items. Our system automatically deals with low-

level ordering and synchronization, so our programming

effort was focused on the power prediction itself.

2 Motivation

Many popular distributed stream processing systems—such

as Storm [28, 54], Heron [38, 56] and Samza [26, 47]—allow

the programmer to express a streaming computation as a

dataflow graph, where the processing performed by each

node is described in a general-purpose language such as Java

or Scala. During compilation and deployment, this dataflow

graph is mapped to physical nodes and processes.

As a simple example, suppose that we want to process a

stream of sensor measurements and calculate every 10 sec-

onds the average of all measurements seen so far. We assume

that the sensor generates the data items in increasing times-

tamp order, but the time series may have missing data points.

The processing pipeline consists of three stages: (1) Map de-
serializes the incoming messages and retains only the scalar

value and timestamp (i.e., discards any additional metadata),

(2) LI performs linear interpolation to fill in the missing data

points, and (3) Avg computes the average historical value

and emits an update every 10 seconds.

SENSOR Map LI Avg SINK

The above pipeline can be programmed conveniently in

Storm by providing the implementations of each node Map,
LI, Avg and describing the connections between them.

The implementation described previously exposes pipeline

parallelism, and thus suggests a multi-process or distributed

execution where each stage of the pipeline computes as an

independent process. In the case where the sensor produces

messages at a very high rate, the computationally expensive

deserialization stage Map becomes a bottleneck. In order to

deal with such bottlenecks, Storm provides a facility for data

parallelism by allowing the programmer to explicitly specify

the creation of several parallel instances of the Map node.

It handles automatically the splitting and balancing of the

input stream across these instances, as well as the merging

of the output streams of these instances.

SENSOR LI Avg SINK
Map

Map

The problem, however, with this data parallelization trans-

formation is that it does not preserve the semantics of the
original pipeline. The issue is that the linear interpolation

stage LI relies on receiving the data elements in increas-

ing order of timestamps. Unfortunately, when Storm merges

the output streams of the two Map instances it introduces

some arbitrary interleaving that may violate this precon-

dition. This introduces nondeterminism to the system that

causes the outputs to be unpredictable and therefore not

reproducible without modifications to the computation.

Typically, a practical way to deal with these problems is

to generate sequence numbers and attach them to stream

elements in order to recover their order later (if they get

out of order). However, this increases the size of data items.

Moreover, it imposes a linear order, even in cases where

a partial order is sufficient. For example, synchronization

markers can be used to impose a partial ordermore efficiently

than attaching sequence numbers. In general, many such

practical fixes make the programs harder to debug, maintain,

and modify correctly and thus less reliable.

In contrast, in order to facilitate semantically sound par-

allelization transformations and eliminate behaviors that rely

on spurious ordering of the data items, our approach relies on

data-trace types that classify the streams according to their

partial ordering characteristics. For example, we can declare

that the connection from Map to LI is “linearly ordered”, and

this would indicate that the parallelization transformation

of the previous paragraph is not sound because it causes

the reordering of data items flowing through that channel.

Alternatively, the implementation LI could be replaced by

a new implementation, denoted Sort-LI, that can handle a

disordered input by sorting it first according to timestamps.

Then, the connection channel between Map and Sort-LI can
be declared to be “unordered”, which enables sound data par-

allelization for the Map stage. Assuming that all connections

are typed, the problem now arises of whether the compu-

tation nodes are consistent with these input/output partial

ordering types. We propose later in section 4 a way of struc-

turing the code for each node according to a set of templates,
so that it respects the types of its input/output channels.

3 Types for Data Streams

We will introduce a semantic framework for distributed

stream processing systems, where the input and output

streams are viewed as partial orders [13]. Under this view,

finite prefixes of streams are represented as data traces, and
they are classified according to their ordering characteristics

using types. The input/output behavior of a stream process-

ing system is modeled as a data-trace transduction, which is

a monotone function from input traces to output traces.

3.1 Data Traces

We use data traces to model streams in which the data items

are partially ordered. Data traces generalize sequences (data

items are linearly ordered), relations (data items are un-

ordered), and independent stream channels (data items are

672

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA K. Mamouras, C. Stanford, R. Alur, Z. Ives, and V. Tannen

organized as a collection of linearly ordered subsets). The

concatenation operation and the prefix order on sequences

can be generalized naturally to the setting of data traces.

A data type A = (Σ, (Tσ)σ ∈Σ) consists of a potentially

infinite tag alphabet Σ and a value type Tσ for every tag

σ ∈ Σ. The set of elements of type A, or data items, is
equal to {(σ ,d) | σ ∈ Σ and d ∈ Tσ }, which we will also

denote by A. The set of sequences over A is denoted as A∗.
A dependence relation on a tag alphabet Σ is a symmetric

binary relation on Σ. We say that the tagsσ , τ are independent
(w.r.t. a dependence relation D) if (σ ,τ) < D. For a data type
A = (Σ, (Tσ)σ ∈Σ) and a dependence relation D on Σ, we
define the dependence relation that is induced on A by D as

{((σ ,d), (σ ′,d ′)) ∈ A ×A | (σ ,σ ′) ∈ D}, which we will also

denote by D. Define ≡D to be the smallest congruence (w.r.t.

sequence concatenation) on A∗ containing {(ab,ba) ∈ A∗ ×
A∗ | (a,b) < D}. Informally, two sequences are equivalent

w.r.t. ≡D if one can be obtained from the other by repeatedly

commuting adjacent items with independent tags.

Example 3.1. Suppose we want to process a stream that

consists of sensor measurements and special symbols that in-

dicate the end of a one-second interval. The data type for this

input stream involves the tags Σ = {M, #}, where M indicates

a sensor measurement and # is an end-of-second marker.

The value sets for these tags areTM = Nat (natural numbers),

and T# = Ut is the unit type (singleton). So, the data type

A = (Σ,TM,T#) contains measurements (M,d), where d is a

natural number, and the end-of-second symbol #.
The dependence relation D = {(M, #), (#, M), (#, #)} says

that the tag M is independent of itself, and therefore con-

secutive M-tagged items are considered unordered. For ex-

ample, (M, 5) (M, 5) (M, 8) # (M, 9) and (M, 8) (M, 5) (M, 5) # (M, 9)
are equivalent w.r.t. ≡D .

A data-trace type is a pair X = (A,D), where A is a data

type and D is a dependence relation on the tag alphabet ofA.
A data trace of type X is a congruence class of the relation

≡D . We also write X to denote the set of data traces of type

X . Since the equivalence ≡D is a congruence w.r.t. sequence

concatenation, the operation of concatenation is also well-

defined on data traces: [u] · [v] = [uv] for sequences u and v ,
where [u] is the congruence class ofu. We define the relation

≤ on the data traces of X as a generalization of the prefix

partial order on sequences: for data traces u and v of type

X , u ≤ v iff there are u ∈ u and v ∈ v s.t. u ≤ v (i.e., u is

a prefix of v). The relation ≤ on data traces of a fixed type

is a partial order. Since it generalizes the prefix order on

sequences (when the congruence classes of ≡D are singleton

sets), we will call ≤ the prefix order on data traces.

Example 3.2 (Data Traces). Consider the data-trace type

X = (A,D), where A and D are given in Example 3.1. A data

trace ofX can be represented as a sequence ofmultisets (bags)

of natural numbers and visualized as a partial order on that

multiset. The trace corresponding to the sequence of data

items (M, 5) (M, 7) # (M, 9) (M, 8) (M, 9) # (M, 6) is visualized as:

(M, 5)

(M, 7)
(M, 8)

(M, 9)

(M, 9)
(M, 6)

where a line from left to right indicates that the item on the

right must occur after the item on the left. The end-of-second

markers # separate multisets of natural numbers. So, the set

of data traces of X has an isomorphic representation as the

set Bag(Nat)+ of nonempty sequences of multisets of natural

numbers. In particular, the empty sequence ε is represented
as ∅ and the single-element sequence # is represented as ∅ ∅.

A singleton tag alphabet can be used tomodel sequences or

multisets over a basic type of values. For the data type given

by Σ = {σ } and Tσ = T there are two possible dependence

relations for Σ, namely ∅ and {(σ ,σ)}. The data traces of

(Σ,T , ∅) are multisets over T , which we denote as Bag(T),
and the data traces of (Σ,T , {(σ ,σ)}) are sequences over T .

Example 3.3 (Multiple Input/Output Channels). Suppose

we want to model a streaming system with multiple indepen-

dent input and output channels, where the items within each

channel are linearly ordered but the channels are completely

independent. This is the setting of (acyclic) Kahn Process
Networks [36] and the more restricted synchronous dataflow

models [18, 39]. We introduce tags ΣI = {I1, . . . , Im} for

m input channels, and tags ΣO = {O1, . . . , On} for n output

channels. The dependence relation for the input consists of

all pairs (Ii , Ii) with i = 1, . . . ,m. This means that for all

indexes i , j the tags Ii and Ij are independent. Similarly,

the dependence relation for the output consists of all pairs

(Oi , Oi) with i = 1, . . . ,n. Assume that the value types as-

sociated with the input tags are T1, . . . , Tm , and the value

types associated with the output tags are U1, . . . , Un . The

sets of input and output data traces are (up to a bijection)

T∗
1
× · · · ×T∗m andU ∗

1
× · · · ×U ∗

m respectively.

3.2 Data-String Transductions

In a sequential implementation of a stream processor the

input is consumed in a sequential fashion, i.e. one item at a

time, and the output items are produced in a specific linear

order. Such sequential semantics is formally described by

data-string transductions, which we use as a precursor to

defining data-trace transductions.
Let A and B be data types. A data-string transduction

with input type A and output type B is a function f : A∗ →

B∗. A data-string transduction f : A∗ → B∗ describes a

streaming computation where the input items arrive in a

linear order. For an input sequence u ∈ A∗ the value f (u)
gives the output items that are emitted right after consuming

the sequence u. In other words, f (u) is the output that is

triggered by the arrival of the last data item of u. We say

that f is a one-step description of the computation because

it gives the output increment that is emitted at every step.

673

Data-Trace Types for Distributed Stream Processing Systems PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

The lifting of a data-string transduction f : A∗ → B∗ is

the function
¯f : A∗ → B∗ that maps a sequence a1a2 . . . an ∈

A∗ to ¯f (a1a2 . . . an) = f (ε) · f (a1) · f (a1a2) · · · f (a1a2 . . . an).
In particular, the definition implies that

¯f (ε) = f (ε). That
is,

¯f accumulates the outputs of f for all prefixes of the

input. Notice that
¯f ismonotone w.r.t. the prefix order: u ≤ v

implies that
¯f (u) ≤ ¯f (v) for all u,v ∈ A∗. The lifting ¯f of a

data-string transduction f describes a sequential streaming

computation in a different but equivalent way. For an input

sequence u ∈ A∗ the value
¯f (u) is the cumulative output of

the computation as the stream is extended item by item.

Example 3.4. Suppose the input is a sequence of natural

numbers, and we want to define the transformation that out-

puts the current data item if it is strictly larger than all data

items seen so far. We model this as a data-string transduction

f : Nat∗ → Nat∗, given by f (ε) = ε and

f (a1 . . . an−1an) =

{
an , if an > ai for all i = 1, . . . ,n − 1;

ε, otherwise.

The table below gives the values of f and
¯f on input prefixes:

current item input history f output
¯f output

ε ε ε
3 3 3 3

1 3 1 ε 3

5 3 1 5 5 3 5

2 3 1 5 2 ε 3 5

Notice that
¯f (3 1 5 2) = f (ε) · f (3) · f (3 1) · f (3 1 5) · f (3 1 5 2).

3.3 Data-Trace Transductions

Data-trace transductions are useful for giving the meaning

(semantics) of a stream processing system. Consider the anal-

ogy with a functional model of computation: the meaning

of a program consists of the input type, the output type,

and a mapping that describes the input/output behavior of

the program. Correspondingly, the semantics for a stream

processing systems consists of: (1) the type X of input data

traces, (2) the type Y of output data traces, and (3) a mono-

tone mapping β : X → Y that specifies the cumulative

output after having consumed a prefix of the input stream.

The monotonicity requirement captures the idea that output

items cannot be retracted after they have been omitted. Since

β takes an entire input history (data trace) as input, it can

model stateful systems, where the output that is emitted at

every step depends potentially on the entire input history.

We have already discussed how (monotone) functions

from A∗ to B∗ model sequential stream processors. We will

now introduce the formal notion of consistency, which cap-

tures the intuition that a sequential implementation does not

depend on the relative order of any two elements unless the

stream type considers them to be relatively ordered.

Definition 3.5 (Consistency). LetX = (A,D) andY = (B,E)
be data-trace types. We say that a data-string transduction

f : A∗ → B∗ is (X ,Y)-consistent if u ≡D v implies that

¯f (u) ≡E ¯f (v) for all u,v ∈ A∗.

Let f ∈ A∗ → B∗ be a (X ,Y)-consistent data-string trans-
duction. The function β : X → Y , defined by β([u]) = [¯f (u)]
for all u ∈ A∗, is called the (X ,Y)-denotation of f .

Definition 3.6 (Data-Trace Transductions). Let X = (A,D)
and Y = (B,E) be data-trace types. A data-trace trans-
duction with input type X and output type Y is a function

β : X → Y that is monotone w.r.t. the prefix order on data

traces: u ≤ v implies that β(u) ≤ β(v) for all traces u, v ∈ X .

Definition 3.5 essentially says that a data-string transduc-

tion f is consistent when it gives equivalent cumulative

outputs for equivalent input sequences. It is shown in [13]

that the set of data-trace transductions from X to Y is equal

to the set of (X ,Y)-denotations of all (X ,Y)-consistent data-
string transductions.

Example 3.7 (Deterministic Merge). Consider the stream-

ing computation where two linearly ordered input channels

are merged into one. More specifically, this transformation

reads items cyclically from the two input channels and passes

them unchanged to the output channel. Recall from Exam-

ple 3.3 that the set of input data traces is essentiallyT∗ ×T∗,
and the set of output data traces is essentially T∗. The data-
trace transduction merge : T∗ ×T∗ → T∗ is given by:

merge(x1 . . . xm ,y1 . . .yn) =

{
x1 y1 . . . xm ym , ifm ≤ n;

x1 y1 . . . xn yn , ifm > n.

Example 3.8 (Key-Based Partitioning). Consider the com-

putation that maps a linearly ordered input sequence of

data items of type T (each of which contains a key), to a set

of linearly ordered sub-streams, one per key. The function

key : T → K extracts the key from each input value. An

input trace is represented as an element of T∗. The out-

put type is specified by the tag alphabet K , value types

Tk = T for every key k ∈ K , and the dependence relation

{(k,k) | k ∈ K}. So, an output trace is represented as a K-
indexed tuple, that is, a function K → T∗. The data-trace
transduction partition

key
: T∗ → (K → T∗) describes the

partitioning of the input stream into sub-streams according

to the key extraction map key: partition
key

(u)(k) = u |k for

all u ∈ T∗ and k ∈ K , where u |k denotes the subsequence of

u that consists of all items whose key is equal to k . The im-

plementation of partition
key

can be modeled as a data-string

transduction f : T∗ → (K × T)∗, given by f (ε) = ε and

f (wx) = (key(x),x) for allw ∈ T∗ and x ∈ T .

Although the computation of aggregates (e.g., sum, max,

and min) is meaningful for unordered input data (i.e., a bag),

if the bag is given as a stream then it is meaningless to

produce partial aggregates as the data arrives: any partial

aggregate depends on a particular linear order for the input

items, which is inconsistent with the notion of unordered

input. Therefore, for a computation of relational aggregates

in the streaming setting we require that the input contains

674

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA K. Mamouras, C. Stanford, R. Alur, Z. Ives, and V. Tannen

linearly ordered markers that trigger the emission of output

(see [40] for a generalization of this idea). The input can

then be viewed as an ordered sequence of bags (each bag is

delineated by markers), and it is meaningful to compute at

every marker occurrence the aggregate over all items seen so

far. Our definition of data-trace transductions captures these

subtle aspects of streaming computation with relational data.

Example 3.9. Suppose that the input stream consists of un-

ordered natural numbers and linearly ordered markers #.
Consider the computation that emits at every occurence of

the maximum of all numbers seen so far. More specifically,

the input type is given by Σ = {σ ,τ }, Tσ = Nat, Tτ = Ut
(unit type), and D = {(σ ,τ), (τ ,σ), (τ ,τ)}. So, an input data

trace is essentially an element of Bag(Nat)+, as in Exam-

ple 3.2. The streaming maximum computation is described

by the data-trace transduction smax : Bag(Nat)+ → Nat∗,
where for a sequence of bags B1 . . . Bn , smax(B1 . . . Bn) :=

max(B1)max(B1 ∪ B2) . . .max(B1 ∪ B2 ∪ · · · ∪ Bn−1). In par-

ticular, the output does not include the bag of items Bn since

the last occurrence of #. The implementation of smax is mod-

eled as a data-string transduction f : (Nat ∪ {#})∗ → Nat∗,
which outputs at every # occurrence the maximum number

so far. That is, f (ε) = ε and

f (a1 . . . an) =

{
ε, if an ∈ Nat;

max of {a1, . . . ,an} \ {#}, if an = #.

for all sequences a1a2 . . . an ∈ (Nat ∪ {#})∗.

4 Type-Consistent Programming

Complex streaming computations can be naturally described

as directed acyclic graphs (DAGs), where the vertices rep-

resent simple operations and the edges represent streams

of data. Such a representation explicitly exposes task and

pipeline parallelism, and suggests a distributed implemen-

tation where every vertex is an independent process and

inter-process communication is achieved via FIFO channels.

The semantic framework of section 3, which includes the

notions of data-trace types and data-trace transductions, will

serve a dual purpose. First, it will allow us to give a formal de-

notational semantics for streaming computation DAGs that

respect the input/output stream types. Second, it will en-

able reasoning about equivalence and semantics-preserving

transformations, such as data parallelization. We will focus

here on a subset of data-trace types that emphasizes two

crucial elements that are required by practical streaming

computations: (1) a notion of synchronization markers, and
(2) viewing the data items as key-value pairs in order to

expose opportunities for data parallelization.

The synchronization markers can be thought of as events

that are periodically generated by the input sources. The pe-

riod is configurable and can be chosen by the application pro-

grammer depending on the time-granularity requirements

of the computation (e.g. 1 msec, 1 sec, etc). The purpose

of the markers is similar to the punctuations of [40] or the

heartbeats of [50]. They are used for triggering the output of

nonmonotonic operations (e.g., the streaming aggregation

of Example 3.9) and making overall progress, as well as for

merging streams in a predictable way by aligning them on

corresponding markers. These synchronization markers are

always assumed to be linearly ordered, and they occur in

order of increasing timestamp.

We define two kinds of data-trace types for streams of

key-value pairs: unordered types of the form U(K ,V), and

ordered types of the form O(K ,V). For a set of keys K and

a set of values V , let U(K ,V) denote the type with alphabet

K ∪ {#}, values V for every key, values Nat for the # tag

(i.e., marker timestamps), and dependence relation {(#, #)} ∪
{(k, #), (#,k) | k ∈ K}. In other words, U(K ,V) consists of

data traces where the marker tags # are linearly ordered and

the elements between two such tags are of the form (k,v),
where k ∈ K and v ∈ V , and are completely unordered.

We define O(K ,V) similarly, with the difference that the

dependence relation also contains {(k,k) | k ∈ K}. That is,

in a data trace of O(K ,V), elements with the same key are

linearly ordered between # markers, but there is no order

across elements of different keys.

A transduction DAG is a tuple (S,N ,T ,E,→, λ) which
represents a labelled directed acyclic graph, where: S is the

set of source vertices, T is the set of sink vertices, N is the

set of processing vertices, E is the set of edges (i.e., connec-
tions/channels), → is the edge relation, and λ is a labelling
function. The function λ assigns: (1) a data-trace type to each

edge, (2) a data-trace transduction to each processing ver-

tex that respects the input/output types, and (3) names to

the source/sink vertices. We require additionally that each

source vertex has exactly one outgoing edge, and each sink

vertex has exactly one incoming edge.

Next we define the denotational semantics of a trans-
duction DAG G with source vertices S1, . . . , Sm and sink

vertices T1, . . . ,Tn . Suppose that ei is the unique edge ema-

nating from the source vertex Si (for i = 1, . . . ,m), and ēi is
the unique edge leading to the sink vertexTi (for i = 1, . . . ,n).
The graph G denotes a data-trace transduction, where the

set of input traces is (up to a bijection)

∏m
i=1

λ(ei) and the

set of output traces is (up to a bijection)

∏n
i=1

λ(ēi). Given
an input trace, we will describe how to obtain the output

data trace (representing the entire output history of G on

this input trace). We will gradually label every edge e of the
DAG with a data trace u(e). First, label every edge emanat-

ing from a source vertex with the corresponding input trace.

Then, consider in any order the processing vertices whose

incoming edges have already been labeled. For such a vertex

n, apply the data-trace transduction λ(n) to the input traces

and label the outgoing edges with the corresponding output

traces. After this process ends, the output is read off from

the data traces which label the edges that point to sinks.

675

Data-Trace Types for Distributed Stream Processing Systems PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Example 4.1 (Time-Series Interpolation). Consider a home

IoT system where temperature sensors are installed at a resi-

dence. We wish to analyze the sensor time series to create

real-time notifications for excessive energy loss through the

windows. The sensor time series sometimes have missing

data points, and therefore the application requires a pre-

processing step to fill in any missing measurements using

linear interpolation. We assume that the sensors first send

their measurements to a hub, and then the hub propagates

them to the stream processing system. The stream that ar-

rives from the hub does not guarantee that themeasurements

are sent in linear order (e.g., with respect to a timestamp

field). Instead, it produces synchronization markers every

10 seconds with the guarantee that all elements with times-

tamps < 10·i have been emitted by the time the i-th marker is

emitted. That is, the i-th marker can be thought of as a water-

mark with timestamp 10 ·i . The input stream is a data trace of

U(Ut, M), where M is the type of measurements (id, value, ts)
consisting of a sensor identifier id , a scalar value value , and
a timestamp ts . This is a transduction DAG that describes

the pre-processing computation:

HUB JFM SORT LI SINK
U(Ut, M) U(ID, V) O(ID, V) O(ID, V)

The vertex HUB represents the source of sensor measure-

ments, and the vertex SINK represents the destination of the

output stream. ID is the type of sensor identifiers, and V is
the type of timestamped values (value, ts). The processing
vertices are described below:

− The stage Join-Filter-Map (JFM) joins the input stream

with a table that indicates the location of each sensor,

filters out all sensors except for those that are close to

windows, and reorganizes the fields of the input tuple.

− Recall the guarantee for the synchronization markers, and

notice that it implies the following property for the input

traces: for any two input measurements that are separated

by at least one marker, the one on the left has a strictly

smaller timestamp than the one on the right. The sorting

stage SORT sorts for each sensor the measurements that

are contained between markers.

− The linear interpolation stage LI considers each sensor

independently and fills in any missing data points.

We have described informally the data-trace transductions

JFM, SORT and LI. The transduction DAG shown earlier de-

notes a data-trace transduction U(Ut, M) → O(ID, V).

The computation performed by a processing node is given

in a structured fashion, by completing function definitions

of a specified operator template. Table 1 shows the three
templates that are supported, which encompass both ordered

and unordered input streams. Each operator is defined by

a sequential implementation, which we describe informally

below. This means that each operator can be modeled as

a data-string transduction. It can then be proved formally

that these data-string transductions are consistent w.r.t. their

Table 1. Operator templates for data-trace transductions.

U(K, V): unordered key-value pairs between markers
O(K, V): for every key, ordered values between markers
Type parameters: K, V , L, W
OpStateless: transduction U(K, V) → U(L,W)

Ut onItem(K key, V value) { }
Ut onMarker(Marker m) { }
Type parameters: K, V , W , S
OpKeyedOrdered: transduction O(K, V) → O(K,W)

S initialState() { }
S onItem(S state, K key, V value) { }
S onMarker(S state, K key, Marker m) { }
// Restriction: Output items preserve the input key.
Type parameters: K, V , L, W , S, A
OpKeyedUnordered: transduction U(K, V) → U(L,W)

A in(K key, V value) { }
A id() { } // identity for combine
A combine(A x, A y) { } // associative, commutative
S initialState() { }
S updateState(S oldState, A agg) { }
Ut onItem(S lastState, K key, V value) { }
Ut onMarker(S newState, K key, Marker m) { }
// Restriction: in, id, combine, initialState, and
// updateState are all pure functions.

input/output data-trace types (Definition 3.5). It follows that

each operator that is programmed according to the template

conventions has a denotation (semantics) as a data-trace

transduction of the appropriate type.

OpStateless: The simplest template concerns stateless
computations, where only the current input event—not the

input history—determines the output. The programmer fills

in two function definitions: (1) onItem for processing key-

value pairs, and (2) onMarker for processing synchronization

markers. The functions have no output (the output type is

Ut, i.e. the unit type) and their only side-effect is emitting

output key-value pairs to the output channel by invoking

emit(outputKey, outputValue).
OpKeyedOrdered: Assuming that the input is ordered per

key, this template describes a stateful computation for each

key independently that is order-dependent. The programmer

fills in three function definitions: (1) initialState for ob-
taining the initial state, (2) onItem for processing a key-value
pair and updating the state, and (3) onMarker for processing
a synchronization marker and updating the state. The func-

tions have output S , which is the type of the data structure

for representing the state. As for stateless computations, the

functions allow the side-effect of emitting output key-value

pairs to the output channel. This template requires a crucial

restriction for maintaining the order for the output: every

occurrence of emit must preserve the input key. If this re-

striction is violated, e.g. by projecting out the key, then the

output cannot be viewed as being ordered.

OpKeyedUnordered: Assuming that the input is unordered,

this template describes a stateful computation for each key

independently. Recall that the synchronization markers are

ordered, but the key-value pairs between markers are un-
ordered. To guarantee that the computation does not depend

on some arbitrary linear ordering of the key-value pairs, their

processing does not update the state. Instead, the key-value

pairs between two consecutive markers are aggregated using

676

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA K. Mamouras, C. Stanford, R. Alur, Z. Ives, and V. Tannen

Table 2. Examples of data-trace transductions.

M = { id: ID, scalar: Float, ts: Int }
V = { scalar: Float, ts: Int }
joinFilterMap: OpStateless U(Ut, M) → U(ID, V)
Ut onItem(Ut key, M value) {

if (location(value.id) = "window")
emit(value.id, (value.scalar, value.ts))}

Ut onMarker(Marker m) { }
linearInterpolation: OpKeyedOrdered O(ID, V) → O(ID, V)
Precondition: items arrive in order of increasing timestamp
V initialState() { return nil }
V onItem(V state, ID key, V value) {

if (state == nil) then // first element
emit(key, value)

else // not the first element
Float x = state.scalar
Int dt = value.ts - state.ts
for i = 1 ... dt do

Float y = x + i * (value.scalar - x) / dt
emit(key, (y, state.ts + i))

return value}
V onMarker(V state, ID key, Marker m) { return state }
maxOfAvgPerID: OpKeyedUnordered U(ID, V) → U(ID, V)
AvgPair = { sum: Float, count: Nat }
AvgPair in(ID key, V value) { return (value.scalar, 1) }
AvgPair id() { return (0.0, 0) }
AvgPair combine(AvgPair x, AvgPair y) {

return (x.sum + y.sum, x.count + y.count)}
Float initialState() { return -infinity }
Float updateState(Float oldState, AvgPair agg) {

return max(oldState, agg.sum / agg.count)}
Ut onItem(Float lastState, ID key, V value) { }
Ut onMarker(Float newState, ID key, Marker m) {

emit(key, (newState, m.timestamp - 1))}

the operation of a commutative monoid A: the programmer

specifies an identity element id(), and a binary operation

combine() that must be associative and commutative. When-

ever the next synchronization marker is seen, updateState
is used to incorporate the aggregate (of typeA) into the state
(of type S) and then onMarker is invoked to (potentially)

emit output. The behavior onItem may depend on the last

snapshot of the state, i.e. the one that was formed at the last

marker. The functions onItem and onMarker are allowed to

emit output data items (but not markers), but the rest of the

functions must be pure (i.e., no side-effects).

Table 2 shows how some streaming computations (which

are based on the setting of Example 4.1) can be programmed

using the operator templates of Table 1. The first example

is the stateless computation joinFilterMap, which retains

the measurements of temperature sensors that are placed

near windows. The second example is the per-sensor or-

dered stateful computation linearInterpolation, which
fills in the missing data points of a sensor time series by

performing linear interpolation. The last example is the per-

sensor unordered (between markers) stateful computation

that takes the average of the measurements betweenmarkers

and reports the maximum over all the averages so far.

Theorem 4.2. Every streaming computation defined using

the operator templates of Table 1 is consistent w.r.t. its in-

put/output type (see Definition 3.5).

Table 3. Implementation of OpKeyedUnordered.
R = { agg: A, state: S } // record type
Map<K,R> stateMap = ∅ // state map
S startS = initialState() // state when key is first seen

next(K key, V value) { // process data item
R r = stateMap.get(key)
if (r == nil) then // first time key is seen

r = { agg = id(), state = startS }
onItem(r.state, key, value)

r.agg = combine(r.agg, in(key, value))
stateMap.update(key, r)}

next(Marker m) { // process marker
for each (key, r) in stateMap do:

r.state = updateState(r.state, r.agg)
r.agg = id()
stateMap.update(key, r)
onMarker(r.state, key, m)

startS = updateState(startS, id())
emit(m)}

Proof. Wewill prove the case of the OpKeyedUnordered tem-

plate, since it is the most interesting one, and we will omit

the rest. A template OpKeyedUnordered<K ,V ,L,W , S,A> de-
scribes a data-string transduction f : A∗ → B∗, where:

A = (K ×V) ∪ ({#} × Nat) B = (L ×W) ∪ ({#} × Nat)

This data-string transduction was informally described ear-

lier and is defined operationally by the pseudocode shown

in Table 3. The streaming algorithm of Table 3 maintains a

per-key store and also tracks the state that should be given

to keys that have not been encountered yet.

We writeM for the memory of the streaming algorithm

of Table 3. The function next : M × A → M describes how

the algorithm updates its memory every time it consumes

an element. We also write next : M ×A∗ → M to denote the

function that describes how the algorithm updates the mem-

ory after consuming a sequence of elements. If a1,a2 ∈ A are

key-value pairs, then we have a1a2 ≡ a2a1. It is easy to see

that next(m,a1a2) = next(m,a2a1) for everym ∈ M . If the

items a1 and a2 have the same key, then the property holds

because of the associativity and commutativity of combine.
If the items a1 and a2 have different keys, then the prop-

erty holds because different keys cause the modification of

disjoint parts of the memory. It follows by an inductive argu-

ment (on the construction of ≡) that next(m,u) = next(m,v)
for allm ∈ M and u,v ∈ A∗ with u ≡ v .
Suppose now that out : M × A → B∗ gives the output

generated by the algorithm when it consumes a single ele-

ment. We lift this function to out : M ×A∗ → B∗ as follows:

out(m, ε) = ε and out(m,ua) = out(m,u) · out(next(m,u),a)
for allm ∈ M , u ∈ A∗ and a ∈ A. The crucial observation
is that for every key-value item (k,v) ∈ (K ×V), the value

out(m, (k,v)) depends only on the part of memory that holds

the state for k , which we denote bym[k].state. Moreover,

this part of the memory does not get modified when key-

value pairs are processed. For memoriesm1,m1 ∈ M and key

k , we write m1 ≡k m2 when m1[k].state = m2[k].state.
Our previous observations can be written asm1 ≡k m2 ⇒

out(m1, (k,v)) = out(m2, (k,v)) and m ≡k ′ next(m, (k,v))

677

Data-Trace Types for Distributed Stream Processing Systems PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

for all m,m1,m2 ∈ M , all k,k ′ ∈ K , and every v ∈ V . For
key-value pairs a1,a2 ∈ (K ×V) we have that

out(m,a1a2) = out(m,a1) · out(next(m,a1),a2) ∈ (L ×W)∗

out(m,a2a1) = out(m,a2) · out(next(m,a2),a1) ∈ (L ×W)∗

and by virtue of the properties discussed previously we ob-

tain that out(m,a1a2) ≡ out(m,a2a1). By an inductive ar-

gument on the construction of ≡, we can generalize this

property to: out(m,u) ≡ out(m,v) for every memorym ∈ M
and all sequences u,v ∈ A∗ with u ≡ v .

In order to establish the consistency property we have to

show that: u ≡ v implies
¯f (u) ≡ ¯f (v) for all u,v ∈ A∗. We

have that
¯f (u) = out(m0,u), wherem0 is the initial memory

for the algorithm. Fromu ≡ v and earlier results we conclude

that
¯f (u) = out(m0,u) ≡ out(m0,v) = ¯f (v). □

The templates of Table 1 define data-trace transductions

with only one input channel and output channel. The opera-

tion merge, which we denote by MRG or M, combines several

input streams into one by aligning them on synchronization

markers and taking the union of the key-value pairs that

are in corresponding blocks. We consider two variants of

merge, which we will not distinguish notationally. The first

one has unordered input channels with the same input keys

and values, i.e. MRG : U(K ,V)× · · ·×U(K ,V) → U(K ,V). The

second variant of merge has ordered input channels with

pairwise disjoint sets of input keys K1,K2, . . . ,Kn , so we

write MRG : O(K1,V) × · · · ×O(Kn ,V) → O(K1 ∪ · · · ∪Kn ,V).

To enable parallelization, we also need to consider oper-

ations that split one input stream into several output streams.

The round-robin splitter, denoted RR : U(K ,V) → U(K ,V)×

· · ·×U(K ,V), sends every input key-value pair to one output

channel by cycling through them and sends a synchroniza-

tion marker to all output channels. The hash-n splitter, de-

noted HASH or H : U(K ,V) → U(K0/n ,V)× · · ·×U(Kn−1/n ,V)

sends a key-value pair (k,v) with k ∈ Ki/n with the i-th out-

put channel where Ki/n = {k ∈ K | hash(k) = i (mod n)}.
We write Ki instead of Ki/n when no confusion arises. As for

the round-robin splitter, H sends a synchronization marker

to all output channels. The ordered version H : O(K ,V) →

O(K0,V) × · · · ×O(Kn−1,V) behaves similarly.

In order to convert an unordered trace of type U(K ,V) to

an ordered trace of O(K ,V), we also consider the sorting
data-trace transduction SORT< : U(K ,V) → O(K ,V). The

transformation SORT< uses the linear order < to impose a

total order for every key separately on the key-value pairs

between synchronization markers. Even when the stream

source is ordered, the parallelization of intermediate process-

ing stages can reorder the key-value pairs between markers

in an arbitrary way. So, if a later stage of the processing

requires the original ordered view of the data, SORT< must

be applied immediately prior to that stage.

The templates of Table 1 not only enforce the data-trace

type discipline on the input and output channels, but they

also expose explicitly opportunities for parallelization and

distribution. Computations that are described by the tem-

plates OpKeyedOrdered and OpKeyedUnordered can be par-

allelized on the basis of keys, and stateless computations can

be parallelized arbitrarily.

Theorem 4.3 (Semantics-Preserving Parallelization). Let

β : U(K ,V) → U(L,W), γ : O(K ,V) → O(K ,W), and δ :

U(K ,V) → U(L,W) be data-trace transductions that are

implemented using the OpStateless, OpKeyedOrdered, and
OpKeyedUnordered templates, respectively. Then, we have:

MRG ≫ β = (β ∥ · · · ∥ β) ≫ MRG

γ = HASH ≫ (γ ∥ · · · ∥ γ) ≫ MRG

δ = HASH ≫ (δ ∥ · · · ∥ δ) ≫ MRG

SORT = HASH ≫ (SORT ∥ · · · ∥ SORT) ≫ MRG

where ≫ denotes streaming composition and ∥ denotes par-

allel composition [13]:

f : X → Y д : Y → Z

f ≫ д : X → Z

f : X → Y д : Z →W

f ∥ д : X × Z → Y ×W

Proof. First, we observe that all the considered data-trace

transductions are well-typed by Theorem 4.2. We will only

give the proof for the equation involving β , since the other
cases are handled similarly. For simplicity, we ignore the

timestamps of the # markers. We can view the traces of

U(K ,V) as nonempty sequences of bags of elements of K ×V
(recall Example 3.2), i.e.U(K ,V) = Bag(K×V)+. Since β is im-

plemented by the template OpStateless, there is a function
out : (K×V) → Bag(L×W) that gives the output of β when it
processes a single key-value element. Then, we have β(B) =⋃

(k,v)∈Bout(k,v) and β(B1B2 . . . Bn) = β(B1)β(B2) . . . β(Bn)
for all B,B1, . . . ,Bn ∈ Bag(K × V). Assuming we have m
input channels, we obtain:

((β ∥ · · · ∥ β) ≫ MRG)(B11 . . . B1n , . . . ,Bm1 . . . Bmn)

= MRG(β(B11 . . . B1n), . . . , β(Bm1 . . . Bmn))

= MRG(β(B11) . . . β(B1n), . . . , β(Bm1) . . . β(Bmn))

= (β(B11) ∪ · · · ∪ β(Bm1)) . . . (β(B1n) ∪ · · · ∪ β(Bmn))

= β(B11 ∪ · · · ∪ Bm1) . . . β(B1n ∪ · · · ∪ Bmn)

= β((B11 ∪ · · · ∪ Bm1) . . . (B1n ∪ · · · ∪ Bmn))

= (MRG ≫ β)(B11 . . . B1n , . . . ,Bm1 . . . Bmn)

using elementary properties of β and of MRG. So, we conclude
that MRG ≫ β = (β ∥ · · · ∥ β) ≫ MRG. □

We say that a data-trace transduction f : U(K ,V) →

U(K ,V)× · · · ×U(K ,V) is a splitter if f ≫ MRG : U(K ,V) →

U(K ,V) is the identity function on data traces (identity trans-

duction). Informally, a splitter splits (partitions) the input

stream into several output streams. The data-trace trans-

ductions RR and H (defined earlier) are splitters. If SPLIT
is a splitter, then Theorem 4.3 implies that for stateless β ,
β = SPLIT ≫ (β ∥ · · · ∥ β) ≫ MRG.

678

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA K. Mamouras, C. Stanford, R. Alur, Z. Ives, and V. Tannen

HUB RR2 MRG H2 MRG H2 MRG SINK
JFM SORT LI

JFM SORT LI

U(Ut, M) U(Ut, M)

U(Ut, M)

U(ID, V) U(ID0, V)

U(ID1, V)

O(ID, V) O(ID0, V)

O(ID1, V)

O(ID, V)U(ID, V) O(ID0, V) O(ID0, V)

U(ID, V) O(ID1, V) O(ID1, V)

HUB RR2 MRG SINK
JFM H2 MRG; SORT LI

JFM H2 MRG; SORT LI

U(Ut, M)
U(Ut, M)

U(Ut, M)

O(ID, V)
U(ID, V) U(ID0, V) O(ID0, V) O(ID0, V)

U(ID, V) U(ID1, V) O(ID1, V) O(ID1, V)

RR2 (resp., H2) Partitions the input stream into two substreams in a round-robin fashion (resp., based on the hash value of the key).

ID0 (resp., ID1) The subset of identifiers in ID whose hash value is equal to 0 (resp., 1) modulo 2.

Figure 1. A transduction DAG that is equivalent to the one of Example 4.1 and allows data parallelism.

The processing pipeline for the sensor input stream of

Example 4.1 can be parallelized. Figure 1 shows two equiv-

alent processing graphs, where every stage of the pipeline

is instantiated two times. The input for the JFM stage is

partitioned in a round-robin fashion, and the input for the

SORT and LI stages is partitioned based on the key (sensor

identifier). All the vertices of the graph have a formal deno-

tational semantics as data-trace transductions (Theorem 4.2),

which enables a rigorous proof of equivalence for the DAGs

of Example 4.1 and Figure 1. The top graph of Figure 1 is

obtained from the graph of Example 4.1 by applying the par-

allelizing transformation rules of Theorem 4.3. The bottom

graph of Figure 1 is obtained from the top one using the

transformation rules of the following table:

Reordering MRG and HASH

M H U(K1, V)
U(K, V)

U(K, V)

U(K0, V)

U(K2, V)

U(K, V)
M H O(K

1/3
, V)

O(K
0/2

, V)

O(K
1/2

, V)

O(K
0/3

, V)

O(K
2/3

, V)

O(K, V)

M U(K1, V)
U(K, V)

U(K, V)

H

H

M

M

U(K0, V)

U(K2, V)

M O(K
1/3

, V)
O(K

0/2
, V)

O(K
1/2

, V)

H

H

M

M

O(K
0/3

, V)

O(K
2/3

, V)

Each box above shows two equivalent transduction DAGs.

These rules are specialized to two input channels and three

output channels for the sake of easy visualization. They ex-

tend in the obvious way to an arbitrary number of input

and output channels. The bottom right graph of the table is

equivalent to the identity transduction when the number of

output channels is equal to the number of input channels, be-

cause HASHn : O(Ki/n ,V) → O(K0/n ,V) × · · · ×O(Kn−1/n ,V)

sends the entire input stream to the i-th output channel.

Corollary 4.4 (Correctness of Deployment). Let G be a

transduction DAG that is built using the operator templates

of Table 1. Any deployment ofG , regardless of the degree of
parallelization, is equivalent to G.

Proof. The idea of the proof is that every deployment can be

obtained from the original description G of the computation

by applying a sequence of semantics-preserving transforma-

tion rules on specific subgraphs. This requires examining

several cases. We will limit this proof to one case that illus-

trates the proof technique, and we will omit the rest since

they can be handled with very similar arguments. First of

all, we observe that the original graph G (and every graph

obtained via transformations) has a denotational semantics

in terms of data-trace transductions (Theorem 4.2). Let us

examine the case of a subgraph of the form β ≫ γ , where
β is programmed using OpStateless and γ is programmed

using OpKeyedUnordered. Let SPLIT be an arbitrary splitter,

which means that SPLIT ≫ MRG is the identity transduction.

Using the equations of Theorem 4.3 we can obtain the equiva-

lent SPLIT ≫ (β ∥ β) ≫ MRG ≫ HASH ≫ (γ ∥ γ ∥ γ) ≫ MRG.
Using the transformation rules for “reordering MRG and HASH”
mentioned earlier, we obtain:

SPLIT MRG γ MRG
β

β

HASH

HASH

MRG

MRG

γ

γ

Finally, each subgraph β ≫ HASH is fused into a single node

β ; HASH, and similarly each subgraph MRG ≫ γ is fused into

MRG;γ . These fusion transformations can be easily checked

to be semantics-preserving. □

5 Implementation in Apache Storm

In the previous section we proposed an abstraction for de-

scribing a distributed streaming computation as a transduc-
tion DAG, where each processing element is programmed

using one of three predefined templates. This principled man-

ner of defining computations enforces a data-trace type disci-

pline that disallows operations which depend on a spurious

ordering of the data items. Additionally, it enables a number

of equivalence-preserving parallelization transformations.

We have implemented a compilation procedure that con-

verts a transduction DAG into a deployment plan for the

distributed streaming framework Storm [28, 54]. In Storm,

a computation is structured as a DAG (called topology) of
source vertices called spouts and processing/sink vertices

called bolts. Each vertex (bolt or spout) may be instanti-

ated multiple times, across different physical nodes or CPU

threads. In such settings, the connections between vertices

specify a data partitioning strategy, which is employed when

the vertices are instantiated multiple times. These connec-

tions are called groupings in Storm’s terminology, and the

most useful ones are: (1) shuffle grouping, which randomly

partitions the stream in balanced substreams, (2) fields group-
ing, which partitions the stream on the basis of a key, and

(3) global grouping, which sends the entire stream to exactly

one instance of the target bolt. We refer the reader to [29]

for more information on the programming model of Storm.

Figure 2 shows a concrete example of programming a
transduction DAG (and thus obtaining a Storm topology)

679

Data-Trace Types for Distributed Stream Processing Systems PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

// Source: input stream given by iterator
Iterator<Event<Int, Float>> iterator = new Stream();
Source<Int, Float> source = new Source<>(iterator);
// Processing node 1: filter out the odd keys
Operator<Int, Float, Int, Float> filterOp =
new OpStateless<Int, Float, Int, Float>() {
void onItem(KV<Int, Float> item) {
if (item.key % 2 == 0) this.emit(item); }

void onMarker(Marker<Int, Float> m) { } };
// Processing node 2: sum per time unit
Operator<Int, Float, Int, Float> sumOp =
new OpKeyedUnordered<Int, Float, Int, Float, Float, Float>() {

Float id() { return 0.0; }
Float in(KV<Int, Float> item) { return item.value; }
Float combine(Float x, Float y) { return x + y; }
Float initialState() { return Float.NaN; }
Float stateUpdate(Float state, Float agg) { return agg; }
void onItem(Float lastState, KV<Int, Float> item) { }
void onMarker(Float state, Int key, Marker<Int, Float> m) {
this.emit(new KV<>(key, state, m.timestamp - 1)); } };

// Sink: prints the output stream
Sink<Int, Float> printer = Sink.defaultPrinter();
// Setting up the transduction DAG
DAG dag = new DAG();
dag.addSource(source);
int par1 = 2; // parallelism hint for filterOp
dag.addOp(filterOp, par1, source); // source ==> filterOp
int par2 = 3; // parallelism hint for sumOp
dag.addOp(sumOp, par2, filterOp); // filterOp ==> sumOp
dag.addSink(printer, sumOp); // sumOp ==> printer
// Check type consistency & create the topology for Storm
StormTopology topology = dag.getStormTopology();

Figure 2. An extended programming example.

using our framework. In this example, the user first describes

the data source using an Iterator object and converts it to

a Source vertex. Then, the operator vertices are described
using the templates OpStateless and OpKeyedUnordered.
A transduction DAG is represented as a DAG object, which ex-

poses methods for adding new vertices and edges. For exam-

ple, the method call dag.addOp(op, par, v1, v2, ...)
adds the vertex op to dag with the parallelism hint par, and
it also adds edges from the vertices v1, v2, . . . to op. Finally,
dag.getStormTopology() performs all necessary checks

for type consistency and returns a StormTopology object

that can be passed to Storm for deployment on the cluster.

Our framework ensures that the data-trace types of input,

output and intermediate streams are respected. The com-

pilation procedure automatically constructs the glue code

for propagating synchronization markers throughout the

computation, merging input channels, partitioning output

channels, and sorting input channels to enforce a per-key to-

tal order on the elements between markers. We use Storm’s

built-in facilities for the parallelization of individual pro-

cessing vertices, but we have replaced Storm’s “groupings”

because they inhibit the propagation of the synchroniza-

tion markers. For efficiency reasons, we fuse the merging

operator (MRG) and the sorting operator (SORT) with the op-

erator that follows them in order to eliminate unnecessary

communication delays.

We chose Storm as the deployment platform because (1) it

is a widely adopted “pure streaming” system that is used for

many industry workloads, (2) it naturally exposes parallelism

and distribution, and (3) it is extensible. Due to its similarity

to alternative systems, it would not be difficult to compile

transduction DAGs into topologies for these other platforms.

6 Experimental Evaluation

In this section we experimentally evaluate our data-trace

type-based framework. We address two questions:

− Can our system generate code that is as efficient as a hand-

crafted implementation, while automatically adapting to

whatever levels of parallelism are available?

− Does our framework facilitate the development of complex

streaming applications?

To answer the first question, we used an extension of the

Yahoo Streaming Benchmark [21]. We compared an imple-

mentation generated using our framework against a hand-

tuned one. To address the second question, we consider a

significant case study: the Smart Homes Benchmark [22]

used in the Grand Challenge of the DEBS 2014 conference,

which we have modified to include a more realistic power

prediction technique based on a machine learning model.

Our focus in the experiments is to determine how well

stream applications scale. To do this, we used the following

experimental setup: We ran our implementation on top of

Storm on a cluster of several virtual machines. Each virtual

machine has 2 CPUs, 8 GB of memory, and 8 GB of disk each

and runs CentOS 7. Across multiple trials and configurations,

we measured maximum throughput for each configuration.

Yahoo Streaming Benchmark. The streaming bench-

mark of Yahoo [21] defines a stream of events that concern

the interaction of users with advertisements, and suggests

an analytics pipeline to process the stream. There is a fixed

set of campaigns and a set of advertisements, where each ad

belongs to exactly one campaign. The map from ads to cam-

paigns is stored in a database. Each element of the stream is

of the form (userId, pageId, adId, eventType, eventTime),
and it records the interaction of a user with an advertise-

ment, where eventType is one of {view, click, purchase}.
The component eventTime is the timestamp of the event.

The basic benchmark query (as described in [21]) com-

putes, at the end of each second, a map from each campaign

to the number of views associated with that campaign within

the last 10 seconds. For each event tuple, this involves an

expensive database lookup to determine the campaign asso-

ciated with the advertisement viewed. The reference imple-

mentation published with the Yahoo benchmark involves a

multi-stage pipeline: (i) stage 1: filter view events, project the

ad id from each view tuple, and lookup the campaign id of

each ad, (ii) stage 2: compute for every window the number

of events (views) associated with each campaign. The query

involes key-based partitioning on only one property, namely

the derived campaign id of the event.

To compare the effectiveness of our framework, we next

re-implemented this analytics pipeline as a transduction

680

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA K. Mamouras, C. Stanford, R. Alur, Z. Ives, and V. Tannen

... Filter-Map Count(10 sec) SINK
Yahoo0

YahooN

U(Ut, YItem)
U(CID, Ut) U(CID, Long)

... | RR2 MRG; Count(10 sec) | UNQ MRG; SINK

Yahoo0 | RR2
MRG; Filter-Map | H3

MRG; Count(10 sec) | UNQ

YahooN | RR2
MRG; Filter-Map | H3

MRG; Count(10 sec) | UNQ

Figure 3. Query IV: Transduction DAG for a variant of the Yahoo Streaming Benchmark [21], and its deployment on Storm

with parallelization 2 and 3 for the processing vertices Filter-Map and Count(10 sec) respectively.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1 2 3 4 5 6 7 8

Query I

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

1 2 3 4 5 6 7 8

Query II

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1 2 3 4 5 6 7 8

Query III

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

1 2 3 4 5 6 7 8

Query IV

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

1 2 3 4 5 6 7 8

Query V

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

1 2 3 4 5 6 7 8

Query VI

Figure 4. Queries inspired by the Yahoo Streaming Bench-

mark. The orange (resp., blue) line shows the throughput of

the transduction-based (resp., handcrafted) implementation.

The horizontal (resp., vertical) axis shows the number of

machines (resp., throughput in million tuples/sec).

DAG, where every processing vertex is programmed using

a template of Table 1. This is shown in the top graph of

Figure 3, where YItem is the type of input tuples and CID is

the type of campaign identifiers. The system is configured

so that the stream sources emit synchronization markers at

1 second intervals, i.e. exactly when the timestamps of the

tuples cross 1 second boundaries. To evaluate our framework

more comprehensively, we have implemented six queries:

− Query I: A single-stage stateless computation that en-

riches the input data items with information from a data-

base (we use Apache Derby [24]).

− Query II: A single-stage per-key aggregation, where the

intermediate results are persisted in a database.

− Query III: A two-stage pipeline that enriches the input

stream with location information and then performs a

per-location summarization of the entire stream history.

− Query IV: A re-implementation of the analytics pipeline

of the original Yahoo streaming benchmark (see Figure 3).

− Query V: A modification of Query IV, where the per-

campaign aggregation is performed over non-overlapping

windows (also called tumbling windows), instead of the

overlapping (or sliding) windows of Query IV.

− Query VI: A three-stage pipeline that performs amachine

learning task. First, it enriches the stream with location

information from a database. Then, it performs a per-user

feature extraction (i.e., per-key aggregation). Finally, for

every location independently it clusters the users periodi-

cally using a k-means clustering algorithm.

For every query, we have created a handwritten implemen-

tation using the user-level API of Apache Storm, as well as

an implementation using our framework of data-trace trans-

ductions. Figure 4 shows the experimental comparison of the

handcrafted implementations (blue line) and the data-trace-

transduction-based implementations (orange line). We have

varied the degree of parallelization from 1 up to 8 (shown

in the horizontal axis), which correponds to the number of

virtual machines assigned to the computation. The vertical

axis shows the maximum throughput for each configura-

tion. Observe that the hand-written implementation and the

generated implementation have similar performance.

The experiments reported in Figure 4 involve compute-

heavy operators, but our observations also apply to compu-

tationally cheaper operators: our framework incurs a small

performance penalty in the range of 0%-20%. In the results

for Query I, the generated code is slightly more efficient

than the handwritten code (by 10%-15%). This is because we

use a routing mechanism that balances the load in a way

that minimizes the communication cost, whereas Storm bal-

ances the load more evenly across the replicated nodes but

incurs a slightly higher communication cost. Overall, we

conclude that our framework achieves good performance—

despite the higher-level specification and additional typing

requirements in the transduction-based code.

Case Study: Smart Homes Benchmark. To examine

the suitability of our framework for more expressive stream

681

Data-Trace Types for Distributed Stream Processing Systems PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

... JFM SORT LI Map SORT Avg Predict SINK

Building0

BuildingN U(Ut, SItem)

U(Plug, VT) O(Plug, VT) O(Plug, VT) U(DType, VT) O(DType, VT) O(DType, VT) O(DType, VT)

... | R2 MRG; SORT; LI; Map | H3 MRG; SORT; Avg; Predict | UNQ MRG; SINK

Building0 | R2
MRG; JFM | H3

MRG; SORT; LI; Map | H3 MRG; SORT; Avg; Predict | UNQ

BuildingN | R2
MRG; JFM | H3

MRG; SORT; LI; Map | H3 MRG; SORT; Avg; Predict | UNQ

Figure 5. Transduction DAG for a variant of the Smart Home Benchmark [22] of DEBS 2014, and its deployment on Storm.

processing applications, we consider a variant of the bench-

mark used for the “Smart Homes” Internet of Things (IoT)

competition of the DEBS 2014 conference [22]. In this bench-

mark, the input stream consists of measurements produced

by smart power plugs. A smart plug is connected to a wall

power outlet, and then an electrical device is connected to

the plug. This allows the plug sensors to measure quantities

that are relevant to power consumption. The deployment of

these smart plugs is done across several buildings, each of

which contains several units. A smart plug is uniquely iden-

tified by three numbers: a building identifier, a unit identifier

(which specifies a unit within a building), and a plug identi-

fier (which specifies a plug within a unit). For simplicity, we

assume here that the plugs only generate load measurements,

i.e. power in Watts. More specifically, every stream event

is a tuple with the following components: (i) timestamp:
timestamp of the measurement, (ii) value: the value of the
load measurement (in Watts), (iii) plugId: identifier that
specifies the plug, (iv) unitId: identifier that specifies the
unit, (v) buildingId: identifier that specifies the building.
A plug generates roughly one load measurement for every

2 seconds, but the measurements are not uniformly spaced.

There can be gaps in the measurements, as well as many

measurements for the same timestamp.

We implement a load prediction pipeline in the framework

of data-trace transductions. The load prediction is separate

for each device type (A/C unit, lights, etc.). The diagram of

Figure 5 is a transduction DAG implementing the compu-

tation: (i) JFM (join-filter-map): Join the input stream with

information regarding the type of electrical device connected

to a plug and retain only a subset of device types. Reorga-

nize the fields of the tuple, separating them into a plug key
(plugId) of type Plug and a timestamped value of type VT.
(ii) SORT: For every plug key, sort the input items (between

consecutive markers) by timestamp. (iii) LI: For every plug

key, fill in missing data points using linear interpolation.

(iv) Map: Project every input key (a Plug identifier) to the

kind of device it is connected to. (v) SORT: For every device

type, sort the input items (between consecutive markers)

according to their timestamp. (vi) AVG: Compute the average

load for each device type by averaging all data items with

the same key (device type) and timestamp. (vii) Predict: For
every device type and every input value (there is exactly one

value per second), predict the total power consumption over

the next 10 minutes using the features: current time, current

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

1 2 3 4 5 6 7 8

Figure 6. Smart Homes - Energy Prediction: The hori-

zontal (resp., vertical) axis shows the level of parallelization

(resp., throughput in million tuples/sec).

load, and power consumption over the past 1 minute. A de-

cision/regression tree is used for the prediction (REPTree of

[32]), which has been trained on a subset of the data.

Figure 6 shows that by varying the degree of parallelism

(number of virtual machines) the computation scales up lin-

early. As before, we conducted the experiment on a cluster of

virtual machines (each with 2 CPUs, 8 GB memory, and 8 GB

disk). We conclude from these results that our framework

indeed can scale out to high levels of concurrency, even for

complex operations such as machine learning inference over

streams. Overall, our experiments have demonstrated that

our framework can express the complex computations re-

quired in both enterprise and IoT streaming applications, and

that it can generate an efficient implementation comparable

to hand-coded solutions.

7 Related Work

Our programming model is closely related to dataflow com-
putation models. It is a generalization of acyclic Kahn pro-
cess networks (KPNs) [36]. A KPN specifies a finite number

of independent linearly ordered input and output channels,

and consists of a collection of processes, where each process

is a sequential program that can read from its input chan-

nels and write to its output channels. Synchronous Dataflow
[18, 30, 39, 53] is a special case of KPNs, which has been

used for specifying and parallelizing streaming programs

primarily in the embedded software domain. In a synchro-

nous dataflow graph, each process reads a fixed finite number

of items from the input channels and also emits a fixed finite

number of items as output. We accommodate a finite number

of independent input or output streams, but also allow more

complicated dependence relations on the input and output.

In particular, viewing the input or output stream as a bag of

events is not possible in KPNs or their restrictions.

682

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA K. Mamouras, C. Stanford, R. Alur, Z. Ives, and V. Tannen

There is a large body of work on streaming database
query languages and systems: Aurora [2] and its succes-

sor Borealis [1], STREAM [15], CACQ [42], TelegraphCQ

[20], CEDR/StreamInsight [7, 17], and System S [33]. The

query language supported by these systems (for example,

CQL [15]) is typically an extension of SQL with constructs

for sliding windows over data streams. This allows for rich

relational queries, including set-aggregations (e.g. sum, max,

min, average, count) and joins overmultiple data streams, but

requires the programmer to resort to user-defined functions

in another language for richer computations such as machine

learning classification. A precise semantics for how to deal

with out-of-order streams has been defined using punctua-
tions (a type of synchronization markers) [37, 40, 41, 55]. The

partial ordering view supported by data-trace transductions

gives the ability to view a stream in many different ways:

as a linearly ordered sequence, as a relation, or even as a

sequence of relations. This provides a rich framework for

classifying disorder, which is useful for describing streaming

computations that combine relational with sequence-aware

operations. Our implementation supports at the moment

only a specific kind of time-based punctuations (i.e., peri-

odic synchronization markers), but our semantic framework

can encode more general punctuations. Extending relational

query languages to partially ordered multisets has been stud-

ied in [31], though not in the context of streaming.

A number of distributed stream processing engines,
such as Samza [26, 47], Storm [28, 54], Heron [38, 56], Mill-

Wheel [5], Spark Streaming [27, 58], and Flink [19, 25], have

achieved widespread use. Spark Streaming and Flink support

SQL-style queries or, equivalently, lower-level operations

roughly corresponding to the relational algebra underlying

SQL. Apache Beam [6, 23] is a programming model that pro-

vides relational and window-based abstractions. The other

stream engines provide much lower-level abstractions in

which the programmer writes event handlers that take tu-

ples, combine the data with windows, and emit results. As

with the manually coded Storm implementation used in our

experiments, this provides great power but does not aid the

programmer in reasoning about correctness. Naiad [45] is a

general-purpose distributed dataflow system for performing

iterative batch and stream processing. It supports a scheme

of logical timestamps for tracking the progress of compu-

tations. These timestamps can support the punctuations of

[40] and deal with certain kinds of disorder, but they cannot

encode more general partial orders. Systems such as Flink

[19, 25] and Naiad [45] support feedback cycles, which we

do not consider here due to the semantic complexities of

cycles: they require a complex denotational model involving

continuous functions, as in KPNs [36].

Prior work has considered the issue of semantically
sound parallelization of streaming applications [34, 49].

The authors of [49] observe that Storm [28, 54] and S4 [46]

perform unsound parallelizing transformations and propose

techniques for exploiting data parallelism without altering

the original semantics of the computation. Our framework

addresses similar issues, and our markers have a similar role

to the “pulses” of [49]. Our approach, however, is based on a

type-based discipline for classifying streams and a denota-

tional method for proving the preservation of semantics.

8 Conclusion

We have proposed a type discipline for classifying streams

according to their partial ordering characteristics using data-
trace types. These types are used to annotate the communi-

cation links in the dataflow graph that describes a streaming

computation. Each vertex of this typed dataflow graph is

programmed using a pre-defined set of templates, so as to en-
sure that the code respects the types of the input and output

channels. We have implemented this framework in Java and

we have provided an automatic procedure for deployment

on Apache Storm. We have shown experimentally that our

framework can express complex computations required in

IoT streaming applications, and that it can produce efficient

implementations comparable to hand-coded solutions.

A direction for further work is to enrich the set of type-

consistent templates with common patterns. For example,

our templates can already express sliding-window aggrega-
tion, but a specialized template for that purpose would re-

lieve the programmer from the burden of re-discovering

and re-implementing efficient sliding-window algorithms

(e.g., [16, 51, 52, 57]). Other avenues for future research are

to extend the compilation procedure to target streaming

frameworks other than Storm, and to automatically perform

optimizations that exploit the underlying hardware.

The StreamQRE language [43] (see also [10]) consists of

a set of programming constructs that allow the combina-

tion of streaming computations over linearly-ordered data

with static relational operations (i.e., over unordered data).

A promising direction for future work is to generalize the

language to the setting of partially ordered data streams.

StreamQRE is based on a notion of regular stream transfor-

mations [8, 9] that admit efficient space-bounded implemen-

tations [11, 12, 14], which is a crucial property for applica-

tions in resource-constrained environments [3, 4]. It would

be interesting to investigate whether a similar notion of reg-

ularity can be formulated for the data-trace transductions

that we consider here.

Acknowledgments

Wewould like to thank the anonymous reviewers andMartin

Hirzel for their constructive comments. This research was

supported in part by US National Science Foundation awards

1763514 and 1640813.

683

Data-Trace Types for Distributed Stream Processing Systems PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

References

[1] Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Cetintemel,

Mitch Cherniack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag

Maskey, Alex Rasin, Esther Ryvkina, Nesime Tatbul, Ying Xing, and

Stanley Zdonik. 2005. The Design of the Borealis Stream Processing

Engine. In Proceedings of the 2nd Biennial Conference on Innovative
Data Systems Research (CIDR ’05). 277–289. http://cidrdb.org/cidr2005/
papers/P23.pdf

[2] Daniel J. Abadi, Don Carney, Ugur Cetintemel, Mitch Cherniack,

Christian Convey, Sangdon Lee, Michael Stonebraker, Nesime Tat-

bul, and Stan Zdonik. 2003. Aurora: A New Model and Architecture

for Data Stream Management. The VLDB Journal 12, 2 (2003), 120–139.
https://doi.org/10.1007/s00778-003-0095-z

[3] Houssam Abbas, Rajeev Alur, Konstantinos Mamouras, Rahul Mang-

haram, and Alena Rodionova. 2018. Real-time Decision Policies with

Predictable Performance. Proc. IEEE 106, 9 (Sep. 2018), 1593–1615.

https://doi.org/10.1109/JPROC.2018.2853608
[4] Houssam Abbas, Alena Rodionova, Konstantinos Mamouras, Ezio

Bartocci, Scott A. Smolka, and Radu Grosu. 2018. Quantitative Regular

Expressions for Arrhythmia Detection. To appear in the IEEE/ACM
Transactions on Computational Biology and Bioinformatics (2018). https:
//doi.org/10.1109/TCBB.2018.2885274

[5] Tyler Akidau, Alex Balikov, Kaya Bekiroğlu, Slava Chernyak, Josh

Haberman, Reuven Lax, Sam McVeety, Daniel Mills, Paul Nordstrom,

and Sam Whittle. 2013. MillWheel: Fault-tolerant Stream Processing

at Internet Scale. Proc. VLDB Endow. 6, 11 (Aug. 2013), 1033–1044.

https://doi.org/10.14778/2536222.2536229
[6] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak,

Rafael J. Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel

Mills, Frances Perry, Eric Schmidt, and Sam Whittle. 2015. The

Dataflow Model: A Practical Approach to Balancing Correctness, La-

tency, and Cost in Massive-scale, Unbounded, Out-of-order Data Pro-

cessing. Proceedings of the VLDB Endowment 8, 12 (Aug. 2015), 1792–
1803. https://doi.org/10.14778/2824032.2824076

[7] Mohamed Ali, Badrish Chandramouli, Jonathan Goldstein, and Ro-

man Schindlauer. 2011. The Extensibility Framework in Microsoft

StreamInsight. In Proceedings of the 27th IEEE International Conference
on Data Engineering (ICDE ’11). 1242–1253. https://doi.org/10.1109/
ICDE.2011.5767878

[8] Rajeev Alur, Dana Fisman, Konstantinos Mamouras, Mukund

Raghothaman, and Caleb Stanford. 2018. Streamable Regular Trans-

ductions. CoRR abs/1807.03865 (2018). http://arxiv.org/abs/1807.03865
[9] Rajeev Alur, Dana Fisman, and Mukund Raghothaman. 2016. Reg-

ular Programming for Quantitative Properties of Data Streams. In

Proceedings of the 25th European Symposium on Programming (ESOP
’16). 15–40. https://doi.org/10.1007/978-3-662-49498-1_2

[10] Rajeev Alur and Konstantinos Mamouras. 2017. An Introduction to

the StreamQRE Language. Dependable Software Systems Engineering
50 (2017), 1. https://doi.org/10.3233/978-1-61499-810-5-1

[11] Rajeev Alur, Konstantinos Mamouras, and Caleb Stanford. 2017.

Automata-Based Stream Processing. In Proceedings of the 44th Interna-
tional Colloquium on Automata, Languages, and Programming (ICALP
’17) (Leibniz International Proceedings in Informatics (LIPIcs)), Ioannis
Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl (Eds.),

Vol. 80. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl,

Germany, 112:1–112:15. https://doi.org/10.4230/LIPIcs.ICALP.2017.112
[12] Rajeev Alur, Konstantinos Mamouras, and Caleb Stanford. 2019. Mod-

ular Quantitative Monitoring. Proceedings of the ACM on Program-
ming Languages 3, POPL, Article 50 (Jan. 2019), 31 pages. https:
//doi.org/10.1145/3290363

[13] Rajeev Alur, Konstantinos Mamouras, Caleb Stanford, and Val Tannen.

2018. Interfaces for Stream Processing Systems. In Principles of Mod-
eling: Essays Dedicated to Edward A. Lee on the Occasion of His 60th
Birthday, Marten Lohstroh, Patricia Derler, and Marjan Sirjani (Eds.).

Lecture Notes in Computer Science, Vol. 10760. Springer, Cham, 38–60.

https://doi.org/10.1007/978-3-319-95246-8_3
[14] Rajeev Alur, Konstantinos Mamouras, and Dogan Ulus. 2017. Deriva-

tives of Quantitative Regular Expressions. InModels, Algorithms, Logics
and Tools: Essays Dedicated to Kim Guldstrand Larsen on the Occasion
of His 60th Birthday, Luca Aceto, Giorgio Bacci, Giovanni Bacci, Anna

Ingólfsdóttir, Axel Legay, and Radu Mardare (Eds.). Lecture Notes

in Computer Science, Vol. 10460. Springer International Publishing,

Cham, 75–95. https://doi.org/10.1007/978-3-319-63121-9_4
[15] Arvind Arasu, Shivnath Babu, and Jennifer Widom. 2006. The CQL

Continuous Query Language: Semantic Foundations and Query Ex-

ecution. The VLDB Journal 15, 2 (2006), 121–142. https://doi.org/10.
1007/s00778-004-0147-z

[16] Arvind Arasu and Jennifer Widom. 2004. Resource Sharing in Continu-

ous Sliding-windowAggregates. In Proceedings of the 30th International
Conference on Very Large Data Bases (VLDB ’04). VLDB Endowment,

336–347. http://dl.acm.org/citation.cfm?id=1316689.1316720
[17] Roger S. Barga, Jonathan Goldstein, Mohamed Ali, and Mingsheng

Hong. 2007. Consistent Streaming Through Time: A Vision for Event

Stream Processing. In Proceedings of the 3rd Biennial Conference on
Innovative Data Systems Research (CIDR ’07). 363–374. http://cidrdb.
org/cidr2007/papers/cidr07p42.pdf

[18] Albert Benveniste, Paul Caspi, StephenA. Edwards, Nicolas Halbwachs,

Paul Le Guernic, and Robert de Simone. 2003. The Synchronous

Languages 12 Years Later. Proc. IEEE 91, 1 (2003), 64–83. https://doi.
org/10.1109/JPROC.2002.805826

[19] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl,

Seif Haridi, and Kostas Tzoumas. 2015. Apache Flink: Stream and

Batch Processing in a Single Engine. Bulletin of the IEEE Computer
Society Technical Committee on Data Engineering 36, 4 (2015). http:
//sites.computer.org/debull/A15dec/p28.pdf

[20] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J.

Franklin, Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy,

Sam Madden, Vijayshankar Raman, Fred Reiss, and Mehul Shah. 2003.

TelegraphCQ: Continuous Dataflow Processing for an UncertainWorld.

In Proceedings of the First Biennial Conference on Innovative Data Sys-
tems Research (CIDR ’03). http://cidrdb.org/cidr2003/program/p24.pdf

[21] S. Chintapalli, D. Dagit, B. Evans, R. Farivar, T. Graves, M. Holder-

baugh, Z. Liu, K. Nusbaum, K. Patil, B. J. Peng, and P. Poulosky.

2016. Benchmarking Streaming Computation Engines: Storm, Flink

and Spark Streaming. In 2016 IEEE International Parallel and Dis-
tributed Processing Symposium Workshops (IPDPSW). 1789–1792. https:
//doi.org/10.1109/IPDPSW.2016.138

[22] DEBS Conference. 2014. DEBS 2014 Grand Challenge: Smart homes.

http://debs.org/debs-2014-smart-homes/. (2014). [Online; accessed
November 16, 2018].

[23] Apache Software Foundation. 2019. Apache Beam. https://beam.
apache.org/. (2019). [Online; accessed March 31, 2019].

[24] Apache Software Foundation. 2019. Apache Derby. https://db.apache.
org/derby/. (2019). [Online; accessed March 31, 2019].

[25] Apache Software Foundation. 2019. Apache Flink. https://flink.apache.
org/. (2019). [Online; accessed March 31, 2019].

[26] Apache Software Foundation. 2019. Apache Samza. http://samza.
apache.org/. (2019). [Online; accessed March 31, 2019].

[27] Apache Software Foundation. 2019. Apache Spark Streaming. https:
//spark.apache.org/streaming/. (2019). [Online; accessed March 31,

2019].

[28] Apache Software Foundation. 2019. Apache Storm. http://storm.
apache.org/. (2019). [Online; accessed March 31, 2019].

[29] Apache Software Foundation. 2019. Apache Storm: Concepts. http:
//storm.apache.org/releases/1.2.2/Concepts.html. (2019). [Online;

accessed March 31, 2019].

[30] Michael I. Gordon, William Thies, and Saman Amarasinghe. 2006.

Exploiting Coarse-grained Task, Data, and Pipeline Parallelism in

684

http://cidrdb.org/cidr2005/papers/P23.pdf
http://cidrdb.org/cidr2005/papers/P23.pdf
https://doi.org/10.1007/s00778-003-0095-z
https://doi.org/10.1109/JPROC.2018.2853608
https://doi.org/10.1109/TCBB.2018.2885274
https://doi.org/10.1109/TCBB.2018.2885274
https://doi.org/10.14778/2536222.2536229
https://doi.org/10.14778/2824032.2824076
https://doi.org/10.1109/ICDE.2011.5767878
https://doi.org/10.1109/ICDE.2011.5767878
http://arxiv.org/abs/1807.03865
https://doi.org/10.1007/978-3-662-49498-1_2
https://doi.org/10.3233/978-1-61499-810-5-1
https://doi.org/10.4230/LIPIcs.ICALP.2017.112
https://doi.org/10.1145/3290363
https://doi.org/10.1145/3290363
https://doi.org/10.1007/978-3-319-95246-8_3
https://doi.org/10.1007/978-3-319-63121-9_4
https://doi.org/10.1007/s00778-004-0147-z
https://doi.org/10.1007/s00778-004-0147-z
http://dl.acm.org/citation.cfm?id=1316689.1316720
http://cidrdb.org/cidr2007/papers/cidr07p42.pdf
http://cidrdb.org/cidr2007/papers/cidr07p42.pdf
https://doi.org/10.1109/JPROC.2002.805826
https://doi.org/10.1109/JPROC.2002.805826
http://sites.computer.org/debull/A15dec/p28.pdf
http://sites.computer.org/debull/A15dec/p28.pdf
http://cidrdb.org/cidr2003/program/p24.pdf
https://doi.org/10.1109/IPDPSW.2016.138
https://doi.org/10.1109/IPDPSW.2016.138
http://debs.org/debs-2014-smart-homes/
https://beam.apache.org/
https://beam.apache.org/
https://db.apache.org/derby/
https://db.apache.org/derby/
https://flink.apache.org/
https://flink.apache.org/
http://samza.apache.org/
http://samza.apache.org/
https://spark.apache.org/streaming/
https://spark.apache.org/streaming/
http://storm.apache.org/
http://storm.apache.org/
http://storm.apache.org/releases/1.2.2/Concepts.html
http://storm.apache.org/releases/1.2.2/Concepts.html

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA K. Mamouras, C. Stanford, R. Alur, Z. Ives, and V. Tannen

Stream Programs. In Proceedings of the 12th International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS XII). ACM, New York, NY, USA, 151–162. https:
//doi.org/10.1145/1168857.1168877

[31] Stéphane Grumbach and Tova Milo. 1999. An Algebra for Pomsets.

Information and Computation 150, 2 (1999), 268–306. https://doi.org/
10.1006/inco.1998.2777

[32] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter

Reutemann, and Ian H. Witten. 2009. The WEKA Data Mining Soft-

ware: An Update. SIGKDD Explorations Newsletter 11, 1 (Nov. 2009),
10–18. https://doi.org/10.1145/1656274.1656278

[33] M. Hirzel, H. Andrade, B. Gedik, G. Jacques-Silva, R. Khandekar, V.

Kumar, M. Mendell, H. Nasgaard, S. Schneider, R. Soulé, and K. L.

Wu. 2013. IBM Streams Processing Language: Analyzing Big Data

in motion. IBM Journal of Research and Development 57, 3/4 (2013),
7:1–7:11. https://doi.org/10.1147/JRD.2013.2243535

[34] Martin Hirzel, Robert Soulé, Scott Schneider, Buğra Gedik, and Robert

Grimm. 2014. A Catalog of Stream Processing Optimizations. ACM
Computing Surveys (CSUR) 46, 4, Article 46 (March 2014), 34 pages.

https://doi.org/10.1145/2528412
[35] Yahoo Inc. 2017. Reference implementation of the Yahoo Streaming

Benchmark. https://github.com/yahoo/streaming-benchmarks. (2017).
[Online; accessed March 31, 2019].

[36] Gilles Kahn. 1974. The Semantics of a Simple Language for Parallel

Programming. Information Processing 74 (1974), 471–475.

[37] Sailesh Krishnamurthy, Michael J. Franklin, Jeffrey Davis, Daniel Fa-

rina, Pasha Golovko, Alan Li, and Neil Thombre. 2010. Continuous

Analytics over Discontinuous Streams. In Proceedings of the 2010 ACM
SIGMOD International Conference on Management of Data (SIGMOD
’10). ACM, New York, NY, USA, 1081–1092. https://doi.org/10.1145/
1807167.1807290

[38] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli,

Christopher Kellogg, Sailesh Mittal, Jignesh M. Patel, Karthik Ra-

masamy, and Siddarth Taneja. 2015. Twitter Heron: Stream Process-

ing at Scale. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data (SIGMOD ’15). ACM, 239–250.

https://doi.org/10.1145/2723372.2742788
[39] Edward A. Lee and David G. Messerschmitt. 1987. Synchronous Data

Flow. Proc. IEEE 75, 9 (1987), 1235–1245. https://doi.org/10.1109/PROC.
1987.13876

[40] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and Peter A.

Tucker. 2005. Semantics and Evaluation Techniques for Window Ag-

gregates in Data Streams. In Proceedings of the 2005 ACM SIGMOD
International Conference on Management of Data (SIGMOD ’05). ACM,

311–322. https://doi.org/10.1145/1066157.1066193
[41] Jin Li, Kristin Tufte, Vladislav Shkapenyuk, Vassilis Papadimos,

Theodore Johnson, and David Maier. 2008. Out-of-order Process-

ing: A New Architecture for High-performance Stream Systems. Pro-
ceedings of the VLDB Endowment 1, 1 (Aug. 2008), 274–288. https:
//doi.org/10.14778/1453856.1453890

[42] Samuel Madden, Mehul Shah, Joseph M. Hellerstein, and Vijayshankar

Raman. 2002. Continuously Adaptive Continuous Queries over

Streams. In Proceedings of the 2002 ACM SIGMOD International Confer-
ence on Management of Data (SIGMOD ’02). ACM, New York, NY, USA,

49–60. https://doi.org/10.1145/564691.564698
[43] Konstantinos Mamouras, Mukund Raghothaman, Rajeev Alur,

Zachary G. Ives, and Sanjeev Khanna. 2017. StreamQRE: Modular

Specification and Efficient Evaluation of Quantitative Queries over

Streaming Data. In Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI ’17). ACM,

New York, NY, USA, 693–708. https://doi.org/10.1145/3062341.3062369
[44] Antoni Mazurkiewicz. 1987. Trace theory. In Petri Nets: Applications

and Relationships to Other Models of Concurrency (LNCS), W. Brauer,

W. Reisig, and G. Rozenberg (Eds.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 278–324. https://doi.org/10.1007/3-540-17906-2_30
[45] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul

Barham, and Martín Abadi. 2013. Naiad: A Timely Dataflow System.

In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles (SOSP ’13). ACM, New York, NY, USA, 439–455.

https://doi.org/10.1145/2517349.2522738
[46] Leonardo Neumeyer, Bruce Robbins, Anish Nair, and Anand Kesari.

2010. S4: Distributed Stream Computing Platform. In Proceedings of the
2010 IEEE International Conference on Data Mining Workshops. 170–177.
https://doi.org/10.1109/ICDMW.2010.172

[47] Shadi A. Noghabi, Kartik Paramasivam, Yi Pan, Navina Ramesh, Jon

Bringhurst, Indranil Gupta, and RoyH. Campbell. 2017. Samza: Stateful

Scalable Stream Processing at LinkedIn. Proceedings of the VLDB
Endowment 10, 12 (Aug. 2017), 1634–1645. https://doi.org/10.14778/
3137765.3137770

[48] Vaughan Pratt. 1986. Modeling Concurrency with Partial Orders.

International Journal of Parallel Programming 15, 1 (Feb 1986), 33–71.

https://doi.org/10.1007/BF01379149
[49] Scott Schneider, Martin Hirzel, Buğra Gedik, and Kun-Lung Wu. 2015.

Safe Data Parallelism for General Streaming. IEEE Trans. Comput. 64,
2 (Feb 2015), 504–517. https://doi.org/10.1109/TC.2013.221

[50] Utkarsh Srivastava and Jennifer Widom. 2004. Flexible Time Manage-

ment in Data Stream Systems. In PODS (PODS ’04). ACM, New York,

NY, USA, 263–274. https://doi.org/10.1145/1055558.1055596
[51] Kanat Tangwongsan, Martin Hirzel, and Scott Schneider. 2017. Low-

Latency Sliding-Window Aggregation in Worst-Case Constant Time.

In Proceedings of the 11th ACM International Conference on Distributed
and Event-based Systems (DEBS ’17). ACM, New York, NY, USA, 66–77.

https://doi.org/10.1145/3093742.3093925
[52] Kanat Tangwongsan, Martin Hirzel, Scott Schneider, and Kun-Lung

Wu. 2015. General Incremental Sliding-window Aggregation. Proceed-
ings of the VLDB Endowment 8, 7 (2015), 702–713. https://doi.org/10.
14778/2752939.2752940

[53] William Thies, Michal Karczmarek, and Saman Amarasinghe. 2002.

StreamIt: A Language for Streaming Applications. In Proceedings of
the 11th International Conference on Compiler Construction (CC ’02)
(Lecture Notes in Computer Science), R. Nigel Horspool (Ed.), Vol. 2304.
Springer Berlin Heidelberg, Berlin, Heidelberg, 179–196. https://doi.
org/10.1007/3-540-45937-5_14

[54] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy,

Jignesh M. Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade,

Maosong Fu, Jake Donham, Nikunj Bhagat, Sailesh Mittal, and Dmitriy

Ryaboy. 2014. Storm @ Twitter. In Proceedings of the 2014 ACM SIG-
MOD International Conference on Management of Data (SIGMOD ’14).
ACM, 147–156. https://doi.org/10.1145/2588555.2595641

[55] Peter A. Tucker, David Maier, Tim Sheard, and Leonidas Fegaras. 2003.

Exploiting Punctuation Semantics in Continuous Data Streams. IEEE
Transactions on Knowledge and Data Engineering 15, 3 (2003), 555–568.

https://doi.org/10.1109/TKDE.2003.1198390
[56] Twitter. 2019. Heron. https://apache.github.io/incubator-heron/.

(2019). [Online; accessed March 31, 2019].

[57] Jun Yang and Jennifer Widom. 2003. Incremental Computation and

Maintenance of Temporal Aggregates. The VLDB Journal 12, 3 (Oct.
2003), 262–283. https://doi.org/10.1007/s00778-003-0107-z

[58] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott

Shenker, and Ion Stoica. 2013. Discretized Streams: Fault-tolerant

Streaming Computation at Scale. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles (SOSP ’13). ACM, New

York, NY, USA, 423–438. https://doi.org/10.1145/2517349.2522737

685

https://doi.org/10.1145/1168857.1168877
https://doi.org/10.1145/1168857.1168877
https://doi.org/10.1006/inco.1998.2777
https://doi.org/10.1006/inco.1998.2777
https://doi.org/10.1145/1656274.1656278
https://doi.org/10.1147/JRD.2013.2243535
https://doi.org/10.1145/2528412
https://github.com/yahoo/streaming-benchmarks
https://doi.org/10.1145/1807167.1807290
https://doi.org/10.1145/1807167.1807290
https://doi.org/10.1145/2723372.2742788
https://doi.org/10.1109/PROC.1987.13876
https://doi.org/10.1109/PROC.1987.13876
https://doi.org/10.1145/1066157.1066193
https://doi.org/10.14778/1453856.1453890
https://doi.org/10.14778/1453856.1453890
https://doi.org/10.1145/564691.564698
https://doi.org/10.1145/3062341.3062369
https://doi.org/10.1007/3-540-17906-2_30
https://doi.org/10.1145/2517349.2522738
https://doi.org/10.1109/ICDMW.2010.172
https://doi.org/10.14778/3137765.3137770
https://doi.org/10.14778/3137765.3137770
https://doi.org/10.1007/BF01379149
https://doi.org/10.1109/TC.2013.221
https://doi.org/10.1145/1055558.1055596
https://doi.org/10.1145/3093742.3093925
https://doi.org/10.14778/2752939.2752940
https://doi.org/10.14778/2752939.2752940
https://doi.org/10.1007/3-540-45937-5_14
https://doi.org/10.1007/3-540-45937-5_14
https://doi.org/10.1145/2588555.2595641
https://doi.org/10.1109/TKDE.2003.1198390
https://apache.github.io/incubator-heron/
https://doi.org/10.1007/s00778-003-0107-z
https://doi.org/10.1145/2517349.2522737

	Abstract
	1 Introduction
	2 Motivation
	3 Types for Data Streams
	3.1 Data Traces
	3.2 Data-String Transductions
	3.3 Data-Trace Transductions

	4 Type-Consistent Programming
	5 Implementation in Apache Storm
	6 Experimental Evaluation
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

