
Regular Transformations of Infinite Strings
Rajeev Alur

Dept. of Computer and Info. Science
University of Pennsylvania

Philadelphia, USA

Emmanuel Filiot
Chargé de recherches du F.R.S.-FNRS.
CS Dept., Université Libre de Bruxelles

CP212, Bvd du Triomphe, 1050 Brussels, Belgium

Ashutosh Trivedi
Dept. of Computer and Info. Science

University of Pennsylvania
Philadelphia, USA

Abstract—The theory of regular transformations of finite
strings is quite mature with appealing properties. This class
can be equivalently defined using both logic (Monadic second-
order logic) and finite-state machines (two-way transducers, and
more recently, streaming string transducers); is closed under
operations such as sequential composition and regular choice;
and problems such as functional equivalence and type checking,
are decidable for this class. In this paper, we initiate a study of
transformations of infinite strings. The MSO-based definition for
regular string transformations generalizes naturally to infinite
strings. We define an equivalent generalization of the machine
model of streaming string transducers to infinite strings. A
streaming string transducer is a deterministic machine that
makes a single pass over the input string, and computes the
output fragments using a finite set of string variables that are
updated in a copyless manner at each step. We show how Muller
acceptance condition for automata over infinite strings can be
generalized to associate an infinite output string with an infinite
execution. The proof that our model captures all MSO-definable
transformations uses two-way transducers. Unlike the case of
finite strings, MSO-equivalent definition of two-way transducers
over infinite strings needs to make decisions based on omega-
regular look-ahead. Simulating this look-ahead using multiple
variables with copyless updates, is the main technical challenge
in our constructions. Finally, we show that type checking and
functional equivalence are decidable for MSO-definable trans-
formations of infinite strings.

Index Terms—Streaming string transducers, monadic second-
order logic, !-regular transformations, two-way transducers.

I. INTRODUCTION

The fundamental theorem of Büchi-Elgot-Trakhtenbrot [1],
[2], [3] first established the connection between mathematical
logic and automata theory by showing that the deterministic
finite state automata accept the same class of languages as
monadic second order logic (MSO) interpreted over finite
strings. This connection, while providing new tools to solve
problems in logic, revolutionized the field of automata theory
as Büchi [4] initiated the study of finite automata over infinite
strings in search for an analogous connection for MSO inter-
preted over infinite strings. As a result a number of equally
expressive finite state automata over infinite strings, e.g. non-
deterministic Büchi automata and deterministic Muller au-
tomata [5], were identified characterizing the class of regular
languages of infinite strings. Since then, MSO equivalence has
become a synonym for regularity as the connection between
automata and MSO has been extended for languages over
different structures such as trees and partial orders.

Courcelle [6] introduced MSO transducers by proposing a

novel way to use MSO interpreted over graphs to specify
graph transformations. MSO transducers work by introducing
a fixed number of copies of the vertices of the input graph;
and the domain, the labels and the edges of the output graph
are defined by MSO formulas with zero, one or two free
variables, respectively, interpreted over the input graph. MSO
transducers, when restricted appropriately to string-graphs, can
be used to specify transformations (functions) of both finite
and infinite strings. Engelfriet and Hoogeboom [7] studied
such transformations of finite strings, and showed the existence
of a finite state model—two-way finite-state transducers—
implementing the same class of transformations. In this paper
we explore finite state transducer models equivalent to MSO
definable transformations of infinite strings.

A. Theory of Regular Transformations of Finite Strings

Classical (deterministic) finite-state transducers, e.g. Mealy
machines or generalized sequential machines, extend deter-
ministic finite-state automata as they process the input string
in a single pass from left-to-right, and at each step they read
the input letter and append zero or more symbols to the output
tape. An input string, like in finite-state automata, is accepted
if the final state is an accepting state, and the corresponding
output string is equal to the contents of the output tape.

One-way transducers, however simple in definition, are less
expressive than MSO transducers on finite strings as they can
not express certain MSO definable transformations, for in-
stance, reversing a string (i.e., !1!2 . . . !! !→ !!!!−1 . . . !1),
swapping two substrings (e.g., ##$!→ $##), or involving
a regular choice (e.g., transformation csub that replaces each
occurrence of ! with % if the string contains a #, and outputs
the input string otherwise). Transformations involving regular
choice can be implemented by relaxing the model to non-
deterministic finite state transducers, for which the theory is
quite rich [8], [9]. However, swapping or reversing is still
not expressible by non-deterministic finite state transducers.
Engelfriet and Hoogeboom [7] showed that the finite-state
transducers when equipped with a two-way input tape have the
same expressive power as MSO transducers. A crucial property
of two-way finite-state transducers exploited in the proof [7]
is the fact that transitions capable of regular look-ahead (i.e.,
transitions that test the whole input string against a regular
property) do not increase their expressiveness. Two-way trans-
ducers can implement transformations involving reverse, swap,
and regular choice. For example, reversing a string can be

1start 2

!
∣∣ (&, () := (&%, (!)

)
∣∣ (&, () := (&), ())

#∣(&, () := (&#, *)

!
∣∣ (&, () := (&%, *)

+
∣∣ (&, () := (&+, *)

Fig. 1. SST implementing csub; Here ! and " stand for all letters except
{#,#} and #, respectively. Also % (1) = & and % (2) = '.

implemented by first moving the input head to the end of the
tape, and then outputting the letters sequentially in a right-to-
left pass of the input tape. Also, transformation csub can be
implemented by first scanning the input string for #, and then
moving the head to the first cell again to output accordingly.

Alur and Černý [10], [11] recently proposed a one-way
finite-state transducer model, called the streaming string
transducers (SSTs), that manipulates a finite set of string
variables to compute its output, and showed that they have
same expressive power as MSO transducers. SSTs, instead
of appending symbols to the output tape, concurrently update
all string variables using a concatenation of string variables
and output symbols in a copyless fashion, i.e. no variable
occurs more than once in each concurrent variable update.
The transformation of a string is then defined using an output
(partial) function , that associates states with a copyless
concatenation of string variables, s.t. if the state - is reached
after reading the string and , (-)=&(, then the output string is
the final valuation of & concatenated with that of (. SSTs can
implement reversing, swap, and regular choice with ease. For
example, reversing a string can be implemented by an SST
with one state - and one variable &, such that the transition
for every letter ! loops back to the state with update & := !&;
and the output function maps - to &. Transformation csub
can be defined by the SST in Fig. 1. The correctness of
this SST follows from the observation that after reading a
string, variable (contains the input string, while variable &
contains the input string with occurrences of ! replaced with
%. Moreover, a run ends in state 2 iff the string contains a #.

The class of regular transformations of finite strings [7]
characterized by MSO transducers, two-way finite-state trans-
ducers, and SSTs is closed under operations such as se-
quential composition and regular choice. Moreover, both the
equivalence problem (deciding the equivalence of two regular
transformations) and the type checking problem (deciding
whether the output strings stays in a regular language . for
the input strings from a regular language /) are decidable (in
PSPACE for SSTs [11]).

B. Defining Regular Transformations of Infinite Strings

To capture the transformations of infinite strings, natural
extensions of finite-state transducers with 0-string accep-
tance conditions like Büchi and Muller have been studied in
past [12], [13], [14]; however they do not capture the essence
of regularity as they, like their finite string counterparts, are
unable to implement typical MSO-definable transformations

like reversing substrings (e.g., replace the first finite #-free
prefix, when it exists, by its reverse), swapping substrings, or
0-regular choice (e.g., transformation csub that replaces every
occurrence of ! by % if the 0-string contains a #).

Following the result of Engelfriet and Hoogeboom [7], in
this paper we consider two-way (deterministic) finite-state
transducers with Muller acceptance condition (2WST), but we
find that they are not as expressive as MSO transformations
of infinite strings due to the inability of 2WST to perform 0-
regular look-ahead. For example, consider the transformation
csub: It can easily be implemented using 2WST with 0-
regular look-ahead that is used to check whether the input tape
contains a #. However, to implement the same transformation
using 2WST sans 0-regular look-ahead capability, it needs to
first scan the string for #, a procedure that will not terminate
for a #-free input string. On a positive note, we show that the
proof of [7] can be easily generalized to show the equivalence
of 2WST with 0-regular look-around (a regular look-behind
combined with an 0-regular look-ahead) and MSO definable
transformations of infinite strings (MSOT).

Even though we have identified our first finite-state model
implementing regular transformations of infinite strings, it is
desirable to have a, preferably one-way, finite-state model
equivalent to MSOT that is closed under 0-regular look-
around; because 0-regular look-around is not a natural model-
ing feature, and moreover, one-way models usually allow for
a simpler proof of decidability of the functional equivalence.

We generalize streaming string transducers to operate on
infinite strings by extending them with Muller acceptance
condition. To define the output corresponding to infinite runs
we associate the set of infinitely occurring states, à la Muller
acceptance condition, with concatenations of string variables
using an output function , . For instance, if the set of infinitely
occurring states is 1 and , (1) = &(then the output string
is defined as the limit of valuations of & concatenated with
valuations of (at each step of the run. The transformation csub
can be implemented by the SST shown in Fig. 1 interpreted
over infinite strings where the output function is defined as
, ({1}) = (and , ({2}) = &. One needs to be cautious while
defining the output function to make sure that the limit of
the concatenations of string variable valuations always exists
as an infinite string. As an example of an ill-formed output
function consider , ({1}) = &(in Fig. 1 which for the input
!" outputs bi-infinite string %"!" . In our definition of SSTs on
infinite strings, we enforce syntactic restrictions to ensure that
the output always exists as an infinite string, while capturing
the full expressive power of MSOT.

C. Results / Properties

Fig. 2 shows the roadmap of our approach to prove
SST=MSOT, i.e. the SSTs and MSOT have the same ex-
pressive power. After setting some preliminary results and
notations in Section II, we formally introduce our models
in Section III. We begin by first observing that 2WST with
0-regular look-around (2WSTla) and MSOT have the same
expressiveness, and the proof of [7] can be naturally extended

MSOT

Two-Way Transducers

with Lookaround

(2WSTla)

Functional NSSTs

with Lookaround

(fSSTla)

Functional NSSTs

(fSST)
SSTs with Bounded Copy

(SSTbc)
SST

Sec. III
Sec. V

Sec. IV-C

Sec. IV-BSec. IV-A

Sec. V

Fig. 2. Equivalent models of regular transformations

to show this fact. We exploit this result to show SST=MSOT
in several steps. First, we show that every transformation
implemented by a 2WSTla can be expressed by a (functional)
non-deterministic version of SSTs with look-around (NSSTla)
by using a construction similar to classical construction that re-
lates two-way to one-way finite automata. Then we show how
the look-around can be captured using non-determinism and
hence NSSTla = NSST. We also observe that the functional
non-determinism in SSTs can be removed by introducing
copies in variable update in a bounded manner, reminiscent
of finite copying restriction in [15]. The most challenging part
of the proof is to show that SSTs with bounded copy can
be simulated by (copyless) SSTs. In Section IV we formally
state results on equivalence of SSTs with bounded-copy SSTs,
functional nondeterministic SSTs, and SSTs with 0-regular
look-around. We also notice that the proof [10] of reduction
from SSTs to MSO for finite strings can be extended to infinite
strings in a straightforward manner. In Section V, we collect
these results to prove the main result of this paper:

Theorem 1. A transformation of infinite strings is MSOT-
definable if and only if it is SST-definable.

We discuss, in Section VI, the equivalence and the type
checking problems for SSTs, and show that they can be
decided in PSPACE using natural extensions of corresponding
procedures for SSTs on finite strings [11]. This result when
combined with Theorem 1 yields the following key result.

Theorem 2. Equivalence and type-checking problems for
MSOT are decidable.

For the lack of space proofs are either sketched or omitted;
full proofs can be found in the technical report [16].

II. PRELIMINARIES

An alphabet Σ is a finite set of letters. A finite string (resp.
0-string) over Σ is defined as a finite sequence (resp. 0-
sequence) of letters from Σ. We denote by * the empty string.
We write Σ∗ and Σ" for the set of finite and 0-strings over
Σ. We write Σ∞ for Σ∗ ∪ Σ" .

For a string 2 ∈ Σ∞ we write ∣2∣ for its length; note that
for an 0-string 2 we have that ∣2∣ = ∞. For a string 2 ∈ Σ∞

and for all 0 ≤ 3 < ∣2∣ we write 2[3] for the 3-th letter of
the string 2. For two 0-strings 2, 2′ ∈ Σ" we define their
distance +(2, 2′) as 2−# where 5 = min {6 : 2[6] ∕= 2′[6]}.
We say that the string 2 ∈ Σ" is the limit of the sequence
of 0-strings 21, 22, . . . s.t. 2$ ∈ Σ" if for every * > 0 there

exists an index 8% ∈ ℕ such that for all 3 ≥ 8% we have that
+(2, 2$) ≤ *. Such limit, when exists, is unique, and we write
2 = lim$→∞ 2$. For instance, !" = lim$→∞ !$%" , while the
limit of the sequence !", %!", !", %!", . . . is undefined.

For sets / and ., we write [/→ .] for the set of functions
, : /→ ., and [/ ⇀ .] for the set of partial functions , :
/ ⇀ .. For a partial function , : / ⇀ . we write dom(,)
for its domain. Given a tuple of sets ⟨/$⟩!$=1 we define the
3-th projection operator :$: /1×/2× ⋅ ⋅ ⋅×/$× ⋅ ⋅ ⋅ ×/!→/$

for each 1 ≤ 3 ≤ ; as :$(!1, !2, . . . , !$, . . . , !!) = !$.

A. Monadic Second-Order Logic on Graphs

A Σ-labeled graph is a tuple < = (8,=,>) where 8 is
a countable set of nodes, = ⊆ 8 ×8 is a set of edges, and
> : 8 → Σ is a node-labeling function. Let <?(Σ) be the
set of all Σ-labeled graphs.

Regular properties of Σ-labeled graphs can be formalized
by monadic second order logic denoted by MSO(Σ). The for-
mulas of MSO(Σ) have first-order variables &, (, . . . ranging
over nodes and second-order variables @,A, B, . . . ranging
over sets of nodes of Σ-labeled graphs. A formula is built
up from atomic formulas of the form

& = (, & ∈ @,>&(&), and =(&, ()

where formula >&(&) states that node & has the label ! ∈ Σ,
while the formula =(&, () states that there is an edge from
& to (. Atomic formulas are connected with propositional
connectives ¬, ∧, ∨, →, and quantifiers ∀ and ∃ that range
over both node variables and node-set variables. We say that a
variable is free in a formula if it does not occur in the scope of
some quantifier. We write C(&1, &2, . . . , &') to denote that at
most the variables &1, . . . , &' occur free in C. For a graph <
and for valuations ;1, ;2, . . . , ;' (where ;$ ∈ 8 if &$ is first-
order, and ;$ ⊆ 8 if &$ is second-order) we say that graph
< with valuation D = (;1, ;2, . . . , ;') satisfies the formula
C(&1, &2, . . . , &') and we write (<, D) ∣= C(&1, &2, . . . , &')
or < ∣= C(;1, ;2, . . . , ;') if formula C with ;$ as the
interpretations of &$ satisfies in graph <.

B. 0-Regular Languages

A language (resp. 0-language) > over an alphabet Σ is
defined as a set of finite strings (resp. 0-strings). A string 2 ∈
Σ∞ can be represented by its node-graph 6(2) = (8(, =(, >()
where 8(= {3 : ℕ ∋ 3 < ∣2∣}, =(= {(3, 3+ 1) : ℕ ∋ 3 < ∣2∣}
and >((3) = 2[3] for all 3≤∣2∣. We also say that a graph
< ∈ <?(Σ) is a string graph if there is a string 2 ∈ Σ∞ such
that < is isomorphic to 6(2). MSO formulas over finite and
0-string graphs characterize languages of finite strings and 0-
strings, respectively. We call such languages MSO-definable.

A language of finite strings is called regular if there is a
deterministic finite state automata that accepts it, or equiva-
lently [1] if it is MSO-definable. Muller automata, formally
defined below, are finite state models accepting 0-languages.

Definition 1 (Muller Automata). A Muller automaton is a
tuple / = (E, -0,Σ, F, ,) where E is a finite set of states,

input:

1:

2:

! % % % # % ! # !"

! % % % % !

! % % % # % ! # !"

Fig. 3. The result of MSO transformation (1 on the string #)))#)###! .

-0 ∈ E is the initial state, Σ is an input alphabet, F : E×Σ →
E is a transition function, and , ⊆ 2) are the accepting sets.

For states -, -′ ∈ E and letter ! ∈ Σ we say that (-, !, -′)
is a transition of a Muller automaton / if F(-, !) = -′

and we write -
&−→ -′. A finite run of / over a finite

string !1!2 . . . !! ∈ Σ∗ is a finite sequence of transitions
⟨(-0, !1, -1), (-1, !2, -2), . . . , (-!−1, !!, -!)⟩ ∈ (E×/×E)∗
starting from the initial state -0 and we represent such runs as
-0

&1−→ -1
&2−→ -2 ⋅ ⋅ ⋅ -!. Infinite runs are similarly defined as

infinite sequences of transitions. For a run G of / we define
its size ∣G∣ ∈ ℕ to be equal to its number of transitions. For an
infinite run G, we denote by Ω(G) the set of states that occur
infinitely often in G. An 0-string H is accepted by a Muller
automaton / if the run G of / on H is such that Ω(G) ∈ , .

The classical results of Büchi [4] and McNaughton [5]
extend the notion of regular languages from finite strings to 0-
strings by showing that an 0-language is accepted by a Muller
automaton if and only if it is MSO-definable.

III. REGULAR TRANSFORMATIONS

An 0-transformation from an input alphabet Σ to an output
alphabet Γ is a partial function in [Σ" ⇀ Γ"]. Transformations
of finite strings are special cases of transformations of 0-
strings with an appropriate padding of the strings by a special
letter ⊥. We use the following example in our illustrations.

Example 1 (Copy and Reverse). Let Σ = {!, %,#}. The 0-
transformation I1 : Σ" ⇀ Σ" is such that it replaces any
maximal #-free finite string J by JJ, where J is the reverse
of J. Moreover I1 is defined only for strings in Σ∗{!, %}" . For-
mally, for all H = J1#J2# . . . J!#K such that J$ ∈ {!, %}∗
and K ∈ {!, %}" , we have that I1(H) = J1J1# . . .#J!J!#K.

In this section we introduce three transducers implementing
0-transformations with equal expressive power: MSO trans-
ducers, two-way transducers with 0-regular look-around, and
streaming 0-string transducers.

A. MSO Transducers

Courcelle [6] initiated the study of graph transformations
? ⊆ <?(Σ) × <?(Γ) using monadic second-order logic.
The main idea is to define a transformation (<,<′) ∈ ? by
defining the graph<′ using a finite number of copies of<. The
existence of nodes, edges, and node-labels in <′ is then given
as MSO(Σ) formulas. Formally, an MSO graph transducer is
a tuple L=(Σ,Γ, Cdom, M, Cnodes, Cedges) where:

∙ Σ and Γ are finite sets of input and output alphabets;
∙ Cdom is a closed MSO(Σ) formula characterizing the

domain of the transformation;
∙ M= {1, 2, . . . , ;} is a finite index set;

∙ Cnodes=
{
C*+(&) :) ∈ M and N ∈ Γ

}
is a finite set of

MSO(Σ) formulas with a free node variable &;
∙ Cedges=

{
C*,-(&, () :), + ∈ M

}
is a finite set of MSO(Σ)

formulas with two free node variables & and (.
The graph transformation !L " defined by L is as follows.

A graph <=(O,=, >) ∈ <?(Σ) is in the domain of !L " if
< ∣= Cdom and the output is the graph <′=(O ′, =′, L ′) s.t.

∙ O ′ is the set of nodes K* such that K ∈ O ,) ∈ M and there
is a unique N ∈ Γ such that< ∣= C*+(K); notice that a node
K* is absent if < ∣= ¬C*(K) where C*(K) def

= ∨+∈ΓC*+(K);
∙ =′⊆O ′×O ′ is the set of edges such that for K, J ∈ O and
), + ∈ M we have that (K*, J-) ∈ =′ if < ∣= C*,-(K, J);

∙ >′ : O ′ → Γ is such that >′(K*) = N if < ∣= C*+(K).
Note that the output is unique and therefore MSO trans-

ducers implement functions. An MSO string transducer is an
MSO graph transducer such that its domain is restricted to
string graphs, and the output is also a string graph. We write
MSOT for the set of MSO-definable 0-transformations.

Example 2. Let us consider the following MSO formulas with
their intuitive meaning: C#<∞ (holds in any string graph that
contains finitely many #), reach#(&) (holds if from & one can
reach a node labeled #), first(&) (holds if & is first position
of the string) and path(&, () (holds if there is a path from &
to (). Transformation I1 from Example 1 is implemented (see
Fig.3) by MSOT L=(Σ,Γ, Cdom, M, Cnodes, Cedges) where:

∙ Σ = Γ = {!, %,#}, M = {1, 2}, and
∙ Cdom = C#<∞,
∙ C1+(&) = >+(&) ∧ ¬>#(&) ∧ reach#(&)
∙ C2+(&) = >+(&)
∙ C1,1(&, () = C1(&) ∧ C1(() ∧ =((, &)
∙ C2,2(&, () = =(&, ()∧(¬>#(&)∨(>#(&)∧¬reach#(&)))
∙ C1,2(&, ()=(&=()∧C1(&)∧(first(&)∨∃P(>#(P)∧=(P, &)))
∙ C2,1(&, ()=C1(() ∧>#(&) ∧ reach#(&) ∧ (∃P(=((, P) ∧
>#(P))) ∧ (∀P((path(&, P) ∧ path(P, ()) → ¬>#(P)))

We say that an 0-string transformation is regular iff it can be
implemented by an MSO string transducer. We next present a
two-way finite state machine model of 0-transformations, and
show that it can express all regular 0-transformations.

B. Two-Way 0-string Transducers with Regular Look-Around

A tuple / = (E/,Σ,Δ/,ℱ/) is a look-ahead automaton
if for all Q ∈ E/, (E/, Q,Σ,Δ/,ℱ/) is a Muller automaton
(we write >(/, Q) for its recognized language). We say that
a tuple . = (E0 ,Σ,Δ0 , ,0) is a look-behind automaton if
for all Q ∈ E0 , (E0 , Q,Σ,Δ0 , ,0) is a deterministic finite
automaton (we write >(., Q) for its recognized language).

We consider 2-way 0-string transducers with regular look-
around (with both look-ahead and look-behind capabilities);

however we note that the look-behind feature is introduced for
technical convenience, and is not crucial for MSO-equivalence.

Definition 2. A 2-way 0-string transducer with look-around
(2WSTla) is a pair (L,/,.) where / and . are look-ahead
and look-behind automata, resp., and L = (Σ,Γ, E, -0, F, ,)
is a tuple s.t. Σ and Γ are finite sets of input and output
alphabets, E is a finite set of states, -0 ∈ E is an initial state,
F : E×E0 ×Σ×E/ → E×Γ×{−1, 0,+1} is a transition
function, and , ⊆ 21 is a Muller acceptance condition.

A 2-way transducer stores the input string on a two-way
tape and hence can read each index of input string multiple
times. A configuration of a 2-way transducer is thus the tuple
(-, 3) ∈ E×ℕ where - is the state of the 2WST, and 3 is the
current position on the input tape. We assume that 2WSTla

are deterministic i.e. for every string 2 ∈ Σ" and every input
position 3 ≤ ∣2∣, there is exactly one state Q ∈ E/ and
one state G ∈ E0 such that 2(3)2(3 + 1) . . . ∈ >(/, Q) and
2(0)2(1) . . . 2(3− 1) ∈ >(., G).

Let 2 ∈ Σ" be an input string. If the current configuration
is (-, 3) and F(-, G, 2(3), Q) = (-′, P, +) is a transition, such that
the string 2(3)2(3+1) . . . ∈ >(/, Q) and 2(0)2(1) . . . 2(3−1) ∈
>(., G), then 2WSTla writes P ∈ Γ on the output tape and
updates its configuration to (-′, 3 + +) where + specify the
direction of the movement of input pointer, such that + ∈
{−1, 0,+1} if 3 > 0 and + ∈ {0,+1} if 3 = 0. We denote

such a transition as (-, 3)
2,(($),3∣4−−−−−−→ (-′, 3 + +). The run of a

2WST L on an input string 2 is the sequence of transitions

run(2)=(-0, 30=0)
21,(($0),31∣41−−−−−−−−→ (-1, 31)

22,(($1),32∣42−−−−−−−−→ ⋅ ⋅ ⋅ .
The output out(G) of such a run G is defined as P1P2

We say that the run G reads the whole string 2 if
sup {3! : 0 ≤ ; < ∣G∣} = ∞. The output L (2) of a string
2 is defined only when Ω(run(2)) ∈ , and run(2) reads the
whole string 2, and it is equal to out(run(2)). Without the
latter requirement, transductions that are not regular could be
defined: e.g. the transduction that maps any 0-string J#K such
that # occurs only once, to J".

We say that a look-ahead (look-behind) automaton is blind
if for every starting state Q ∈ E/ (G ∈ E0) we have that
>(/, Q) = Σ" (>(., G) = Σ∗). A two-way 0-string trans-
ducer 2WST (without a look-around) is defined as a 2WSTla

with a blind look-ahead and look-behind. As mentioned in
Introduction, 2WSTla are strictly more expressive than 2WST.

The following result can be easily extended from the results
in [7] for the transducers over finite strings and classical results
of Büchi [4] and McNaughton [5].

Proposition 1 (MSOT = 2WSTla). An 0-regular transforma-
tion is MSOT-definable iff it is 2WSTla-definable.

C. Streaming 0-String Transducers

Let @ be a finite set of variables and Γ be a finite alphabet.
A substitution R is defined as a mapping R : @ → (Γ ∪@)∗.
A valuation is defined as a substitution R : @ → Γ∗. Let
;5,Γ be the set of all substitutions [@ → (Γ ∪ @)∗]. Any
substitution R can be extended to R̂ : (Γ ∪@)∗ → (Γ ∪@)∗

in a straightforward manner. The composition R1R2 of two
substitutions R1 and R2 is defined as the standard function
composition R̂1R2, i.e. R̂1R2(&) = R̂1(R2(&)) for all & ∈ @ .
We say that a string J ∈ (Γ ∪ @)∗ is copyless (or linear) if
each & ∈ @ occurs at most once in J. A substitution R is
copyless if R̂(J) is copyless, for all J ∈ (Γ ∪@)∗ .

Definition 3. A (deterministic) streaming 0-string transducer
(SST) is a tuple L = (Σ,Γ, E, -0, F,@, S, ,) where:

∙ Σ and Γ are finite sets of input and output alphabets;
∙ E is a finite set of states with initial state -0;
∙ F : E× Σ → E is a transition function;
∙ @ is a finite set of variables;
∙ S : (E × Σ) → ;5,Γ is a variable update function such

that S(-, !) is a copyless substitution for (-, !) ∈ E×Σ;
∙ , : 2) ⇀ @∗ is an output function such that for all 1 ∈
dom(,) the string , (1) is copyless of form &1 . . . &!,
and for -, -′ ∈ 1 and ! ∈ Σ s.t. -′ = F(-, !) we have

– S(-, !)(&$) = &$ for all 3 < ; and
– S(-, !)(&!) = &!J for some J ∈ (Γ ∪@)∗.

The concept of a run of an SST is defined in an anal-
ogous manner to that of a Muller automaton. The se-
quence ⟨R2,$⟩0≤$≤∣2∣ of substitutions induced by a run G =

-0
&1−→ -1

&2−→ -2 . . . is defined inductively as the following:
R2,$=R2,$−1S(-$−1, !$) for 0 < 3 ≤ ∣G∣ and R2,0 = & ∈ @ !→ *.
The output function , can be extended to the infinite runs such
that , (G) = , (Ω(G)) for every run G. The output L (G) of an
infinite run G of L is defined only if , (G) is defined and equals

L (G)
def
= lim

$→∞
⟨R2,$(, (G))⊥"⟩.

The assumptions on the output function , , introduced in
Definition 3, ensure that this limit always exist whenever
, (G) is defined. Indeed, when a run G reaches a point from
where it visits only states in 1 , these assumptions enforce the
successive valuations of , (1) to be an increasing sequence
of strings by the prefix relation. The padding by unique letter
⊥ ensures that the output is always an 0-string. The output
L (2) of a string 2 is then defined as the output L (G) of its
unique run G. The transformation !L " defined by an SST L is
the partial function {(2, L (2)) : L (2) is defined}.

Example 3. The transformation I1 from Example 1 is de-
finable by the SST in Figure 4. Consider the successive
valuations of &, (, and P upon reading the string !%#!" .

! % # ! ! . . .
& * * * %!!%# %!!%# %!!%#
(* !! %!!% * !! !!!!
P * ! !% * ! !!

Notice that the limit of &P exists and equals %!!%#!" .

We remark that for every SST L = (Σ,Γ, E, -0, F,@, S, ,),
its domain is always an 0-regular language defined by the
Muller automaton (Σ, E, -0, F,dom(,)), which can be con-
structed in linear time. However, the range of an SST may
not be 0-regular. For instance, the range of the SST-definable
transformation !!#" !→ !!%!#" (; ≥ 0) is not 0-regular.

1start 2

#

∣∣∣∣∣∣

& := &#
(:= *
P := *

#∣(&, (, P) := (&, #(#, P#)

#

∣∣∣∣∣∣

& := &
(:= #(#
P := P#

#∣(&, (, P) := (&(#, *, *)

Fig. 4. SST defining the transformation (1 of Example 1. Here transition
labeled with * stands for those with label # or), and the output function is
such that % ({2}) = '+.

IV. EQUIVALENT EXTENSIONS OF SST

In this section, we demonstrate the robustness of the class of
SST-definable transformations by adding several features that
do not increase expressiveness. First, we introduce copying
in the variable updates, which in general may lead to non-
linear size increase in transformation. We show that the class
of SST is closed under a restricted application of such copy—
the so-called bounded copy—which allows the content of some
variable to be copied a bounded number of times. We also
introduce non-deterministic SSTs, i.e. SSTs with nondeter-
ministic transitions, and show that any non-deterministic SST
which defines a function is equivalent to some (deterministic)
SST. Finally, we show that enabling the transitions to employ
regular look-around does not increase expressiveness of SST.

A. SSTs with Bounded Copy

Copyful SSTs generalize SSTs by dropping the requirement
on variable updates to be copyless. Copyful SST are strictly
more expressive than SST. For instance, an 0-transformation
!!%" !→ !2

!−1%" is not definable by an SST, as SST can only
express transformations with linear-size increase [10], but it is
definable by a copyful SST.

Example 4. Consider the following copyful implementation
of the transformation I1.

1start 2

#

∣∣∣∣∣∣

& := &#
(:= *
P := *

#∣(&, (, P) := (&#, #(#, &)

#

∣∣∣∣∣∣

& := &#
(:= #(#
P := P

#∣(&, (, P) := (P(#, *, *)

Here # ∈ {!, %} and the output function , is defined by
, ({2}) = &.

Also, variable & denotes the output, (denotes the string JJ
where J is the current maximal #-free string, and P denotes
the value of & when the last # was read (if any, otherwise it
is the current value of &). Observe that the number of times
variable & gets copied (via the thick transition) is unbounded.
However, this transformation can be implemented as an SST
(Example 3), as the content of & is never present twice in

the same string variable. On the thick transition variable &
contributes to both & and P. This copy stays “alive” while
looping on state 2, i.e. the content of & before copying is
present in two places (& and P). However, the copy “dies”
when taking a transition from 2 to 1: & is reset to P(# and P
to *. Hence, at any given time there are at most 1 alive copy,
and we say that this SST is 1-bounded.

In this section, we define a restriction of copyful SSTs,
called bounded copy SSTs (SSTbc), that stays as expressive
as SSTs. Intuitively, it is defined as SST for which the number
of alive copies is bounded at any time. This notion is better
formalized by introducing dependency graphs.
Dependency Graphs. A dependency graph keeps track of the
variable dependencies along some run of an SST. The presence
of an edge from a node labeled & to a node labeled (indicates
that the variable update of (uses variable &. We use multiple
edges when some variable is used several times to update
the same variable (e.g. & := ((). A node labeled & with
two successors labeled (and P resp. indicates a copyful
variable update, where & has been copied into both variables
(and P. A node labeled & with two predecessors indicates a
variable update where & has been updated by concatenating
the variables of its predecessors. The dependency graphs also
remember the order in which the variables are concatenated
via a mapping pred from any node to a finite string over
its predecessors. E.g., for an assignment & := P!(%P, we let
pred(;6) = ;4;7;4 where the edges (;7, ;6) and (;4, ;6)
represent the dependencies (→ & and P → & respectively.
We also maintain pointers from variables to terminal nodes.

Definition 4 (Dependency Graph). A dependency graph over
a set of variables @ is a tuple (O,=, T0, U,pred) such that:

∙ (O,=, U:O→@) is (finite) labeled directed acyclic graph,
where = : O 2 → ℕ is a multiset;

∙ T0 : @→O is an injective mapping such that U(T0(&))=&
and T0(&) has no successor, for all & ∈ @; and

∙ pred : O → O ∗ associates any ; ∈ O with a finite
string over O that represents the predecessors of ; and
is consistent with =, i.e. for all ;′ ∈ O , ;′ occurs exactly
=((;′, ;)) times in pred(;).

Each finite run of a (copyful) SST can naturally be associated
with its dependency graph. Given a copyful SST L and a finite
run G = -0

&1−→ -1
&2−→ -2 ⋅ ⋅ ⋅

&ℓ−→ -ℓ of L , the dependency
graph <9 (G) of G is a tuple (O,=, T0, U,pred) where:

1) O = @ × {0, . . . , ℓ};
2) for 3 < ℓ, 6 ≥ 0, and &, (∈@ , =((&, 3), ((, 3+ 1))

equals 6 iff & occurs 6 times in S(-$, !$+1)(();
3) for all & ∈ @ , T0(&) = (&, ℓ);
4) for all (&, 3) ∈ O , U(&, 3) = &,
5) for all 3 < ℓ, variables &, &1, . . . , &' ∈ @ ,
J0, . . . , J' ∈ Γ∗, if S(-$, !$+1)(&) = J0&1J1 . . . &'J',
then pred((&, 3+ 1)) = (&1, 3) . . . (&', 3).

Example 5. Dependency graphs can best be explained via
examples. The sequence of dependency graphs of the succes-
sive runs of the copyful SST of Example 4 on the prefixes of

1 2 2 1 2

co
py

fu
ll

SS
T

de
pe

nd
en

cy
gr

ap
hs

co
py

le
ss

SS
T

co
py

le
ss

up
da

te
s

!

∣∣∣∣∣∣

& := &!
(:= !(!
P := &

%

∣∣∣∣∣∣

& := &%
(:= %(%
P := P

#

∣∣∣∣∣∣

& := P(#
(:= *
P := *

%

∣∣∣∣∣∣

& := &%
(:= %(%
P := &

& P (

&0 P1 (2
!∣R1

& P (

& P (

&3

&0 P1 (2

%∣R2

& P (

& P (

& P (

Fig. 6

&3

&0 P1 (2

#∣R3

& P (

& P (

& P (

& P (

&0 P1 (2

& P (

& P (

& P (

& P (

& P (

&3

&0 P1 (2

%∣R2

P:0 P;0 P20 P:1 P;1 P21 P:2 P;2 P22 P:3 P;3 P23
R1 * * ! * * * !P:2 P;2 P22! P:0 P;0 P20
R2 P:0 P;0 P20% P:1 P;1 P21 %P:2 P;2 P22% P:3 P;3 P23
R3 P:1P

:
3P

;
3 P

2
3 P21 P:2P

;
2 P

2
2# * * * * * * * * *

R1R2R3 P:0P
;
0 P

2
0 * %!P:2P

;
2 P

2
2!%# * * * * * * * * *

Fig. 5. A run of the bounded copy SST of Example 4 on #)#) and its simulation by the construction of Prop.2.

!%#% is shown in Fig. 5. The mappings T0 are not represented
but they correspond to the bottom levels of the dependency
graphs. The order on predecessors (not represented on the
figure), are for instance given by pred((&, 1)) = (&, 0) and
pred((&, 3)) = (P, 2)((, 2) for the fourth graph.

Equivalently, the dependency graph of a run can be defined
by successive applications of an extension operator ⊠, defined
from the variable updates of the run and the initial dependency
graph (@,∅, 3+5 , 3+5 , pred0) where pred0 maps any node to
the empty sequence. E.g., the extension of some graph by the
substitution (&, (, P) := (P(#, *, *) is shown in Fig. 6. Let
<=(O,=, T0, U,pred) be a dependency graph and $ a substi-
tution of @-variables. We assume that O ∩@ = ∅, otherwise
we rename the vertices of <. We define =′ = {(T<((), &) !→
6 ∣ (occurs 6 times in $(&)}, T ′0(&) = & and U′(&) = &
for all &∈@ . Let $(&) = J0&1J1 . . . &'J' for some J$∈Γ∗

and &$∈@ . Then pred′(&) is defined by ;1 . . . ;' such that
(;$, &)∈=′ and U(;$)=&$ for all 1≤3≤6. The extension <⊠$
of < by $, is defined as (O ∪@,=∪=′, T ′0, U∪U′, pred∪pred

′).
SSTs with Bounded Copy. We now define the notion of
bounded copy. Let < = (O,=, T0, U,pred) be a dependency
graph. We call a node ; in < a copy node if it has at least
two outgoing edges (;, ;1) and (;, ;2) (;1 may equal ;2
as multiple edges are allowed, in that case we require that
=(;, ;1) ≥ 2). We say that the copy node ; is alive if there are
nodes ;′1, ;

′
2 ∈ T0(@) such that there exist a (directed) path

from ;1 to ;′1 and a (directed) path from ;2 to ;′2 (T0(@)
denotes the image of function T0). For example, in the last

dependency graph of Fig. 5, the occurrence of & on the top
(level 0) is a copy node but is not alive, while the occurrence
of & on the 3rd level is an alive copy node. We are now in
the position to define bounded copyful SST:

Definition 5 (SST with bounded copy). A W-bounded copyful
SST is a copyful SST such that for all runs G, the number of
alive copy nodes of <9 (G) is bounded by W ∈ ℕ. The class
of W-bounded copy SST for all W ∈ ℕ is denoted by SSTbc.

For example, the copyful SST of Example 4 is 1-bounded:
at most one copy node is alive in any dependency graph. The
most technically challenging result of this paper is to show that
bounded copy feature does not add expressiveness to SST.

Proposition 2 (SSTbc = SST). Any 0-transformation defin-
able by a bounded copyful SST is SST-definable.

The rest of this section is devoted to the proof of this
proposition. We let L = (E, -0,Σ,Γ, F,@, S, ,) be a W-
bounded copyful SST. We show that it can be simulated by
a copyless SST L ′. For the sake of technical convenience,
we make an assumption that ensures any node of dependency
graphs to have at most two successors and at most two
predecessors. This can be done, while preserving boundedness,
by decomposing updates as compositions of simple updates
with extra variables, and using epsilon transitions.

Assumption 1. We assume that any variable update S(-, !)
satisfies the following conditions, for all & ∈ @: (3) S(-, !)(&)
concatenates at most two variables, i.e. contains at most two

&3

&0 P1 (2

X0
extension

&3

&0 P1 (2

&4 P5 (6

X1
&3

P1 (2

&4 P5 (6

X2
&3

(2

&4 P5 (6

X3

(2

&4 P5 (6

X4

&4 P5(6

XRN

renaming

&0 P1 (2

P:0 P;0 P20 P:1 P;1 P21 P:2 P;2 P22 P:3 P;3 P23 P:4 P;4 P24 P:5 P;5 P25 P:6 P;6 P26
X0 * * # * * * * * *
X1
X2 * * * P:4P

:
1 P21P

;
4

X3 * * * P:4P
:
3P

;
3 P

2
3

X4 * * * P:2P
;
2 P

2
2P

2
4

XRN P:4 P;4 P24 P:5 P;5 P25 P:6 P;6 P26 * * * * * * * * * * * *

Fig. 6. Intermediate steps of the construction of ,3 = -0-1-2-3-4-RN in the the copyless SST of Fig. 5. Only changing updates are represented.

occurrences of variables, (33) there exist at most two variables
(∈ @ such that & occurs in S(-, !)(().

The main idea of the proof of Prop. 2 is to summarize into
new variables, from a countable set B, the result of variable
updates that occur on linear branches (i.e. sequences of nodes
with out and indegree at most 1) of dependency graphs. These
linear branches represent the evolution of variables by updates
that do not involve concatenation or copy. The summary
variables in B can be updated in a copyless manner, while
the copying structure of L can be stored in the states of
an SST as dependency graphs. There are, however, infinitely
many possible dependency graphs in general, therefore the
SST L ′ stores only an abstraction of them, called the reduced
dependency graphs. Moreover, we show that total number
of reduced dependency graphs is finite for a W-bounded
SST. Reduced dependency graphs keep only special nodes:
copy nodes, concatenation nodes (nodes with indegree 2), and
terminal nodes, while the linear branches are summarized by
a single edge. Moreover, nodes that are not connected to the
terminal level T0(@) are removed, since their values can not
contribute to the output. The values of string variables @ can
be reconstructed from the values of summary variables B and
the reduced dependency graphs.

The states of the copyless SST L ′ are pairs (-,<) where -
is a state of L and < is a reduced dependency graph. After
reading an input symbol ! ∈ Σ, the next state is (F(-, !), <′)
where <′ is the reduction of the extension <⊠S(-, !). More-
over, the nodes of the new reduced dependency graph are
renamed in such a way that they define an initial segment
of ℕ. This ensures, together with the W-bounded assumption,
that the number of reduced dependency graphs is finite.

The reduction of dependency graphs is shown in Fig. 5,
in which the graphs in the rectangular nodes correspond to
the reduction of the corresponding dependency graphs above
(nodes are identified by natural numbers in superscripts). The
reduction of a graph is defined by successive applications of
simple rewriting rules, as shown in Fig. 6 (transitions X1 to X4).

We now informally describe the variable mechanism of
the copyless SST, and how values of string variables @
are reconstructed from summary variables B and reduced

dependency graphs. For all nodes ; of a reduced dependency
graph, we introduce three fresh summary variables P:!, P

;
!

and P2! (left, middle and right). Since there are finitely
many reduced dependency graphs, one needs only a finite
number of summary variables for the construction. Suppose
that pred(;)=;1;2 for some nodes ;1, ;2. As the graph is
reduced, the edges (;1, ;) and (;2, ;) represent two linear
branches in the original dependency graph, i.e. two sequences
of updates of U(;1) and U(;2) that do not involve copy or
concatenation. The result of these two sequences of updates
are necessarily strings of the form J1U(;1)J′1 and J2U(;2)J′2
where J1, J′1, J2, J

′
2 ∈ Γ∗. The fact that (;1, ;) and (;2, ;)

have the same target indicates a concatenation update of
the form U(;) := J:J1U(;1)J′1J

;J2U(;2)J′2J
2, for some

J:, J;, J2 ∈ Γ∗. The variables P:!, P
;
! and P2! represent the

strings J:J1, J′1J
;J2 and J′2J

2 respectively.
More generally, the value of some variable & at some node

; is represented by the value of a string of summary variables,
called shape, defined by the variables P:0, P

;
0 and P20 and

inductively by the shape of its predecessor nodes. For instance,
the value of & after the first transition of Fig. 5 is given by the
value of P:0P

:
3P

;
3 P

2
3P

2
0 . The variables P;$ are needed for nodes

with two incoming edges, as shown before.

Example 6. In Fig. 5 we show a run of the copyful SST L
from Example 4, its simulation by a copyless SST L ′, and
corresponding variable updates. If initially the values of &, (
and P are *, then after the third transition, the value of & is
%!!%#. In the copyless SST L ′, the value of & after the third
transition equals the value of P:0P

;
0 P

2
0 , which, by R1R2R3, maps

to P:0P
;
0 P

2
0%!P

:
2P

;
2 P

2
2!%#, which in turn maps to %!!%# if the

summary variables are initialized to *. In Fig. 6 we detail
a transition of the copyless SST. It starts with the extension
of the reduced dependency graph, followed by the successive
rewritings of the reduction, and ends by the renaming of its
nodes. Each of these steps induces some summary B-variable
update (depicted in the table) such that R3=X0X1X2X3X4XRN.

B. Functional Non-deterministic SSTs

Non-deterministic SST (NSST for short) are defined simi-
larly as SST, except that the transitions are defined by a rela-

tion Δ ⊆ E×Σ×E and the update function is a total mapping
S : Δ → ; that maps any transition to a linear substitution.
Any NSST L defines a relation !L " ⊆ Σ" × Γ". We say that
an NSST L is functional if !L " is a partial function, i.e. for all
H ∈ Σ" , {H′ ∣ (H,H′) ∈ !L "} has cardinality at most 1. Note
that if an 0-transformation is definable by an NSST, this NSST
is functional as 0-transformations are (partial) functions. In
this section, we show that any 0-transformation definable by
an NSST is definable by a bounded copyful SST, and therefore
by an SST, thanks to Prop. 2.

Example 7. The transformation I1 of Example 1 can be
defined by the following NSST, in which non-determinism is
used to guess the last occurrence of #:

1start 2

#∣(&, () := (&(#, *)

#∣(&, () := (&, #(#)

#∣(&, () := (&(#, *)

#∣(&, () := (&#, *)

Here # ∈ {!, %} and the output function is , ({2}) = &.

Lemma 1. Any functional NSST with ; states and Y vari-
ables can be transformed into an equivalent Y;-bounded
copyful SST.

Proof (Sketch): Let L = (E, -0,Σ,Γ,Δ, @, S, ,) be a
functional NSST. Wlog we assume that L is trimmed, i.e. any
state - occurs in a least one run G such that , (G) is defined.
Any NSST can be trimmed in polynomial time.

We construct a bounded copyful SST L ′ and show its
equivalence to L . As L is non-deterministic, L ′ has to simulate
all the runs of L on an input string in a deterministic way. The
construction of L ′ uses determinization of Muller automata as
a black box. The key observation is that, since L is trimmed
and functional, we have that if two runs of L on an input
both reach some state -, then any accepting continuation of
those two runs on the same input string will produce the same
output. Therefore, L ′ can stop simulating one of the two runs
when they both reach -. This implies that only ∣E∣ runs are
simulated in parallel. Then for all & ∈ @ , a copy &= of & is
introduced for all - ∈ E, that denotes the content of variable
& for all the runs of L that are in state -. E.g., if there is a
transition of L from Q to - that updates & to &!, and another
transition from Q to -′ that updates & to &%, then L ′ updates the
variables &= and &=′ as &= := &3! and &=′ := &3%. Variable
updates may introduce copy, but in bounded manner.

From Prop. 2 and Lemma 1, we get the following result.

Proposition 3. An 0-transformation is definable by an NSST
iff it is definable by an SST.

C. SSTs with Regular Look-Around

We introduce NSST with look-around (NSSTla) and prove
that they can define all SST-definable transformations. In this
section we summarize the main features of NSSTla that are
required to understand the key ideas of the proof.

1 Q¬#

Q#

Q⊤

#, Q⊤∣(&, () := (&(#, *)

#, Q#∣(&, () := (&, #(#)

#, Q¬#

∣∣∣∣
& := &
(:= *

#

#, #

#

#

Fig. 7. SST with look-ahead defining the transformation (1 of Example 1,
for all * ∈ {#,)}. The output function % is defined by % ({1}) = '. The
accepting sets of the look-ahead are {.⊤} and {.¬#}.

Similar to 2-way transducers with regular look-around,
NSSTla are equipped with a (look-behind) finite automaton
. that can inspect the current (finite) prefix and a (look-
ahead) Muller automaton / that can inspect the current infinite
suffix. Transitions depend on the result of those inspections. In
particular, the transition relation is a set of tuples (-, G, !, Q, -′)
where -, -′ are two states of the NSST, ! is an input symbol,
G (resp. Q) is a state of the look-behind (resp. look-ahead)
automaton. The transition (-, G, !, Q, -′) can be triggered if the
current symbol is !, prefix up to current position is accepted
by . with initial state G, and the infinite suffix starting at the
current position is accepted by / with initial state Q.

Example 8. The transformation I1 of Example 1 is defined
by the SST with look-around in Fig. 7 (only the look-ahead
is represented, the look-behind is assumed to be blind). The
look-ahead can accept any suffix (state Q⊤), or decides if the
suffix contains # (state Q#), or not (state Q¬#).

Lemma 2. An 0-transformation is definable by a (functional)
NSST with look-around if and only if it is definable by a
(functional) NSST.

Sketch of proof: Let L be an NSST with look-ahead /
and look-behind .. The simulation of . is easy by a subset
construction. To simulate look-ahead /, we view the calls to /
as universal transitions: both the look-ahead and the transducer
must accept the remaining suffix. We define an alternating
Muller automaton Z that recognizes the accepting runs of
(L,/), i.e. the accepting sequences of tuples (-, !, Q, -′),
where -, -′ are states of L , ! ∈ Σ and Q is a look-ahead state.
Alternation is then removed by standard techniques, so that Z
is equivalent to some Muller automaton O . The alphabet of
O is finally projected on Σ, and the output mechanism of L
added. This projection may introduce non-determinism, even
if O is deterministic.

Combining Lemma 2 with Prop. 3 we get the following.

Proposition 4. Any 0-transformation definable by a functional
NSST with look-around is definable by an SST.

V. MSO EXPRESSIVENESS OF SST

Now we have all the ingredients to prove our main result
Theorem 1, i.e. to show that SST = MSOT. From Prop. 1
we know that two-way transducers with look-around can
implement any MSO-definable transformation. The following

proposition implies that functional SST with look-around can
also implement all MSO-definable transformations.

Proposition 5 (2WSTla ⊆ NSSTla). Any 2WSTla-definable
transformation is NSSTla-definable.

To prove this proposition we show in two steps that for every
2WSTla there exists an NSSTla implementing the same trans-
formation. First, we construct an SST with copy implementing
the same transformation adapting the classical reduction from
two-way finite automata to one-way finite automata. Next, we
remove the copy by introducing the nondeterminism.

From Prop. 4 it follows that every functional NSST with
regular look-around is effectively equivalent to an SST. There-
fore from Prop. 1 and Prop. 5, we get that any MSO-definable
transformation is SST-definable. A natural extension of the
proof for the finite string case yields the following result.

Proposition 6 (SST ⊆ MSOT). Any SST-definable 0-
transformation is MSOT-definable.

VI. DECISION PROBLEMS

Equivalence Problem. Given two SSTs the equivalence prob-
lem is to decide if they implement the same transformation

Theorem 3. Equivalence problem for SST is in PSPACE.

To prove this theorem we first check the equivalence of the
domains of L1 and L2, and then check functionality of L1∪L2.
Since (see Section III-C) a deterministic Muller automaton that
recognizes the domain of a given SST can be constructed in
linear time, and we can decide equivalence of Muller automata
in PTIME [17], it follows that the equivalence of the domains
can be decided in polynomial time. We next show that the
functionality of an NSST can be decided in polynomial space.

Lemma 3. Given an NSST L , it is decidable in PSPACE
whether L is functional.

Proof (Sketch): We construct a non-deterministic one-
reversal two-counter machine [(on finite strings) such that
>([) ∕= ∅ iff L is not functional. The size of [is exponen-
tial in the size of L , and since emptiness of bounded reversal
counter machines is in NL [18], the result follows. Clearly, L
is not functional iff there exist J ∈ +\Y(L), K1, K2 ∈ L (J)
and 3 ≥ 0 such that K1[3] ∕= K2[3]. Intuitively, machine [
guesses a position 3, and two finite runs G1 and G2 of L on the
same finite input string (of length 3 at least) and checks that G1
and G2 can be extended to form infinite runs, whose respective
outputs differ at 3-th position. The construction generalizes the
one for NSST on finite strings [19]. However, as [runs on
finite strings and L on infinite strings, we need to make sure
that there exist infinite continuations of strings evaluated by
[that are consistent with L .
Type-Checking Problem. Given a streaming string transducer
L , two 0-regular languages T and] as Muller automata />

and /?, respectively, the type-checking problem is to decide
whether for all strings J ∈ T we have that L (J) ∈].

Theorem 4. Type-checking problem for SST is in PSPACE.

VII. CONCLUSION

We initiate the study of the regular transformations of
infinite strings. We have shown a way to generalize streaming
string transducers to associate output with infinite strings that
capture the MSO definable global transformations. We also
show that model of two-way finite-state transducers extended
with 0-regular look-around can express regular transforma-
tions of infinite strings. We show that some natural and useful
extensions like bounded copy, functional nondeterminism, and
regular look-ahead do not increase their expressive power.
We prove the decidability of equivalence and type-checking
problems for MSO transformations of infinite strings by show-
ing that these problems can be solved for streaming string
transducers in PSPACE. At this stage we are not aware of
any concrete practical applications of regular transformations
of infinite strings, but we note that the theory of 0-regular
languages and the theory of regular transformations of finite
strings, both have found interesting practical applications.

ACKNOWLEDGMENT

This research was partially supported by NSF awards CNS
0931239, CNS 1035715, CCF 0915777.

REFERENCES
[1] J. R. Büchi, “Weak second-order arithmetic and finite automata,”

Zeitschrift für Mathematische Logik und Grundlagen der Mathematik,
vol. 6, no. 1–6, pp. 66–92, 1960.

[2] C. C. Elgot, “Decision problems of finite automata design and related
arithmetics,” In Transactions of the American Mathematical Society,
vol. 98, no. 1, pp. 21–51, 1961.

[3] B. A. Trakhtenbrot, “Finite automata and monadic second order logic,”
Siberian Mathematical Journal, vol. 3, pp. 101–131, 1962.

[4] J. R. Büchi, “On a decision method in restricted second-order arith-
metic,” in Int. Congr. for Logic Methodology and Philosophy of Science.
Standford University Press, Stanford, 1962, pp. 1–11.

[5] R. McNaughton, “Testing and generating infinite sequences by a finite
automaton,” Inform. Contr., vol. 9, pp. 521–530, 1966.

[6] B. Courcelle, “Monadic second-order definable graph transductions: a
survey,” Theoretical Computer Science, vol. 126(1), pp. 53–75, 1994.

[7] J. Engelfriet and H. J. Hoogeboom, “MSO definable string transductions
and two-way finite-state transducers,” ACM Trans. Comput. Logic, vol. 2,
pp. 216–254, 2001.

[8] J. Berstel, Transductions and context-free languages. Teubner, 1979.
[9] J. Sakarovitch, Elements of Automata Theory. Cambridge University

Press, 2009.
[10] R. Alur and P. Černý, “Expressiveness of streaming string transducers,”

in FSTTCS, vol. 8, 2010, pp. 1–12.
[11] A. Alur and P. Černý, “Streaming transducers for algorithmic verification

of single-pass list-processing programs,” in POPL, 2011, pp. 599–610.
[12] F. Gire, “Two decidability problems for infinite words,” IPL, vol. 22,

pp. 135–140, 3 Mar. 1986.
[13] S. Varricchio, “A polynomial time algorithm for the equivalence of

two morphisms on omega-regular languages,” in STACS 93, ser. LNCS.
Springer, 1993, vol. 665, pp. 595–606.

[14] Beal and Carton, “Determinization of transducers over infinite words:
The general case,” MST: Mathematical Systems Theory, vol. 37, 2004.

[15] J. Engelfriet and S. Maneth, “Macro tree transducers, attribute grammars,
and mso definable tree translations,” Inform. and Comput, vol. 154, pp.
34–91, 1998.

[16] R. Alur, E. Filiot, and A. Trivedi, “Regular transformations of infinite
strings,” University of Pennsylvania, Tech. Rep. MS-CIS-12-05, 2012.

[17] E. Clarke, I. Draghicescu, and R. Kurshan, “A unified approach for
showing language inclusion and equivalence between various types of
omega-automata,” IPL, vol. 46, no. 6, pp. 301 – 308, 1993.

[18] Gurari and Ibarra, “A note on finite-valued and finitely ambiguous
transducers,” MST: Mathematical Systems Theory, vol. 16, 1983.

[19] R. Alur and J. V. Deshmukh, “Nondeterministic streaming string trans-
ducers,” in ICALP, ser. LNCS, vol. 6756. Springer, 2011, pp. 1–20.

