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We propose the model of nested words for representation of data with both a linear ordering and

a hierarchically nested matching of items. Examples of data with such dual linear-hierarchical

structure include executions of structured programs, annotated linguistic data, and HTML/XML
documents. Nested words generalize both words and ordered trees, and allow both word and

tree operations. We define nested word automata—finite-state acceptors for nested words, and

show that the resulting class of regular languages of nested words has all the appealing the-
oretical properties that the classical regular word languages enjoys: deterministic nested word

automata are as expressive as their nondeterministic counterparts; the class is closed under union,
intersection, complementation, concatenation, Kleene-*, prefixes, and language homomorphisms;

membership, emptiness, language inclusion, and language equivalence are all decidable; and de-

finability in monadic second order logic corresponds exactly to finite-state recognizability. We
also consider regular languages of infinite nested words and show that the closure properties,

MSO-characterization, and decidability of decision problems carry over.

The linear encodings of nested words give the class of visibly pushdown languages of words, and
this class lies between balanced languages and deterministic context-free languages. We argue that

for algorithmic verification of structured programs, instead of viewing the program as a context-

free language over words, one should view it as a regular language of nested words (or equivalently,
a visibly pushdown language), and this would allow model checking of many properties (such as

stack inspection, pre-post conditions) that are not expressible in existing specification logics.

We also study the relationship between ordered trees and nested words, and the corresponding
automata: while the analysis complexity of nested word automata is the same as that of classical

tree automata, they combine both bottom-up and top-down traversals, and enjoy expressiveness
and succinctness benefits over tree automata.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program verifica-

tion—Model checking; F.4.3 [Mathematical logic]: Formal languages—Context-free languages

General Terms: Theory, Verification

Additional Key Words and Phrases: Pushdown automata, Software model checking, Tree au-

tomata, XML processing

Rajeev Alur, Department of Computer and Information Science, University of Pennsylvania, 3330

Walnut Street, Philadelphia, PA 19104. Email: alur@cis.upenn.edu
Madhusudan Parthasarathy, Department of Computer Science, University of Illinois at Urbana-

Champaign, 201 N. Goodwin Avenue, Urbana, IL 61801. Email: madhu@cs.uiuc.edu

This paper unifies and extends results that have appeared in conference papers [Alur and Mad-
husudan 2004], [Alur and Madhusudan 2006], and [Alur 2007].
This version is a revised version of the paper that appeared in JACM: it fixes a bug in the

deteminization construction in Theorem 3.3.
Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2009 ACM 0004-5411/2009/0100-0001 $5.00

Journal of the ACM, Vol. 56, No. 3, May 2009, Pages 1–0??.



2 · R. Alur and P. Madhusudan

1. INTRODUCTION

Linearly structured data is usually modeled as words, and queried using word au-
tomata and related specification languages such as regular expressions. Hierarchi-
cally structured data is naturally modeled as (unordered) trees, and queried using
tree automata. In many applications including executions of structured programs,
annotated linguistic data, and primary/secondary bonds in genomic sequences, the
data has both a natural linear sequencing of positions and a hierarchically nested
matching of positions. For example, in natural language processing, the sentence
is a linear sequence of words, and parsing into syntactic categories imparts the hi-
erarchical structure. Sometimes, even though the only logical structure on data is
hierarchical, linear sequencing is added either for storage or for stream processing.
For example, in SAX representation of XML data, the document is a linear se-
quence of text characters, along with a hierarchically nested matching of open-tags
with closing tags.

In this paper, we propose the model of nested words for representing and querying
data with dual linear-hierarchical structure. A nested word consists of a sequence
of linearly ordered positions, augmented with nesting edges connecting calls to
returns (or open-tags to close-tags). The edges do not cross creating a properly
nested hierarchical structure, and we allow some of the edges to be pending. This
nesting structure can be uniquely represented by a sequence specifying the types
of positions (calls, returns, and internals). Words are nested words where all po-
sitions are internals. Ordered trees can be interpreted as nested words using the
following traversal: to process an a-labeled node, first print an a-labeled call, pro-
cess all the children in order, and print an a-labeled return. Note that this is a
combination of top-down and bottom-up traversals, and each node is processed
twice. Binary trees, ranked trees, unranked trees, hedges, and documents that do
not parse correctly, all can be represented with equal ease. Word operations such
as prefixes, suffixes, concatenation, reversal, as well as tree operations referring to
the hierarchical structure, can be defined naturally on nested words.

We define and study finite-state automata as acceptors of nested words. A nested
word automaton (NWA) is similar to a classical finite-state word automaton, and
reads the input from left to right according to the linear sequence. At a call, it
can propagate states along both linear and nesting outgoing edges, and at a return,
the new state is determined based on states labeling both the linear and nesting
incoming edges. The resulting class of regular languages of nested words has all the
appealing theoretical properties that the regular languages of words and trees enjoy.
In particular, we show that deterministic nested word automata are as expressive
as their nondeterministic counterparts. Given a nondeterministic automaton A
with s states, the determinization involves subsets of pairs of states (as opposed to
subsets of states for word automata), leading to a deterministic automaton with

2s
2

states, and we show this bound to be tight. The class is closed under all
Boolean operations (union, intersection, and complement), and a variety of word
operations such as concatenation, Kleene-∗, and prefix-closure. The class is also
closed under nesting-respecting language homomorphisms, which can model tree
operations. Decision problems such as membership, emptiness, language inclusion,
and language equivalence are all decidable. We also establish that the notion of

Journal of the ACM, Vol. 56, No. 3, May 2009.



Adding nesting structure to words · 3

regularity coincides with the definability in the monadic second order logic (MSO)
of nested words (MSO of nested words has unary predicates over positions, first
and second order quantifiers, linear successor relation, and the nesting relation).

The motivating application area for our results has been software verification.
Pushdown automata naturally model the control flow of sequential computation in
typical programming languages with nested, and potentially recursive, invocations
of program modules such as procedures and method calls. Consequently, a vari-
ety of program analysis, compiler optimization, and model checking questions can
be formulated as decision problems for pushdown automata. For instance, in con-
temporary software model checking tools, to verify whether a program P (written
in C, for instance) satisfies a regular correctness requirement ϕ (written in linear
temporal logic LTL, for instance), the verifier first abstracts the program into a
pushdown model P a with finite-state control, compiles the negation of the specifi-
cation into a finite-state automaton A¬ϕ that accepts all computations that violate
ϕ and algorithmically checks that the intersection of the languages of P a and A¬ϕ
is empty. The problem of checking regular requirements of pushdown models has
been extensively studied in recent years leading to efficient implementations and
applications to program analysis [Reps et al. 1995; Boujjani et al. 1997; Ball and
Rajamani 2000; Alur et al. 2005; Henzinger et al. 2002; Esparza et al. 2003; Chen
and Wagner 2002]. While many analysis problems such as identifying dead code and
accesses to uninitialized variables can be captured as regular requirements, many
others require inspection of the stack or matching of calls and returns, and are
context-free. Even though the general problem of checking context-free properties
of pushdown automata is undecidable, algorithmic solutions have been proposed
for checking many different kinds of non-regular properties. For example, access
control requirements such as “a module A should be invoked only if the module
B belongs to the call-stack,” and bounds on stack size such as “if the number of
interrupt-handlers in the call-stack currently is less than 5, then a property p holds”
require inspection of the stack, and decision procedures for certain classes of stack
properties already exist [Jensen et al. 1999; Chen and Wagner 2002; Esparza et al.
2003; Chatterjee et al. 2004]. A separate class of non-regular, but decidable, prop-
erties includes the temporal logic Caret that allows matching of calls and returns
and can express the classical correctness requirements of program modules with
pre and post conditions, such as “if p holds when a module is invoked, the module
must return, and q holds upon return” [Alur et al. 2004]. This suggests that the an-
swer to the question “which class of properties are algorithmically checkable against
pushdown models?” should be more general than “regular word languages.” Our
results suggest that the answer lies in viewing the program as a generator of nested
words. The key feature of checkable requirements, such as stack inspection and
matching calls and returns, is that the stacks in the model and the property are
correlated: while the stacks are not identical, the two synchronize on when to push
and when to pop, and are always of the same depth. This can be best captured by
modeling the execution of a program P as a nested word with nesting edges from
calls to returns. Specification of the program is given as a nested word automaton
A (or written as a formula ϕ in one of the new temporal logics for nested words),
and verification corresponds to checking whether every nested word generated by
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P is accepted by A. If P is abstracted into a model P a with only boolean variables,
then it can be interpreted as an NWA, and verification can be solved using decision
procedures for NWAs. Nested-word automata can express a variety of require-
ments such as stack-inspection properties, pre-post conditions, and interprocedural
data-flow properties. More broadly, modeling structured programs and program
specifications as languages of nested words generalizes the linear-time semantics
that allows integration of Pnueli-style temporal reasoning [Pnueli 1977] and Hoare-
style structured reasoning [Hoare 1969]. We believe that the nested-word view will
provide a unifying basis for the next generation of specification logics for program
analysis, software verification, and runtime monitoring.

Given a language L of nested words over Σ, the linear encoding of nested words
gives a language L̂ over the tagged alphabet consisting of symbols tagged with the
type of the position. If L is regular language of nested words, then L̂ is context-free.
In fact, the pushdown automata accepting L̂ have a special structure: while reading
a call, the automaton must push one symbol, while reading a return symbol, it must
pop one symbol (if the stack is non-empty), and while reading an internal symbol,
it can only update its control state. We call such automata visibly pushdown au-
tomata and the class of word languages they accept visibly pushdown languages
(VPL). Since our automata can be determinized, VPLs correspond to a subclass
of deterministic context-free languages (DCFL). We give a grammar-based charac-
terization of VPLs, which helps in understanding of VPLs as a generalization of
parenthesis languages, bracketed languages, and balanced languages [McNaughton
1967; Ginsburg and Harrison 1967; Berstel and Boasson 2002]. Note that VPLs
have better closure properties than CFLs, DCFLs, or parenthesis languages: CFLs
are not closed under intersection and complement, DCFLs are not closed under
union, intersection, and concatenation, and balanced languages are not closed un-
der complement and prefix-closure.

Data with dual linear-hierarchical structure is traditionally modeled using binary,
and more generally, using ordered unranked, trees, and queried using tree automata
(see [Neven 2002; Libkin 2005; Schwentick 2007] for recent surveys on applications
of unranked trees and tree automata to XML processing). In ordered trees, nodes
with the same parent are linearly ordered, and the classical tree traversals such as
infix (or depth-first left-to-right) can be used to define an implicit ordering of all
nodes. It turns out that, hedges, where a hedge is a sequence of ordered trees,
are a special class of nested words, namely, the ones corresponding to Dyck words,
and regular hedge languages correspond to balanced languages. For document
processing, nested words do have many advantages over ordered trees as trees lack
an explicit ordering of all nodes. Tree-based representation implicitly assumes that
the input linear data can be parsed into a tree, and thus, one cannot represent
and process data that may not parse correctly. Word operations such as prefixes,
suffixes, and concatenation, while natural for document processing, do not have
analogous tree operations. Second, tree automata can naturally express constraints
on the sequence of labels along a hierarchical path, and also along the left-to-right
siblings, but they have difficulty to capture constraints that refer to the global linear
order. For example, the query that patterns p1, . . . pk appear in the document in
that order (that is, the regular expression Σ∗p1Σ∗ . . . pkΣ∗ over the linear order)
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compiles into a deterministic word automaton (and hence deterministic NWA) of
linear size, but standard deterministic bottom-up tree automaton for this query
must be of size exponential in k. In fact, NWAs can be viewed as a kind of tree
automata such that both bottom-up tree automata and top-down tree automata
are special cases.

Analysis of liveness requirements such as “every write operation must be fol-
lowed by a read operation” is formulated using automata over infinite words, and
the theory of ω-regular languages is well developed with many of the counterparts
of the results for regular languages (c.f. [Thomas 1990; Vardi and Wolper 1994]).
Consequently, we also define nested ω-words and consider nested word automata
augmented with acceptance conditions such as Büchi and Muller, that accept lan-
guages of nested ω-words. We establish that the resulting class of regular languages
of nested ω-words is closed under operations such as union, intersection, comple-
mentation, and homomorphisms. Decision problems for these automata have the
same complexity as the corresponding problems for NWAs. As in the finite case, the
class can be characterized by the monadic second order logic. The significant differ-
ence is that deterministic automata with Muller acceptance condition on states that
appear infinitely often along the linear run do not capture all regular properties: the
language “there are only finitely many pending calls” can be easily characterized
using a nondeterministic Büchi NWA, and we prove that no deterministic Muller
automaton accepts this language. However, we show that nondeterministic Büchi
NWAs can be complemented and hence problems such as checking for inclusion are
still decidable.

Outline

Section 2 defines nested words and their word encodings, and gives different appli-
cation domains where nested words can be useful. Section 3 defines nested word
automata and the notion of regularity. We consider some variations of the defini-
tion of the automata, including the nondeterministic automata, show how NWAs
can be useful in program analysis, and establish closure properties. Section 4 gives
logic based characterization of regularity. In Section 5, we define visibly pushdown
languages as the class of word languages equivalent to regular languages of nested
words. We also give grammar based characterization, and study relationship to
parenthesis languages and balanced grammars. Section 6 studies decision prob-
lems for NWAs. Section 7 presents encoding of ordered trees and hedges as nested
words, and studies the relationship between regular tree languages, regular nested-
word languages, and balanced languages. To understand the relationship between
tree automata and NWAs, we also introduce bottom-up and top-down restrictions
of NWAs. Section 8 considers the extension of nested words and automata over
nested words to the case of infinite words. Finally, we discuss related work and
conclusions.

2. LINEAR HIERARCHICAL MODELS

2.1 Nested Words

Given a linear sequence, we add hierarchical structure using edges that are well
nested (that is, they do not cross). We will use edges starting at −∞ and edges
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ending at +∞ to model “pending” edges. Assume that −∞ < i < +∞ for every
integer i.

A matching relation ; of length `, for ` ≥ 0, is a subset of {−∞, 1, 2, . . . `} ×
{1, 2, . . . `,+∞} such that

(1) Nesting edges go only forward: if i; j then i < j;

(2) No two nesting edges share a position: for 1 ≤ i ≤ `, |{j | i ; j}| ≤ 1 and
|{j | j ; i}| ≤ 1;

(3) Nesting edges do not cross: if i ; j and i′ ; j′ then it is not the case that
i < i′ ≤ j < j′.

When i ; j holds, for 1 ≤ i ≤ `, the position i is called a call position. For
a call position i, if i ; +∞, then i is called a pending call, otherwise i is called
a matched call, and the unique position j such that i ; j is called its return-
successor . Similarly, when i ; j holds, for 1 ≤ j ≤ `, the position j is called a
return position. For a return position j, if −∞ ; j, then j is called a pending
return, otherwise j is called a matched return, and the unique position i such that
i ; j is called its call-predecessor . Our definition requires that a position cannot
be both a call and a return. A position 1 ≤ i ≤ ` that is neither a call nor a return
is called internal .

A matching relation ; of length ` can be viewed as a a directed acyclic graph
over ` vertices corresponding to positions. For 1 ≤ i < `, there is a linear edge from
i to i + 1. The initial position has an incoming linear edge with no source, and
the last position has an outgoing linear edge with no destination. For matched call
positions i, there is a nesting edge (sometimes also called a summary edge) from i
to its return-successor. For pending calls i, there is a nesting edge from i with no
destination, and for pending returns j, there is a nesting edge to j with no source.
We call such graphs corresponding to matching relations as nested sequences. Note
that a call has indegree 1 and outdegree 2, a return has indegree 2 and outdegree
1, and an internal has indegree 1 and outdegree 1.

Figure 1 shows two nested sequences. Nesting edges are drawn using dotted
lines. For the left sequence, the matching relation is {(2, 8), (4, 7)}, and for the
right sequence, it is {(−∞, 1), (−∞, 4),
(2, 3), (5,+∞), (7,+∞)}. Note that our definition allows a nesting edge from a
position i to its linear successor, and in that case there will be two edges from
i to i + 1; this is the case for positions 2 and 3 of the second sequence. The
second sequence has two pending calls and two pending returns. Also note that all
pending return positions in a nested sequence appear before any of the pending call
positions.

A nested word n over an alphabet Σ is a pair (a1 . . . a`,;), for ` ≥ 0, such that
ai, for each 1 ≤ i ≤ `, is a symbol in Σ, and ; is a matching relation of length
`. In other words, a nested word is a nested sequence whose positions are labeled
with symbols in Σ. Let us denote the set of all nested words over Σ as NW (Σ). A
language of nested words over Σ is a subset of NW (Σ).

A nested word n with matching relation ; is said to be well-matched if there
is no position i such that −∞ ; i or i ; +∞. Thus, in a well-matched nested
word, every call has a return-successor and every return has a call-predecessor. We
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1

2

4

7

98 4 5

7

3 1 2 3 6

5 6 8

Fig. 1. Sample nested sequences

will use WNW (Σ) ⊆ NW (Σ) to denote the set of all well-matched nested words
over Σ. A nested word n of length ` is said to be rooted if 1 ; ` holds. Observe
that a rooted word must be well-matched. In Figure 1, only the left sequence is
well-matched, and neither of the sequences is rooted.

While the length of a nested word captures its linear complexity, its (nesting)
depth captures its hierarchical complexity. For i; j, we say that the call position
i is pending at every position k such that i < k < j. The depth of a position i is the
number of calls that are pending at i. Note that the depth of the first position 0, it
increases by 1 following a call, and decreases by 1 following a matched return. The
depth of a nested word is the maximum depth of any of its positions. In Figure 1,
both sequences have depth 2.

2.2 Word Encoding

Nested words over Σ can be encoded by words in a natural way by using the tags
〈 and 〉 to denote calls and returns, respectively. For each symbol a in Σ, we will
use a new symbol 〈a to denote a call position labeled with a, and a new symbol a〉
to denote a return position labeled with a. We use 〈Σ to denote the set of symbols
{〈a | a ∈ Σ}, and Σ〉 to denote the set of symbols {a〉 | a ∈ Σ}. Then, given an
alphabet Σ, define the tagged alphabet Σ̂ to be the set Σ ∪ 〈Σ ∪ Σ〉. Formally,
we define the mapping nw w : NW (Σ) 7→ Σ̂∗ as follows: given a nested word
n = (a1, . . . a`,;) of length ` over Σ, n̂ = nw w(n) is a word b1, . . . b` over Σ̂ such
that for each 1 ≤ i ≤ `, bi = ai if i is an internal, bi = 〈ai if i is a call, and bi = ai〉
if i is a return.

For Figure 1, assuming all positions are labeled with the same symbol a, the
tagged words corresponding to the two nested sequences are a〈aa〈aaaa〉a〉a, and
a〉〈aa〉a〉〈aa〈aa.

Since we allow calls and returns to be pending, every word over the tagged
alphabet Σ̂ corresponds to a nested word. This correspondence is captured by the
following lemma:

Lemma 2.1. The transformation nw w : NW (Σ) 7→ Σ̂∗ is a bijection.

The inverse of nw w is a transformation function that maps words over Σ̂ to
nested words over Σ, and will be denoted w nw : Σ̂∗ 7→ NW (Σ). This one-to-one
correspondence shows that:

Proposition 2.2 (Counting nested sequences). There are exactly 3` dis-
tinct matching relations of length `, and the number of nested words of length ` over
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global int x;

main() {

x = 3 ;

if P x=1;

}

bool P() {

local int y=0;

x = y;

if (x==0) return 1

else return 0;

}

Fig. 2. Example program

an alphabet Σ is 3`|Σ|`.

Observe that if w is a word over Σ, then w nw(w) is the corresponding nested
word with the empty matching relation.

Using the correspondence between nested words and tagged words, every classical
operation on words and languages of nested words can be defined for nested words
and languages of nested words. We list a few operations below.

Concatenation of two nested words n and n′ is the nested word w nw(nw w(n)nw w(n′)).
Notice that the matching relation of the concatenation can connect pending calls of
the first with the pending returns of the latter. Concatenation extends to languages
of nested words, and leads to the operation of Kleene-∗ over languages.

Given a nested word n = w nw(b1 . . . b`), its subword from position i to j, denoted
n[i, j], is the nested word w nw(bi . . . bj), provided 1 ≤ i ≤ j ≤ `, and the empty
nested-word otherwise. Note that if i ; j in a nested word, then in the subword
that starts before i and ends before j, this nesting edge will change to a pending
call edge; and in the subword that starts after i and ends after j, this nesting edge
will change to a pending return edge. Subwords of the form n[1, j] are prefixes
of n and subwords of the form n[i, `] are suffixes of n. Note that for 1 ≤ i ≤ `,
concatenating the prefix n[1, i] and the suffix n[i+ 1, `] gives back n.

For example, for the first sequence in Figure 1, the prefix of first five positions is
the nested word corresponding to a〈aa〈aa, and has two pending calls; the suffix of
last four positions is the nested word corresponding to aa〉a〉a, and has two pending
returns.

2.3 Examples

In this section, we give potential applications where data has the dual linear-
hierarchical structure, and can naturally be modeled using nested words.

2.3.1 Executions of sequential structured programs. In the linear-time semantics
of programs, execution of a program is typically modeled as a word. We propose to
augment this linear structure with nesting edges from entries to exits of program
blocks.

As a simple example, consider the program of Figure 2. For program analysis,
the choice of Σ depends on the desired level of detail. As an example, suppose
we are interested in tracking read/write accesses to the global program variable x,

Journal of the ACM, Vol. 56, No. 3, May 2009.



Adding nesting structure to words · 9

en sk wr en ex wr ex

sk wr rd

Fig. 3. Sample program execution

and also whether these accesses belong to the same context. Then, we can choose
the following set of symbols: rd to denote a read access to x, wr to denote a write
access to x, en to denote beginning of a new scope (such as a call to a function
or a procedure), ex to denote the ending of the current scope, and sk to denote all
other actions of the program. Note that in any structured programming language,
in a given execution, there is a natural nested matching of the symbols en and ex.
Figure 3 shows a sample execution of the program modeled as a nested word.

The main benefit is that using nesting edges one can skip call to a procedure
entirely, and continue to trace a local path through the calling procedure. Consider
the property that “if a procedure writes to x then it later reads x.” This requires
keeping track of the context. If we were to model executions as words, the set of
executions satisfying this property would be a context-free language of words, and
hence, is not specifiable in classical temporal logics. Soon we will see that when we
model executions as nested words, the set of executions satisfying this property is
a regular language of nested words, and is amenable to algorithmic verification.

2.3.2 Annotated linguistic data. Linguistic research and NLP technologies use
large repositories (corpora) of annotated text and speech data. The data has a
natural linear order (the order of words in a sentence) while the annotation adds
a hierarchical structure. Traditionally, the result is represented as an ordered tree,
but can equally be represented as a nested word. For illustration, we use an example
from [Bird et al. 2006]. The sentence is

I saw the old man with a dog today

The linguistic categorization parses the sentence into following categories: S (sen-
tence), VP (verb phrase), NP (noun phrase), PP (prepositional phrase), Det (de-
terminer), Adj (adjective), N (noun), Prep (proposition), and V (verb). The parsed
sentence is given by the tagged word of Figure 4. The call and return positions are
tagged with the syntactic categories, while internal positions spell out the original
sentence. In the figure, we label each internal position with a word, but this can
be a sequence of internal positions, each labeled with a character. Since matching
calls and returns have the same symbol labeling them, the symbol is shown on the
connecting nesting edge.

To verify hypotheses, linguists need to ask fairly complex queries over such cor-
pora. An example, again from [Bird et al. 2006] is “find all sentences with verb
phrases in which a noun follows a verb which is a child of the verb phrase”. Here,
follows means in the linear order of the original sentence, and child refers to the
hierarchical structure imparted by parsing. The sentence in Figure 4 has this prop-
erty because “man” (and “dog”) follows “saw”. For such queries that refer to both
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with

Prep

I

saw

the old man

NP

Det Adj N

V

NP

a

Det

dog

N

NP

PP

today

N

S

VP

NP

Fig. 4. Parsed sentence as a nested word

hierarchical and linear structure, representation using nested words, as opposed to
classical trees, has succinctness benefits as discussed in Section 7.

2.3.3 XML documents. XML documents can be interpreted as nested words:
the linear structure corresponds to the sequence of text characters, and the hi-
erarchical structure is given by the matching of open- and close-tag constructs.
Traditionally, trees and automata on unranked trees are used in the study of XML
(see [Neven 2002; Libkin 2005] for recent surveys). However, if one is interested
in the linear ordering of all the leaves (or all the nodes), then representation using
nested words is beneficial. Indeed, the SAX representation of XML documents co-
incides with the tagged word encoding of nested words. The linear structure is also
useful while processing XML documents in streaming applications.

To explain the correspondence between nested words and XML documents, let
us revisit the parsed sentence of Figure 4. The same structure can be represented
as an XML document as shown in Figure 5. Instead of developing the connection
between XML and nested words in a formal way, we rely on the already well-
understood connection between XML and unranked ordered forests, and give precise
translations between such forests and nested words in Section 7.

3. REGULAR LANGUAGES OF NESTED WORDS

3.1 Nested Word Automata

Now we define finite-state acceptors over nested words that can process both linear
and hierarchical structure.

A nested word automaton (NWA) A over an alphabet Σ is a structure
(Q, q0, Qf , P, p0, Pf , δc, δi, δr) consisting of

—a finite set of (linear) states Q,

—an initial (linear) state q0 ∈ Q,

—a set of (linear) final states Qf ⊆ Q,

—a finite set of hierarchical states P ,

—an initial hierarchical state p0 ∈ P ,

—a set of hierarchical final states Pf ⊆ P ,

—a call-transition function δc : Q× Σ 7→ Q× P ,
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<S>

<NP> I

</NP>

<VP>

<V> saw

</V>

<NP>

<NP>

<Det> the

</Det>

<Adj> old

</Adj>

<N> man

</N>

</NP>

<PP>

<Prep> with

</Prep>

<NP>

<Det> a

</Det>

<N> dog

</N>

</NP>

</PP>

</NP>

</VP>

<N> today

</N>

</S>

Fig. 5. XML representation of parsed sentence

—an internal-transition function δi : Q× Σ 7→ Q, and

—a return-transition function δr : Q× P × Σ 7→ Q.

The automaton A starts in the initial state, and reads the nested word from left
to right according to the linear order. The state is propagated along the linear
edges as in case of a standard word automaton. However, at a call, the nested word
automaton can propagate a hierarchical state along the outgoing nesting edge also.
At a return, the new state is determined based on the states propagated along the
linear edge as well as along the incoming nesting edge. The pending nesting edges
incident upon pending returns are labeled with the initial hierarchical state. The
run is accepting if the final linear state is accepting, and if the hierarchical states
propagated along pending nesting edges from pending calls are also accepting.

Formally, a run r of the automaton A over a nested word n = (a1 . . . a`,;) is
a sequence qi ∈ Q, for 0 ≤ i ≤ `, of states corresponding to linear edges starting
with the initial state q0, and a sequence pi ∈ P , for calls i, of states corresponding
to nesting edges, such that for each position 1 ≤ i ≤ `,

—if i is a call, then δc(qi−1, ai) = (qi, pi);

—if i is an internal, then δi(qi−1, ai) = qi;
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0,<0/p1,0>/p0,0>/p
q0 q1

0,<0/p0,1>/p1,0>/p

1,<1/p0,1>/p0,1>/p 1,<0/p1,0>/p1,1>/p

1

0

1

1

00 1 0

1

1 0 1 1 0

0 0 0

q0 q0

q1

q1
q0

p0

p1

q1

q0

q1

q0 q1

q0

p

p

q1

p1

q0
q0

q0
q1

q1

q1

q1

p0

p1

Fig. 6. Example of an NWA and its runs

—if i is a return with call-predecessor j, then δr(qi−1, pj , ai) = qi, and if i is a
pending return, then δr(qi−1, p0, ai) = qi.

Verify that for a given nested word n, the automaton has precisely one run over n.
The automaton A accepts the nested word n if in this run, q` ∈ Qf and for pending
calls i, pi ∈ Pf .

The language L(A) of a nested-word automaton A is the set of nested words
it accepts. We define the notion of regularity using acceptance by finite-state au-
tomata:

A language L of nested words over Σ is regular if there exists a nested
word automaton A over Σ such that L = L(A).

To illustrate the definition, let us consider an example. Suppose Σ = {0, 1}.
Consider the language L of nested words n such that every subword starting at a
call and ending at a matching return contains an even number of 0-labeled positions.
That is, whenever 1 ≤ i ≤ j ≤ ` and i ; j, |{k | i ≤ k ≤ j and ak = 0}| is even.
We will give an NWA whose language is L.

We use the standard convention for drawing automata as graphs over (linear)
states. A call transition δc(q, a) = (q′, p) is denoted by an edge from q to q′ labeled
with 〈a/p, and a return transition δr(q, p, a) = q′ is denoted by an edge from q
to q′ labeled with a〉/p. To avoid cluttering, we allow the transition functions to
be partial. In such a case, assume that the missing transitions go to the implicit
“error” state qe such that qe is not a final state, and all transitions from qe go to
qe.

The desired NWA is shown in Figure 6. It has 3 states q0, q1, and qe (not shown).
The state q0 is initial, and q0, q1 are final. It has 3 hierarchical states p, p0, p1, of
which p is initial, and p0, p1 are final. The state q0 means that the number of 0-
labeled positions since the last unmatched call is even, and state q1 means that this
number is odd. Upon a call, this information is propagated along the nesting edge,
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while the new linear state reflects the parity count starting at this new call. For
example, in state q1, while processing a call, the hierarchical state on the nesting
edge is p1, and the new linear state is q0/q1 depending on whether the call is labeled
1/0. Upon a return, if it is a matched return, then the current count must be even,
and the state is retrieved along the nesting edge. For example, in state q1, if the
current return is matched, then the return must be labeled 0 (if return is labeled
1, then the corresponding transition is missing in the figure, so the automaton will
enter the error state and reject), and the new state is set to q0/q1 depending on
whether the hierarchical state on the nesting edge is p0/p1. Unmatched returns,
indicated by the hierarchical state on the incoming nesting edge being p, are treated
like internal positions.

The runs of this automaton on two nested word are also shown in Figure 6. Both
words are accepted.

One can view nested word automata as graph automata over the nested sequence
of linear and hierarchical edges: a run is a labeling of the edges such that the states
on the outgoing edges at a node are determined by the states on the incoming edges
and the symbol labeling the node. Labels on edges with unspecified sources (the
initial linear edge and nesting edges into pending calls) need to satisfy initialization
constraints, and labels on edges with unspecified destination (the linear edge out
of last position and nesting edges from pending calls) need to satisfy acceptance
constraints.

3.2 Equivalent Definitions

In this section, we first describe some alternate ways of describing the acceptance
of nested words by NWAs, and then, some restrictions on the definition of NWAs
without sacrificing expressiveness.

Note that the call-transition function δc of a nested word automaton A has two
components that specify, respectively, the states to be propagated along the linear
and the hierarchical edges. We will refer to these two components as δlc and δhc .
That is, δc(q, a) = (δlc(q, a), δhc (q, a)).

For a nested word n, let 1 ≤ i1 < i2 · · · < ik ≤ ` be all the pending call positions
in n. Then, the sequence pi1 . . . pinq` in P ∗Q is the frontier of the run of the
automaton A on n, where each pij is the hierarchical state labeling the pending
nesting edge from call position ij , and q` is the last linear state of the run. The
frontier of the run at a position i is the frontier of the run over the prefix n[1, i].
The frontier of a run carries all the information of the prefix read so far, namely,
the last linear state and the hierarchical states labeling all the nesting edges from
calls that are pending at this position. In fact, we can define the behavior of the
automaton using only frontiers. The initial frontier is q0. Suppose the current
frontier is p1 . . . pkq, and the automaton reads a symbol a. If the current position
is an internal, the new frontier is p1 . . . pkδi(q, a). If the current position is a call,
then the new frontier is p1 . . . pkδ

h
c (q, a)δlc(q, a). If the current position is a return,

then if k > 0 then the new frontier is p1 . . . pk−1δr(q, pk, a), and if k = 0, then the
new frontier is δr(q, p0, a). The automaton accepts a word if the final frontier is in
P ∗fQf .

The definition of nested-word automata can be restricted in several ways with-
out sacrificing the expressiveness. Our notion of acceptance requires the last lin-
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ear state to be final and all pending hierarchical states to be final. However,
acceptance using only final linear states is adequate. A nested word automaton
A = (Q, q0, Qf , P, p0, Pf , δc, δi, δr) is said to be linearly-accepting if Pf = P .

Theorem 3.1 (Linear acceptance). Given a nested word automaton A, one
can effectively construct a linearly-accepting NWA B such that L(B) = L(A) and
B has twice as many states as A.

Proof. Consider an NWA A = (Q, q0, Qf , P, p0, Pf , δc, δi, δr). The automaton
B remembers, in addition to the state of A, a bit that indicates whether the ac-
ceptance requires a matching return. This bit is set to 1 whenever a non-final
hierarchical state is propagated along the nesting edge. The desired automaton B
is (Q × {0, 1}, (q0, 0), Qf × {0}, P × {0, 1}, P0 × {0}, P × {0, 1}, δ′c, δ′i, δ′r). The in-
ternal transition function is given by δ′i((q, x), a) = (δi(q, a), x). The call transition
function is given by δ′c((q, x), a) = ((δlc(q, a), y), (δhc (q, a), x)), where y = 0 iff x = 0
and δhc (q, a) ∈ Pf . The return transition function is given by δ′r((q, x), (p, y), a) =
(δr(q, p, a), y).

For a nested word n with k pending calls, the frontier of the run of A on n is
p1 . . . pkq iff the frontier of the run of B on n is (p1, 0), (p2, x1) . . . (pk, xk−1)(q, xk)
with xi = 1 iff pj ∈ Pf for all j ≤ i. This claim can be proved by induction on the
length of n, and implies that the languages of the two automata are the same. 2

We can further assume that the hierarchical states are implicitly specified: the set
P of hierarchical states equals the set Q of linear states; the initial hierarchical state
equals the initial state q0, and the current state is propagated along the nesting edge
at calls. A linearly-accepting nested word automatonA = (Q, q0, Qf , P, p0, P, δc, δi, δr)
is said to be weakly-hierarchical if P = Q, p0 = q0, and for all states q and sym-
bols a, δhc (q, a) = q. A weakly-hierarchical nested word automaton then can be
represented as (Q, q0, Qf , δ

l
c : Q × Σ 7→ Q, δi : Q × Σ 7→ Q, δr : Q × Q × Σ 7→ Q).

Weakly-hierarchical NWAs can capture all regular languages:

Theorem 3.2 (Weakly-hierarchical automata). Given a nested word au-
tomaton A with s linear states over Σ, one can effectively construct a weakly-
hierarchical NWA B with 2s|Σ| states such that L(B) = L(A).

Proof. We know that an NWA can be transformed into a linearly accepting one
by doubling the states. Consider a linearly-accepting NWAA = (Q, q0, Qf , P, p0, δc, δi, δr).
The weakly-hierarchical automaton B remembers, in addition to the state of A, the
symbol labeling the innermost pending call for the current position so that it can be
retrieved at a return and the hierarchical component of the call-transition function
of A can be applied. The desired automaton B is (Q×Σ, (q0, a0), Qf ×Σ, δ′c, δ

′
i, δ
′
r)

(here a0 is some arbitrarily chosen symbol in Σ). The internal transition func-
tion is given by δ′i((q, a), b) = (δi(q, b), a). At a call labeled b, the automaton in
state (q, a) transitions to (δlc(q, b), b). At a return labeled c, the automaton in
state (q, a), if the state propagated along the nesting edge is (q′, b), moves to state
(δr(q, δ

h
c (q′, a), c), b). 2

3.3 Nondeterministic Automata

Nondeterministic NWAs can have multiple initial states, and at every position, can
have multiple choices for updating the state.
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A nondeterministic nested word automaton A over Σ has

—a finite set of (linear) states Q,

—a set of (linear) initial states Q0 ⊆ Q,

—a set of (linear) final states Qf ⊆ Q,

—a finite set of hierarchical states P ,

—a set of initial hierarchical states P0 ⊆ P ,

—a set of final hierarchical states Pf ⊆ P ,

—a call-transition relation δc ⊆ Q× Σ×Q× P ,

—an internal-transition relation δi ⊆ Q× Σ×Q, and

—a return-transition relation δr ⊆ Q× P × Σ×Q.

A run r of the nondeterministic automaton A over a nested word n = (a1 . . . a`,;)
is a sequence qi ∈ Q, for 0 ≤ i ≤ `, of states corresponding to linear edges, and a
sequence pi ∈ P , for calls i, of hierarchical states corresponding to nesting edges,
such that q0 ∈ Q0, and for each position 1 ≤ i ≤ `,

—if i is a call, then (qi−1, ai, qi, pi) ∈ δc;
—if i is an internal, then (qi−1, ai, qi) ∈ δi;
—if i is a matched return with call-predecessor j then (qi−1, pj , ai, qi) ∈ δr, and if
i is a pending return then (qi−1, p0, ai, qi) ∈ δr for some p0 ∈ P0.

The run is accepting if q` ∈ Qf and for all pending calls i, pi ∈ Pf . The automaton
A accepts the nested word n if A has some accepting run over n. The language
L(A) is the set of nested words it accepts.

We now show that nondeterministic automata are no more expressive than the
deterministic ones. The determinization construction is a generalization of the
classical determinization of nondeterministic word automata. We assume linear
acceptance: we can transform any nondeterministic NWA into one that is linearly-
accepting by doubling the states as in the proof of Theorem 3.1.

Theorem 3.3 (Determinization). Given a nondeterministic linearly-accepting
NWA A, one can effectively construct a deterministic linearly-accepting NWA B
such that L(B) = L(A). Moreover, if A has s linear states, then B has 2s

2

linear

states and O(2s
2

) hierarchical states.

Proof. Let L be accepted by a nondeterministic linearly-accepting NWA A =
(Q,Q0, Qf , P, P0, δc, δi, δr). Given a nested word n, A can have multiple runs over n.
Thus, at any position, the state of B needs to keep track of all possible states of A,
as in case of classical subset construction for determinization of nondeterministic
word automata. However, keeping only a set of states of A is not enough: at a
return position, while combining linear states along the incoming linear edge with
hierarchical states along the incoming nesting edge, B needs to figure out which
pairs of states belong to the same run. The main idea behind the construction is
to do a subset construction over summaries (pairs of states) but postpone handling
the call-transitions by storing the set of summaries before the call, along with the
call symbol, in the hierarchical state, and simulate the effect of the corresponding
call-transition at the time of the matching return.
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Consider a nested word with k pending calls. Such a word can be represented
as n = n1〈a1n2〈a2 · · ·nk〈aknk+1, where each nj , for 1 ≤ j ≤ k + 1, is a nested
word with no pending calls (the initial nested word n1 can have pending returns,
and the nested words n2, . . . nk+1 are well-matched). Then after processing n,
the determinized automaton B we construct will be in state Sk+1, with the pair
(Sj , aj) labeling the nesting edge originating at the corresponding pending call 〈aj ,
for 1 ≤ j ≤ k. Each state Sj contains all the pairs (q, q′) of states of A such
that the nondeterministic automaton A can process the nested word nj starting in
state q and end up in state q′. Note that the execution of the automaton A while
processing each such nested word nj depends solely on the state at the beginning
of the word nj , and not on the states labeling the pending nesting edges. The
construction ensures that only “reachable” summaries are being tracked: if a pair
(q, q′) belongs to Sj , it is guaranteed that there is a run of A on the nested word
n in which the state at the beginning of processing of the subword nj is q and at
the end is q′. Due to this property, in order to check whether A accepts n or not,
corresponds to checking if the current state Sk+1 contains a pair (q, q′) such that
q′ is a final state.

To explain how the determinized automaton B updates its state, let us consider
the different cases corresponding to the type of symbol that follows n.

If the next symbol is an internal symbol a, then the state is updated by the
following rule: for each (q, q′) in Sk+1, if there is an internal transition from the
state q′ to a state q′′ on the symbol a, then the pair (q, q′′) is a possible summary
of A on the well-matched word nk+1a, and is added to the updated state.

Suppose the symbol following n is a call symbol 〈a. The automaton B propagates
the pair (Sk+1, a) along the nesting edge, and updates the linear state by the
following rule: for each (q, q′) in Sk+1, if a state q′′ is a possible next linear state
resulting from a call transition from the state q′ on the call symbol a, then the pair
(q′′, q′′) is added to the updated state. Such a pair is a summary of A on the empty
word, while ensuring that only reachable summaries are processed. This summary
will subsequently be updated reflecting execution of A on the subword starting after
the call 〈a.

Suppose the next symbol following the nested word n is a return b〉. Then the
revised state after processing the return should correspond to the summaries on the
well-matched nested word nk〈aknk+1b〉. The desired state is constructed from the
summaries in Sk and the call symbol ak, both of which label the incident nesting
edge at the return b〉, the summaries in the current linear state Sk+1, the return
symbol b, and the call/return transition relations of A. If a pair (q, q′) belongs to
Sk (meaning that A can go from state q to state q′ on nk), and the automaton A
in the state q′ on the call symbol ak can label the nesting edge with a hierarchical
state p while updating the linear state to q1, and a pair (q1, q2) belongs to Sk+1

(meaning that A can go from the state q1 to state q2 on nk+1), and the automaton
A in the state q2 on the return symbol b with p labeling the incident nesting edge,
can transition to a state q′′, then A can go from the state q to the state q′′ on the
nested wod nk〈aknk+1b〉, and the pair (q, q′′) is added to the update state.

A final detail concerns handling of unmatched returns. The determinized au-
tomaton B uses a special hierarchical state p′0 as the initial hierarchical state. If
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the incident edge at a return is labeled with this state, then it updates the summary
in a manner similar to the processing of internal symbols.

The components of the deterministic automaton B equivalent to A are listed
below:

—The states of B are Q′ = 2Q×Q.

—The initial state is the set Q0 ×Q0 of pairs of initial states.

—A state S ∈ Q′ is accepting iff it contains a pair of the form (q, q′) with q′ ∈ Qf .

—The hierarchical states of B are P ′ = {p′0} ∪ (Q′ × Σ).

—The initial hierarchical state is p′0.

—The internal-transition function δ′i is given by: for S ∈ Q′ and a ∈ Σ, δ′i(S, a)
consists of pairs (q, q′′) such that there exists (q, q′) ∈ S and an internal transition
(q′, a, q′′) ∈ δi.

—The call-transition function δ′c is given by: for S ∈ Q′ and a ∈ Σ, δ′c(S, a) =
(S′, (S, a)), where S′ consists of pairs (q′′, q′′) such that there exists (q, q′) ∈ S
and a hierarchical state p ∈ P and a call transition (q′, a, q′′, p) ∈ δc.

—The return-transition function δ′r is given by: (1) for S, S′ ∈ Q′ and a, b ∈ Σ,
δ′r(S, (S

′, a), b) consists of pairs (q, q′′) such that there exists (q, q′) ∈ S′ and
(q1, q2) ∈ S and a hierarchical state p ∈ P and a call transition (q′, a, q1, p) and
a return transition (q2, p, b, q

′′) ∈ δr; and (2) for S ∈ Q′ and a ∈ Σ, δ′r(S, p
′
0, a)

consists of pairs (q, q′′) such that there exists (q, q′) ∈ S and an initial hierarchical
state p0 ∈ P0 and a return transition (q′, p0, a, q

′′) ∈ δr.

2

Recall that a nondeterministic word automaton with s states can be transformed
into a deterministic one with 2s states. The determinization construction above
requires keeping track of set of pairs of states, and as the following lower bound
shows, this is really needed.

Theorem 3.4 (Succinctness of nondeterminism). There exists a family Ls,
s ≥ 1, of regular languages of nested words such that each Ls is accepted by a non-
deterministic NWA with O(s) states, but every deterministic NWA accepting Ls
must have 2s

2

states.

Proof. Let Σ = {a, b, c}. Consider s = 2k. Consider the language L that
contains words of the form, for some u, v ∈ (a+ b)k,

〈c ((a+ b)∗c(a+ b)∗cc)∗u c v cc((a+ b)∗c(a+ b)∗cc)∗v c〉 u

Intuitively, the constraint says that the word must end with the suffix v c〉 u, where
u and v are two k-bit strings such that the subsequence u c v cc must have appeared
before.

Consider a deterministic NWA accepting L. The words in L have only one nesting
edge, and all begin with the same call symbol. Hence, the NWA has no information
to propagate across the nesting edge, and behaves essentially like a standard word
automaton. As the automaton reads the word from left to right every pair of succes-
sive k-bit strings are potential candidates for u and v. A deterministic automaton
needs to remember, for each such pair, if it has occurred or not. Formally, we say
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that two nested words n and n′ in L′ = 〈c ((a+ b)∗c(a+ b)∗cc)∗ are equivalent iff
for every pair of words u, v ∈ (a+ b)k, the word u c v cc appears as a subword of n
iff it appears as a subword of n′. Since there are s2 pairs of words u, v ∈ (a+ b)k,

the number of equivalence classes of L′ by this relation is 2s
2

. It is easy to check
that if A is a deterministic NWA for L, and n and n′ are two inequivalent words in
L′, then the linear states of A after reading n and n′ must be distinct. This implies
that every deterministic NWA for L must have at least 2s

2

states.
There is a nondeterministic automaton with O(s) states to accept L. We give

the essence of the construction. The automaton guesses a word u ∈ (a + b)k, and
sends this guess across linear as well as hierarchical edges. That is, the initial state,
on reading a call position labeled c, splits into (qu, pu), for every u ∈ (a+ b)k. The
state qu skips over a word in ((a+b)∗c(a+b)∗cc)∗, and nondeterministically decides
that what follows is the desired subword u c v cc. For this, it first needs to check
that it reads a word that matches the guessed u, and then, it remembers v ∈ (a+b)k

that follows in the state, leading to a state q′v. The state q′v skips over a word in
((a+ b)∗c(a+ b)∗cc)∗, and nondeterministically decides that what follows must be
the word v c〉. If this check succeeds, then at the return position, the state pu is
retrieved along the nesting edge, and checks that what follows matches u. This can
be formalized using states that consist of a mode and a word over {a, b} of length
at most k, where the number modes is a small constant. The resulting automaton
has O(s) states. 2

3.4 Examples

In this section, we outline the application of nested word automata for program
verification and document processing.

3.4.1 NWAs in Program Analysis. In the context of software verification, a
popular paradigm relies on data abstraction, where the data in a program is ab-
stracted using a finite set of boolean variables that stand for predicates on the
data-space [Ball et al. 2001; Henzinger et al. 2002]. The resulting models hence
have finite-state but stack-based control flow (see Boolean programs [Ball and Ra-
jamani 2000] and recursive state machines [Alur et al. 2005] as concrete instances
of pushdown models of programs). For example, abstraction of the program in
Figure 2 will replace integer variables x and y with boolean variables that keep
track of the values of the predicates x==0 and y==0. The abstraction introduces
nondeterminism, and the resulting program is an overapproximation of the original
program.

Given a program A with boolean variables, we can view A as a nondeterministic
generator of nested words in the following manner. We choose an observation al-
phabet Σ depending upon the goal of verification. A state of the NWA records the
line number and the values of all program variables in scope. Internal transitions
correspond to execution of a statement within a procedure. Call transitions corre-
spond to calling of a procedure: the updated linear state reflects the control in the
called procedure, and the hierarchical state passed along the nesting edge records
the return line number along with the values of local variables in the calling pro-
cedure. Return transitions combine the returned value, and the updates to global
variables, from the called procedure, with the information stored in the incoming
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Fig. 7. Program requirements as NWAs

hierarchical state to compute the new state in the calling procedure. Thus, we can
associate a regular language L(A) of nested words with a program with boolean
variables.

The requirements of a program can also be described as regular languages of
nested words. Verification corresponds to language inclusion: do all nested words
generated by a program satisfy the specification? Thus, verification reduces to
decision problems for NWAs.

For sample requirements, consider the example of Figure 3. Suppose we want
to specify that writes to x are followed by some read of x. We will consider three
variations of this requirement.

First, suppose we want to specify that a symbol wr is followed by rd, without
any reference to the procedural context. This can be captured by standard word
automata, and also by NWAs. Figure 7 (a) shows the 2-state NWA for the require-
ment. In this example, hierarchical states are not really used: assume that there is
a single hierarchical state ⊥, which is also initial, and is implicitly used in all call
and return transitions.

Now suppose, we want to specify that if a procedure writes to x, then the same
procedure should read it before it returns. That is, between every pair of matching
entry and exit, along the local path obtained deleting every enclosed well-matched
subword from an entry to an exit, every wr is followed by rd. Viewed as a property
of words, this is not a regular language, and thus, not expressible in the specification
languages supported by existing software model checkers such as SLAM [Ball and
Rajamani 2000] and BLAST [Henzinger et al. 2002]. However, over nested words,
this can easily be specified using an NWA, see Figure 7 (b). The initial state is q0,
and has no pending obligations, and is the only final state. The hierarchical states
are {0, 1}, where 0 is the initial state. The state q1 means that along the local path
of the current scope, a write-access has been encountered with no following read
access. While processing the call, the automaton remembers the current state by
propagating 0 or 1 along the nesting edge, and starts checking the requirement for
the called procedure by transitioning to the initial state q0. While processing inter-
nal read/write symbols, it updates the state as in the finite-state word automaton
of case (a). At a return, if the current state is q0 (meaning the current context
satisfies the desired requirement), it restores the state of the calling context. Note
that there are no return transitions from the state q1, and this means that if a
return position is encountered while in state q1, the automaton implicitly goes to
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Fig. 8. Context-bounded program requirement

an error state rejecting the input word.
Finally, suppose we want to specify that if a procedure writes to x, then the

variable is read before the procedure returns, but either by this procedure or by
one of the (transitively) called procedures. That is, along every global path sand-
wiched between a pair of matching entry and exit, every wr is followed by rd. This
requirement is again not expressible using classical word automata. Figure 8 shows
the corresponding NWA. State q2 means that a read has been encountered, and
this is different from the initial state q0, since a read in the called procedure can be
used to satisfy the pending obligation of the calling procedure. There are 3 hier-
archical states 0,1,2 corresponding to the three linear states, and the current state
is propagated along the nesting edge when processing a call. As before, in state
q0, while processing a return, the state of the calling context is restored; in state
q1, since the current context has unmet obligations, processing a return leads to
rejection. While processing a return in the state q2, the new state is q2 irrespective
of the state retrieved along the nesting edge.

3.4.2 NWAs for document processing. Since finite word automata are NWAs,
classical word query languages such as regular expressions can be compiled into
NWAs. As we will show in Section 7, different forms of tree automata are also
NWAs.

As an illustrative example of a query, let us revisit the query “find all sentences
with verb phrases in which a noun follows a verb which is a child of the verb phrase”
discussed in Section 2.3.2. For this query, internal positions are not relevant, so we
will assume that the alphabet consists of the tags {S, V P,NP, PP,Det,Adj,N, Prep, V }
corresponding to the various syntactic categories, and the input word has only call
and return positions. The nondeterministic automaton is shown in Figure 9. The
set of hierarchical states contains the dummy initial state ⊥, and for each tag X,
there are two symbols X and X ′. The set of final hierarchical states is empty. Since
(1) there are no return transitions if the state on the incoming hierarchical edge is
⊥, (2) there can be no pending calls as no hierarchical state is final, and (3) every
call transition on tag X labels the hierarchical edge with either X or X ′, and every
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<X/X, X>/X <X/X, X>/X <X/X, X>/X

VP>/VP’N>/N’
q4 q5 q6

<X/X’

X>/X’

V>/V’<VP/VP’
q0 q2 q3q1

<X/X, X>/X <X/X, X>/X <X/X, X>/X

<N/N’

Fig. 9. NWA for the linguistic query

return transition on tag X requires the label on incoming hierarchical edge to be
X or X ′, the automaton enforces the requirement that all the tags match properly.
In Figure 9, X ranges over the set of tags (for example, q0 has a call transition to
itself for every tag X, with the corresponding hierarchical state being X).

The automaton guesses that the desired verb phrase follows by marking the
corresponding hierarchical edge with V P ′ (transition from q0 to q1). The immediate
children of this verb phrase are also marked using the primed versions of the tags.
When a child verb is found the automaton is is in state q3, and searches for noun
phrase (again marked with the primed version). The transition from q5 to the final
state q6 ensures that the desired pattern lies within the guessed verb phrase.

3.5 Closure Properties

The class of regular languages of nested words enjoys a variety of closure properties.
We begin with the boolean operations.

Theorem 3.5 (Boolean closure). If L1 and L2 are regular languages of nested
words over Σ, then L1 ∪L2, L1 ∩L2, and NW (Σ) \L1 are also regular languages.

Proof. LetAj = (Qj , qj0, Q
j
f , P

j , pj0, δ
j
c , δ

j
i , δ

j
r), for j = 1, 2, be a linearly-accepting

NWA accepting Lj . Define the product of these two automata as follows. The set
of linear states is Q1 ×Q2; the initial state is (q1

0 , q
2
0); the set of hierarchical states

is P1 × P2; and the initial hierarchical state is (p1
0, p

2
0). The transition functions

are defined in the obvious way; for example, the return-transition function δr of
the product is given by δr((q1, q2), (p1, p2), a) = (δ1

r(q1, p1, a), δ2
r(q2, p2, a)). Setting

the set of final states to Q1
f × Q2

f gives the intersection L1 ∩ L2, while choosing

(Q1
f ×Q2) ∪ (Q1 ×Q2

f ) as the set of final states gives the union L1 ∪ L2.
For a linearly-accepting deterministic NWA, one can complement the language

simply by complementing the set of linear final states: the complement of the
linearly-accepting automaton (Q, q0, Qf , P, p0, δc, δi, δr) is the linearly-accepting NWA
(Q, q0, Q \Qf , P, p0, δc, δi, δr). 2

We have already seen how the word encoding allows us to define word operations
over nested words. We proceed to show that the regular languages are closed under
such operations.
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Theorem 3.6 (Concatenation closure). If L1 and L2 are regular languages
of nested words, then so are L1 · L2 and L∗1.

Proof. Suppose we are given weakly-hierarchical NWAs A1 and A2, with dis-
joint state sets, accepting L1 and L2, respectively. We can design a nondeterministic
NWA that accepts L1 · L2 by guessing a split of the input word n into n1 and n2.
The NWA simulates A1, and at some point, instead of going to a final state of A1,
switches to the initial state of A2. While simulating A2, at a return, if the state
labeling the incoming nesting edge is a state of A1, then it is treated like the initial
state of A2.

A slightly more involved construction can be done to show closure under Kleene-
∗. Let A = (Q,Q0, Qf , δ

l
c, δi, δr) be a weakly-hierarchical nondeterministic NWA

that accepts L. We build the automaton A∗ as follows. A∗ simulates A step by step,
but when A changes its state to a final state, A∗ can nondeterministically update
its state to an initial state, and thus, restart A. Upon this switch, A∗ must treat
the unmatched nesting edges as if they are pending, and this requires tagging its
state so that in a tagged state, at a return, the states labeling the incident nesting
edges are ignored. More precisely, the state-space of A∗ is Q ] Q′, and its initial
and final states are Q′0. Its transitions are as follows

(Internal). For each internal transition (q, a, p) ∈ δi, A
∗ contains the internal

transitions (q, a, p) and (q′, a, p′), and if p ∈ Qf , then the internal transitions
(q, a, r′) and (q′, a, r′) for each r ∈ Q0.

(Call). For each (linear) call transition (q, a, p) ∈ δlc, A∗ contains the call tran-
sitions (q, a, p) and (q′, a, p), and if p ∈ Qf , then the call transitions (q, a, r′) and
(q′, a, r′), for each r ∈ Q0.

(Return). For each return transition (q, r, a, p) ∈ δr, A
∗ contains the return

transitions (q, r, a, p) and (q, r′, a, p′), and if p ∈ Qf , then the return transitions
(q, r, a, s′) and (q, r′, a, s′), for each s ∈ Q0. For each return transition (q, r, a, p) ∈
δr with r ∈ Q0, A∗ contains the return transitions (q′, s, a, p′) for each s ∈ Q ∪Q′,
and if p ∈ Qf , also the return transitions (q′, s, a, t′) for each s ∈ Q∪Q′ and t ∈ Q0.

Note that from a tagged state, at a call, A∗ propagates the tagged state along the
nesting edge and an untagged state along the linear edge. It is easy to check that
L(A∗) = L∗. 2

Besides prefixes and suffixes, we will also consider reversal. Reverse of a nested
word n is defined to be w nw(b` . . . b2b1), where for each 1 ≤ i ≤ `, bi = ai if i is
an internal, bi = 〈ai if i is a return, and bi = ai〉 if i is a call. That is, to reverse a
nested word, we reverse the underlying word as well as all the nesting edges.

Theorem 3.7 (Closure under word operations). If L is a regular language
of nested words then all the following languages are regular: the set of reversals of
all the nested words in L; the set of all prefixes of all the nested words in L; the set
of all suffixes of all the nested words in L.

Proof. Consider a nondeterministic NWA A = (Q,Q0, Qf , P, P0, Pf , δcδi, δr).
DefineAR to be (Q,Qf , Q0, P, Pf , P0, δ

R
c , δ

R
i , δ

R
r ) where (q, a, q′, p) ∈ δc iff (q′, p, a, q) ∈

δRr , (q, p, a, q′) ∈ δr iff (q′, a, q, p) ∈ δRc , and (q, a, q′) ∈ δi iff (q′a, q) ∈ δRi . Thus,
AR is obtained by switching the roles of initial and final states for both linear and
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hierarchical components, reversing the internal transitions, and dualizing call and
return transitions. It is easy to show that AR accepts precisely the reversals of the
nested words accepted by A.

For closure under prefixes, consider a weakly-hierarchical nondeterministic NWA
A = (Q,Q0, Qf , δ

l
c, δi, δr). The automaton B has the following types of states:

(q, q′, 1) if there exists a nested word n which takes A from state q to state q′ ∈ Qf ;
(q, q′, 2) if there exists a nested word n without any pending returns, which takes
A from state q to state q′ ∈ Qf ; (q, q′, 3) if there exists a well-matched nested word
n which takes A from state q to state q′. Initial states of B are of the form (q, q′, 1)
such that q ∈ Q0 and q′ ∈ Qf . All states are final. The state of B keeps track
the current state of A along with a target state where the run of A can end so
that we are sure of existence of a suffix leading to a word in L(A). Initially, the
target state is required to be a final state, and this target is propagated along the
run. At a call, B can either propagate the current target across the linear edge
requiring that the current state can reach the target without using pending returns;
or propagate the current target across the nesting edge, and across the linear edge,
guess a new target state requiring that the current state can reach this target using
a well-matched word. The third component of the state is used to keep track of
the constraint on whether pending calls and/or returns are allowed. Note that the
reachability information necessary for effectively constructing the automaton B can
be computed using analysis techniques discussed in decision problems. Transitions
of B are described below.

(Internal). For every internal transition (q, a, p) ∈ δi, for x = 1, 2, 3, for every
q′ ∈ Q, if both (q, q′, x) and (p, q′, x) are states of B, then there is an internal
transition ((q, q′, x), a, (p, q′, x)).

(Call). Consider a linear call transition (q, a, p) ∈ δlc and q′ ∈ Q and x = 1, 2, 3,
such that (q, q′, x) is a state of B. Then for every state r such that (p, r, 3) is
a state of B and there exists b ∈ Σ and state r′ ∈ Q such that (r′, q′, x) is a
state of B and (r, q, b, r′) ∈ δr, there is a call transition ((q, q′, x), a, (p, r, 3)). In
addition, if x = 1, 2 and (p, q′, 2) is a state of B, then there is a call transition
((q, q′, x), a, (p, q′, 2)).

(Return). For every return transition (q, p, a, r) ∈ δr, for x = 1, 2, 3, for q′ ∈ Q,
if (p, q′, x) and (r, q′, x) are states of B, then there is a return transition
((q, q, 3), (p, q′, x), a, (r, q′, x)). Also, for every return transition (q, p, a, r) ∈ δr with
p ∈ Q0, for every q′ ∈ Qf , if (q, q′, 1) and (r, q′, 1) and (p, q′, 1) are states of B then
there is a return transition ((q, q′, 1), (p, q′, 1), a, (r, q′, 1)).

The automaton B accepts a nested word n iff there exists a nested word n′ such
that the concatenation of n and n′ is accepted by A.

Closure under suffixes follows from the closure under prefixes and reversals. 2

Finally, we consider language homomorphisms. For every symbol a ∈ Σ̂, let h(a)
be a language nested words. We say that h respects nesting if for each a ∈ Σ,
h(a) ⊆ WNW (Σ), h(〈a) ⊆ 〈Σ ·WNW (Σ), and h(a〉) ⊆ WNW (Σ) · Σ〉. That is,
internal symbols get mapped to well-matched words, call symbols get mapped to
well-matched words with an extra call symbol at the beginning, and return symbols
get mapped to well-matched words with an extra return symbol at the end. Given
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a language L over Σ̂, h(L) consists of words w obtained from some word w′ ∈ L by
replacing each letter a in the tagged word for w′ by some word in h(a). Nesting-
respecting language homomorphisms can model a variety of operations such as
renaming of symbols and tree operations such as replacing letters by well-matched
words.

Theorem 3.8 (Homomorphism closure). If L is a regular language of nested
words over Σ, and h is a language homomorphism such that h respects nesting and
for every a ∈ Σ̂, h(a) is a regular language of nested words, then h(L) is regular.

Proof. Let A be the NWA accepting L, and for each a, let Ba be the NWA for
h(a). The nondeterministic automaton B for h(L) has states consisting of three
components. The first keeps track of the state of A. The second remembers the
current symbol a ∈ Σ̂ of the word in L being guessed. The third component is a
state of Ba. When this automaton Ba is in a final state, then the second component
can be updated by nondeterministically guessing the next symbol b, updating the
state of A accordingly, and setting the third component to the initial state of Bb.
When b is a call symbol, we know that the first symbol of the word in h(b) is a
pending call, and we can propagate the state of A along the nesting edge, so that
it can be retrieved correctly later to simulate the behavior of A at the matching
return. 2

4. MONADIC SECOND ORDER LOGIC OF NESTED WORDS

We show that the monadic second order logic (MSO) of nested words has the
same expressiveness as nested word automata. The vocabulary of nested sequences
includes the linear successor and the matching relation ;. In order to model
pending edges, we will use two unary predicates call and ret corresponding to
call and return positions.

Let us fix a countable set of first-order variables FV and a countable set of
monadic second-order (set) variables SV . We denote by x, y, x′, etc., elements in
FV and by X,Y,X ′, etc., elements of SV .

The monadic second-order logic of nested words is given by the syntax:

ϕ := a(x) | X(x) | call(x) | ret(x) | x = y + 1 | x; y | ϕ ∨ ϕ | ¬ϕ | ∃x.ϕ | ∃X.ϕ,

where a ∈ Σ, x, y ∈ FV , and X ∈ SV .
The semantics is defined over nested words in a natural way. The first-order

variables are interpreted over positions of the nested word, while set variables are
interpreted over sets of positions. a(x) holds if the symbol at the position inter-
preted for x is a, call(x) holds if the position interpreted for x is a call, x = y + 1
holds if the position interpreted for y is (linear) next to the position interpreted
for x, and x ; y holds if the positions x and y are related by a nesting edge. For
example,

∀x.( call(x) → ∃y. x; y )

holds in a nested word iff it has no pending calls;

∀x.∀y. (a(x) ∧ x; y)⇒ b(y)

holds in a nested word iff for every matched call labeled a, the corresponding return-
successor is labeled b.
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For a sentence ϕ (a formula with no free variables), the language it defines is the
set of all nested words that satisfy ϕ. We show that the class of all nested-word
languages defined by MSO sentences is exactly the regular nested-word languages.

Theorem 4.1 (MSO characterization). A language L of nested words over
Σ is regular iff there is an MSO sentence ϕ over Σ that defines L.

Proof. The proof is similar to the proof that MSO over words defines the same
class as that of regular word languages (see [Thomas 1990]).

First we show that for any sentence ϕ, the set L(ϕ) of satisfying models is
regular. Let us assume that in all formulas, each variable is quantified at most
once. Consider any formula ψ(x1, . . . , xm, X1, . . . , Xk) (i.e. with free variables
Z = {x1, . . . , xm, X1, . . . , Xk}). Then consider the alphabet ΣZ consisting of pairs
(a, V ) such that a ∈ Σ and V : Z 7→ {0, 1} is a valuation function. Then a nested
word n′ over ΣZ encodes a nested word n along with a valuation for the variables
(provided singleton variables get assigned to exactly one position). Let L(ψ) denote
the set of nested words n′ over ΣZ such that the underlying nested word n satisfies
ψ under the valuation defined by n′. Then we show, by structural induction, that
L(ψ) is regular.

The property that first-order variables are assigned exactly once can be checked
using the finite control of an NWA. The atomic formulas X(x), a(x) and x = y+ 1
are easy to handle.

To handle the atomic formula x; y, we build a NWA that propagates, at every
call position, the current symbol in ΣZ onto the outgoing nesting edge. While
reading a return labeled with (a, v) where v assigns y to 1, the automaton requires
that the hierarchical state along the incoming nesting edge is of the form (a′, v′)
such that v′ assigns x to 1.

Disjunction and negation can be dealt with using the fact that NWAs are closed
under union and complement. Also, existential quantification corresponds to re-
stricting the valuation functions to exclude a variable and can be done by renaming
the alphabet, which is a special kind of nesting-respecting language homomorphism.

For the converse, consider a weakly-hierarchical NWA A = (Q, q0, Qf , δ
l
c, δi, δr)

where Q = {q0, . . . qk}. The corresponding MSO formula will express that there is
an accepting run of A on the input word and will be of the form ∃X0 . . . ∃Xk ϕ. Here
Xi stands for the positions where the run is in state qi. We can write conditions in
ϕ that ensure that the variables Xi indeed define an accepting run. The clauses for
initialization, acceptance, and consecution according to call and internal transition
functions are straightforward. The only interesting detail here is to ensure that the
run follows the return-transition function at return positions. The case for matched
returns can be expressed by the formula:

∀x∀y ∀z ∧ki=0∧kj=0∧a∈Σ ( z = y+1∧x; z∧Xj(x)∧Xi(y)∧a(z)→ Xδr(qi,qj ,a)(z))

2

5. VISIBLY PUSHDOWN LANGUAGES OF WORDS

5.1 Visibly Pushdown Automata

Given a language L of nested words over Σ, let nw w(L) be the language of tagged
words over Σ̂ corresponding to the nested words in L. One can interpret a linearly-
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accepting nested word automaton A = (Q, q0, Qf , P, p0, δc, δi, δr) as a pushdown

word automaton Â over Σ̂ as follows. Assume without loss of generality that call
transitions of A do not propagate p0 on the nesting edge. The set of states of Â is
Q, with q0 as the initial state, and acceptance is by final states given by Qf . The
set of stack symbols is P , and p0 is the bottom stack symbol. The call transitions
are push transitions: in state q, while reading 〈a, the automaton pushes δhc (q, a)
onto the stack, and updates state to δlc(q, a). The internal transitions consume
an input symbol in Σ without updating the stack. The return transitions are pop
transitions: in state q, with p on top the stack, while reading a symbol a〉, the
automaton pops the stack, provided p 6= p0, and updates the state to δr(q, p, a). If
the frontier of the run of A after reading a nested word n is p1 . . . pkq, then, after
reading the tagged word nw w(n), the pushdown automaton Â will be in state q,
and its stack will be p0p1 . . . pk, with pk on top.

The readers familiar with pushdown automata may prefer to understand NWAs
as a special case. We chose to present the definition of NWAs in Section 3.1 without
explicit reference to a stack for two reasons. First, the definition of NWA is really
guided by the shape of the input structures they process, and are thus closer to
definitions of tree automata. Second, while a stack-based implementation is the
most natural way to process the tagged word encoding a nested word, alternatives
are possible if the entire nested word is stored in memory as a graph.

This leads to:

Proposition 5.1 (Regular nested-word languages as word CFLs). If
L is a regular language of nested words over Σ then nw w(L) is a context-free lan-
guage of words over Σ̂.

Not all context-free languages over Σ̂ correspond to regular languages of nested
words. A (word) language L over Σ̂ is said to be a visibly pushdown language (VPL)
iff w nw(L) is a regular language of nested words. In particular, {(〈a)k(b〉)k | k ≥ 0}
is a visibly pushdown language, but {akbk | k ≥ 0} is a context-free language which
is not a VPL.

The pushdown automaton Â corresponding to an NWA A is of a special form:
it pushes while reading symbols of the form 〈a, pops while reading symbols of the
form a〉, and does not update the stack while reading symbols in Σ. We call such
automata visibly pushdown automata. The height of the stack is determined by
the input word, and equals the depth of the prefix read plus one (for the bottom
of the stack). Visibly pushdown automata accept precisely the visibly pushdown
languages. Since NWAs can be determinized, it follows that the VPLs is a subclass
of deterministic context-free languages (DCFLs). Closure properties and decision
problems for VPLs follow from corresponding properties of NWAs.

While visibly pushdown languages are a strict subclass of context-free languages,
for every context-free language, we can associate a visibly pushdown language by
projection in the following way.

Theorem 5.2 (Relation between CFLs and VPLs). If L is a context-free
language over Σ, then there exists a VPL L′ over Σ̂ such that L = h(L′), where h
is the renaming function that maps symbols 〈a, a, and a〉, to a.

Proof. Let A be a pushdown automaton over Σ and let us assume, without loss
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of generality, that on reading a symbol, A pushes or pops at most one stack symbol,
and acceptance is defined using final states. Now consider the visibly pushdown
automaton A′ over Σ̂ obtained by transforming A such that every transition on a
that pushes onto the stack is transformed to a push transition on 〈a, transitions
on a that pop the stack are changed to pop transitions on a〉 and the remaining
a-transitions are left unchanged. Then a word w = a1a2 . . . a` is accepted by A iff
there is some augmentation w′ of w, w′ = b1b2 . . . b`, where each bi ∈ {ai, 〈ai, ai〉},
such that w′ is accepted by A′. Thus A′ accepts the words in L(A) annotated with
information on how A handles the stack. It follows that L(A) = h(L(A′)), where h
is the renaming function that maps, for each a ∈ Σ, symbols 〈a, a, and a〉, to a. 2

5.2 Grammar-based Characterization

It is well known that context-free languages can be described either by pushdown au-
tomata or by context-free grammars. In this section, we identify a class of context-
free grammars that corresponds to visibly pushdown languages.

A context-free grammar over an alphabet Σ is a tuple G = (V, S,Prod), where
V is a finite set of variables, S ∈ V is a start variable, and Prod is a finite set of
productions of the form X → α such that X ∈ V and α ∈ (V ∪Σ)∗. The semantics
of the grammar G is defined by the derivation relation ⇒ over (V ∪Σ)∗: for every
production X → α and for all words β, β′ ∈ (V ∪ Σ)∗, βXβ′ ⇒ βαβ′ holds. The
language L(G) of the grammar G consists of all words w ∈ Σ∗ such that S ⇒∗ w,
that is, a word w over Σ is in the language of the grammar G iff it can be derived
from the start variable S in one or more steps.

A context-free grammar G = (V, S,Prod) over Σ̂ is a visibly pushdown grammar
if the set V of variables is partitioned into two disjoint sets V 0 and V 1, such that
all the productions are of one the following forms

—X → ε for X ∈ V ;

—X → aY for X,Y ∈ V and a ∈ Σ̂ such that if X ∈ V 0 then a ∈ Σ and Y ∈ V 0;

—X → 〈aY b〉Z for X,Z ∈ V and Y ∈ V 0 and a, b ∈ Σ such that if X ∈ V 0 then
Z ∈ V 0.

The variables in V 0 derive only well-matched words where there is a one-to-one
correspondence between calls and returns. The variables in V 1 derive words that
can contain pending calls as well as pending returns. In the rule X → aY , if a
is a call or a return, then either it is unmatched or its matching return or call is
not remembered, and the variable X must be in V 1. In the rule X → 〈aY b〉Z,
the positions corresponding to symbols a and b are the matching calls and returns,
with a well-matched word, generated by Y ∈ V 0, sandwiched in between, and if X
is required to be well-matched then that requirement propagates to Z.

Observe that the rule X → aY is right-linear, and is as in regular grammars. The
rule X → 〈aY b〉Z requires a and b to be matching call and return symbols, and
can be encoded by a visibly pushdown automaton that, while reading a, pushes
the obligation that the matching return should be b, with Z to be subsequently
expanded. This intuition can be made precise:

Theorem 5.3 (Visibly pushdown grammars). A language L over Σ is a
regular language of nested words iff the language nw w(L) over Σ̂ has a visibly
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pushdown grammar.

Proof. Let G = (V, S,Prod) be a visibly pushdown grammar over Σ̂. We build
a nondeterministic NWA AG that accepts w nw(L(G)) as follows. The set of states
of AG is V . The unique initial state is S. The set of hierarchical states is Σ × V
along with an initial hierarchical state ⊥. The transitions of AG from a state X on
a symbol a are as follows:

Internal:. δi contains (X, a, Y ) for each variable Y such that X → aY is a pro-
duction of G.

Call:. δc contains (X, a, Y,⊥) for each variable Y such that X → 〈aY is a pro-
duction of G; and (X, a, Y, (b, Z)) for each production X → 〈aY b〉Z of G.

Return:. δr contains (X,⊥, a, Y ) for each variable Y such that X → a〉Y is a
production of G; and if X is a nullable symbol (that is, X → ε is a production of
G) and is in V 0, then for each variable Y , δr contains (X, (a, Y ), a, Y ).

The first clause says that the automaton can update state from X to Y while
processing an a-labeled internal position according to the rule X → aY . The
second clause says that while reading a call, to simulate the rule X → 〈aY (this
can happen only when X ∈ V 1), the automaton propagates the initial state ⊥ along
the nesting edge, and updates the state to Y . To simulate the rule X → 〈aY b〉Z,
the automaton changes the state to Y while remembering the continuation of the
rule by propagating the pair (b, Z) onto the nesting edge. The third clause handles
returns. The return can be consumed using a rule X → a〉Y when X is in V 1.
If the current state is nullable and in V 0, then the state along the nesting edge
contains the required continuation, and the symbol being read should be consistent
with it. If neither of these conditions hold, then no transition is enabled, and the
automaton will reject. The sole accepting hierarchical state is ⊥ (which means
that there is no requirement concerning matching return), and the linear accepting
states are nullable variables X.

Conversely, consider a linearly-accepting NWA A = (Q, q0, Qf , P, p0, δc, δi, δr).
We will construct a visibly pushdown grammar GA that generates nw w(L(A)).
For each state q ∈ Q, the set V 1 has two variables Xq and Yq; and for every pair of
(linear) states q, p, the set V 0 has a variable Zq,p. Intuitively, the variable Xq says
that the state is q and there are no pending call edges; the variable Yq says that
the state is q and no pending returns should be encountered; and the variable Zq,p
says that the current state is q and the state just before the next pending return is
required to be p. The start variable is Xq0 .

(1) For each state q, there is a production Zq,q → ε, and if q ∈ QF , there are
productions Xq → ε and Yq → ε.

(2) For each symbol a and state q, let p = δi(q, a). There are productions Xq →
aXp and Yq → aYp, and for each state q′, there is a production Zq,q′ → aZp,q′ .

(3) For symbols a, b, and states q, p, let q′ = δlc(q, a) and p′ = δr(p, δ
h
c (q, a), b).

There are productions Xq → 〈aZq′,pb〉Xp′ and Yq → 〈aZq′,pb〉Yp′ , and for every
state r, there is a production Zq,r → 〈aZq′,pb〉Zp′,r.

(4) For each symbol a and state q, let p = δlc(q, a). There are productions Xq →
〈aYp and Yq → 〈aYp.
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Closure under

Union Intersection Complement Concat/Kleene-∗ Prefix/Suffix
Regular Yes Yes Yes Yes Yes
CFL Yes No No Yes Yes

DCFL No No Yes No Yes
Balanced Yes Yes No Yes No

VPL Yes Yes Yes Yes Yes

Fig. 10. Closure properties of classes of word languages

(5) For each symbol a and state q, let p = δr(q, p0, a). There is a production
Xq → a〉Xp.

In any derivation starting from the start variable, the string contains only one
trailing X or Y variable, which can be nullified by the first clause, provided the
current state is accepting. The first clause allows nullifying a variable Zq,q′ when
the current state q is same as the target state q′, forcing the next symbol to be a
return. Clause 2 corresponds to processing internal positions consistent with the
intended interpretation of the variables. Clause 3 captures summarization. In state
q, while reading a call a, the automaton propagates δhc (q, a) while updating its
state to q′ = δlc(q, a) We guess the matching return symbol b and the state p just
before reading this matching return. The well-matched word sandwiched between
is generated by the variable Zq′,p, and takes the automaton from q′ to p. The
variable following the matching return b is consistent with the return transition
that updates state p, using hierarchical state δhc (q, a) along the nesting edge while
reading b. The clause 4 corresponds to the guess that the call being read has no
matching return, and hence, it suffices to remember the state along with the fact
that no pending returns can be read by switching to the Y variables. The final
clause allows processing of unmatched returns. 2

Recall that a bracketed language consists of well-bracketed words of different types
of parentheses (c.f. [Ginsburg and Harrison 1967; Hopcroft and Ullman 1979]). A
parenthesis language is a bracketed language with only one kind of parentheses.
Bracketed languages are special case of balanced grammars [Berstel and Boasson
2002; Brüggermann-Klein and Wood 2004]. The original definition of balanced
grammars considers productions of the form X → 〈aLa〉, where L is a regular
language over the nonterminals V . We present a simpler formulation that turns
out to be equivalent.

A grammar G = (V, S,Prod) is a balanced grammar if all the productions are of
the form X → ε or X → 〈aY a〉Z. Clearly, a balanced grammar is also a visibly
pushdown grammar. In particular, the maximal parenthesis language—the Dyck
language consisting of all well-bracketed words, denoted Dyck(Σ), is generated by
the grammar with sole variable S with productions S → ε and S → 〈aSa〉S, for
every a ∈ Σ. It is known that every context-free language is a homomorphism of the
intersection of the Dyck language with a regular language (in contrast, Theorem 5.2
asserts that every CFL is a homomorphism of a VPL).

The table of Figure 5.2 summarizes and compares closure properties for CFLs,
deterministic CFLs (DCFLs), VPLs, balanced languages, and regular languages.

Journal of the ACM, Vol. 56, No. 3, May 2009.



30 · R. Alur and P. Madhusudan

6. DECISION PROBLEMS

As we have already indicated, a nested word automaton can be interpreted as a
pushdown automaton. The emptiness problem (given A, is L(A) = ∅?) and the
membership problem (given A and a nested word n, is n ∈ L(A)?) for nested word
automata are solvable in polynomial-time since we can reduce it to the emptiness
and membership problems for pushdown automata. For these problems, A can be
nondeterministic.

If the automaton A is fixed, then we can solve the membership problem in simul-
taneously linear time and linear space, as we can determinize A and simply simulate
the word on A. In fact, this would be a streaming algorithm that uses at most space
O(d) where d is the depth of nesting of the input word. A streaming algorithm is one
where the input must be read left-to-right, and can be read only once. Note that
this result comes useful in type-checking streaming XML documents, as the depth
of documents is often not large. When A is fixed, the result in [von Braunmühl
and Verbeek 1983] exploits the visibly pushdown structure to solve the membership
problem in logarithmic space, and [Dymond 1988] shows that membership can be
checked using boolean circuits of logarithmic depth. These results lead to:

Proposition 6.1 (Emptiness and membership). The emptiness problem for
nondeterministic nested word automata is decidable in time O(|A|3). The mem-
bership problem for nondeterministic nested word automata, given A and a nested
word n of length `, can be solved in time O(|A|3.`). When A is fixed, it is solvable
(1) in time O(`) and space O(d) (where d is the depth of n) in a streaming setting;
(2) in space O(log `) and time O(`2.log `); and (3) by (uniform) Boolean circuits
of depth O(log `).

The inclusion problem (and hence the equivalence problem) for nested word au-
tomata is decidable. Given A1 and A2, we can check L(A1) ⊆ A2 by checking if
L(A1)∩L(A2) is empty, since regular nested languages are effectively closed under
complement and intersection. Note that if the automata are deterministic, then
these checks are polynomial-time, and if the automata are nondeterministic, the
checks require the determinization construction.

Theorem 6.2 (Universality and inclusion). The universality problem and
the inclusion problem for nondeterministic nested word automata are Exptime-
complete.

Proof. Decidability and membership in Exptime for inclusion hold because,
given nondeterministic NWAs A1 and A2, we can take the complement of A2 after
determinizing it, take its intersection with A1 and check for emptiness. Univer-
sality reduces to checking inclusion of the language of the fixed 1-state NWA A1

accepting all nested words with the given NWA. We now show that universality
is Exptime-hard for nondeterministic NWAs (hardness of inclusion follows by the
above reduction).

The reduction is from the membership problem for alternating linear-space Tur-
ing machines (TM) and is similar to the proof in [Boujjani et al. 1997] where it is
shown that checking pushdown systems against linear temporal logic specifications
is Exptime-hard.
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Decision problems for automata

Emptiness Universality/Equivalence Inclusion
DFA Nlogspace Nlogspace Nlogspace
NFA Nlogspace Pspace Pspace

PDA Ptime Undecidable Undecidable
DPDA Ptime Decidable Undecidable

NWA Ptime Ptime Ptime

Nondet NWA Ptime Exptime Exptime

Fig. 11. Summary of decision problems

Given an input word for such a fixed TM, a run of the TM on the word can
be seen as a binary tree of configurations, where the branching is induced by the
universal transitions. Each configuration can be encoded using O(s) bits, where s
is the length of the input word. Consider an infix traversal of this tree, where every
configuration of the tree occurs twice: when it is reached from above for the first
time, we write out the configuration and when we reach it again from its left child
we write out the configuration in reverse. This encoding has the property that for
any parent-child pair, there is a place along the encoding where the configuration
at the parent and child appear consecutively. We then design, given an input word
to the TM, a nondeterministic NWA that accepts a word n iff n is either a wrong
encoding (i.e. does not correspond to a run of the TM on the input word) or n
encodes a run that is not accepting. The NWA checks if the word satisfies the
property that a configuration at a node is reversed when it is visited again using
the nesting edges. The NWA can also guess nondeterministically a parent-child
pair and check whether they correspond to a wrong evolution of the TM, using the
finite-state control. Thus the NWA accepts all nested words iff the Turing machine
does not accept the input. 2

The table of Figure 6 summarizes and compares decision problems for various
kinds of word and nested-word automata.

7. RELATION TO TREE AUTOMATA

In this section, we show that ordered trees, and more generally, hedges—sequences
of ordered trees, can be naturally viewed as nested words, and existing versions of
tree automata can be interpreted as nested word automata.

7.1 Hedges as Nested Words

Ordered trees and hedges can be interpreted as nested words. In this representation,
it does not really matter whether the tree is binary, ranked, or unranked.

The set OT (Σ) of ordered trees and the set H(Σ) of hedges over an alphabet Σ
is defined inductively:

(1) ε is in OT (Σ) and H(Σ): this is the empty tree;

(2) t1, . . . tk ∈ H(Σ), where k ≥ 1 and each ti is a nonempty tree in OT (Σ): this
corresponds to the hedge with k trees.

(3) for a ∈ Σ and t ∈ H(Σ), a(t) is in OT (Σ) and H(Σ): this represents the tree
with root labeled a, and children corresponding to the trees in the hedge t.
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Consider the transformation t w : H(Σ) 7→ Σ̂∗ that encodes an ordered tree/hedge
over Σ as a word over Σ̂: t w(ε) = ε; t w(t1, . . . tk) = t w(t1) · · · t w(tk); and
t w(a(t)) = 〈a t w(t) a〉. This transformation can be viewed as a traversal of the
hedge, where processing an a-labeled node corresponds to first printing an a-labeled
call, followed by processing all the children in order, and then printing an a-labeled
return. Note that each node is visited and copied twice. This is the standard
representation of trees for streaming applications [Segoufin and Vianu 2002]. An
a-labeled leaf corresponds to the word 〈aa〉, we will use 〈a〉 as its abbreviation.

The transformation t nw : H(Σ) 7→ NW (Σ) is the functional composition of t w
and w nw . However, not all nested words correspond to hedges: a nested word
n = (a1 . . . a`,;) is said to be a hedge word iff it has no internals, and for all i; j,
ai = aj . A hedge word is a tree word if it is rooted (that is, 1 ; ` holds). We will
denote the set of hedge words by HW (Σ) ⊆ WNW (Σ), and the set of tree words
by TW (Σ) ⊆ HW (Σ). It is easy to see that hedge words correspond exactly to the
Dyck words over Σ̂ [Brüggermann-Klein and Wood 2004].

Proposition 7.1 (Encoding hedges). The transformation t nw : H(Σ) 7→
NW (Σ) is a bijection between H(Σ) and HW (Σ) and a bijection between OT (Σ)
and TW (Σ); and the composed mapping t nw · nw w is a bijection between H(Σ)
and Dyck(Σ).

The inverse of t nw then is a transformation function that maps hedge/tree
words to hedges/trees, and will be denoted nw t . It is worth noting that a nested
word automaton can easily check the conditions necessary for a nested word to
correspond to a hedge word or a tree word.

Proposition 7.2 (Hedge and tree words). The sets HW (Σ) and TW (Σ)
are regular languages of nested words.

7.2 Bottom-up Automata

A weakly-hierarchical nested word automaton A = (Q, q0, Qf , δ
l
c, δi, δr) is said to

be bottom-up iff the call-transition function does not depend on the current state:
δlc(q, a) = δlc(q

′, a) for all q, q′ ∈ Q and a ∈ Σ. Consider the run of a bottom-
up NWA A on a nested word n, let i be a call with return-successor j. Then, A
processes the rooted subword n[i, j] without using the prefix of n upto i. This does
not limit expressiveness provided there are no unmatched calls. However, if i is a
pending call, then the acceptance of n by A does not depend at all on the prefix
n[1, i − 1], and this causes problems. In particular, for Σ = {a, b}, the language
containing the single nested word a〈a can be accepted by an NWA, but not by a
bottom-up NWA (if a bottom-up NWA accepts a〈a, then it will also accept n〈a,
for every nested word n). To avoid this anomaly, we will assume that bottom-up
automata process only well-matched words.

Theorem 7.3 (Expressiveness of bottom-up automata). Given a
weakly-hierarchical NWA A with s states, one can effectively construct a weakly-
hierarchical bottom-up NWA B with ss states such that L(A)∩WNW (Σ) = L(B)∩
WNW (Σ).

Proof. Let A = (Q, q0, Qf , δ
l
c, δi, δr) be a weakly-hierarchical NWA. A state of

B is a function f : Q 7→ Q. When a call is encountered, since B cannot use the
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current state, it simulates A for every possible state. Consider a nested word n
and a position i for which the inner-most pending call is j. The state of B before
processing position i is f such that the subword n[j, i− 1] takes A from q to f(q),
for each q ∈ Q.

The initial state of B is the identity function. A state f is final if f(q0) ∈ Qf .
After reading an a-labeled call, the state of B is f such that f(q) = δlc(q, a).
While reading an a-labeled internal in state f , B updates its state to f ′ such
that f ′(q) = δi(f(q), a). While reading an a-labeled return in state f , if the state
along the nesting edge is g, then B updates its state to f ′ such that f ′(q) =
δr(f(g(q)), g(q), a). To complete the proof, one establishes that for a well-matched
word n, A accepts n iff B accepts n. 2

A variety of definitions of bottom-up tree automata have been considered in the
literature. In the generic definition of a bottom-up automaton over unranked trees,
the automaton has a finite set of states Q, an initial state q0, a set of final states
Qf ⊆ Q, and a transition function δ : Q∗ × Σ 7→ Q. The run r of the automa-
ton maps each ordered tree t to a state r(t). For the empty tree ε, r(ε) is the
initial state q0, and for a tree t with an a-labeled root and children t1 . . . tk, r(t)
is δ(r(t1) · · · r(tk), a). The automaton accepts a tree t if r(t) ∈ Qf . The transi-
tion function must be specifiable by a finite-state automaton itself. The definition
simplifies for binary trees, where the transition function maps Q×Q× Σ to Q.

All of these can be viewed as special cases of bottom-up NWAs. In particular,
bottom-up stepwise tree automata are very similar and process the input in the
same order [Brüggemann-Klein et al. 2001; Martens and Niehren 2005]. The only
difference is that stepwise automata were defined to read only tree or hedge words,
and process the symbol at a call when first encountered. That is, a stepwise bottom-
up tree automaton is a bottom-up NWA on hedge words with the restriction that
δr : Q×Q× Σ 7→ Q does not depend on its third argument.

Proposition 7.4 (Bottom-up tree automata). If L ⊆ H(Σ) is accepted by
a stepwise bottom-up tree automaton with s states, then there exists a bottom-up
NWA A with s states such that nw t(L(A)) = L.

Since stepwise bottom-up tree automata accept all regular tree languages, it fol-
lows that NWAs can define all regular tree languages. Also, stepwise automata have
been shown to be more succinct than many other classes of tree automata [Martens
and Niehren 2005], so succinctness gap of NWAs with respect to bottom-up NWAs
carries over to these classes. We show the following exponential gap, using tech-
niques developed for defining congruences for nested words [Alur et al. 2005]:

Theorem 7.5 (Succinctness gap for bottom-up automata). There exists
a family Ls, s ≥ 1, of regular languages of tree words such that each Ls is accepted
by an NWA with O(s2) states, but every bottom-up NWA accepting Ls must have
2s states.

Proof. Let Σ = {a, b}. We will use L to denote the set {〈a〉, 〈b〉}. For s ≥ 1,
consider the language Ls of tree words of the form 〈a〈b〉m〈aLi−1〈a〉Ls−ia〉a〉, where
i = m mod s.

First, we want to establish that there is a deterministic word automaton (and
hence, also an NWA) with O(s2) states accepting Ls. The automaton can compute

Journal of the ACM, Vol. 56, No. 3, May 2009.



34 · R. Alur and P. Madhusudan

the value of i = m mod s after reading 〈a〈b〉m〈a by counting the number of repeti-
tions of 〈b〉 modulo s using O(s) states. Then, it must ensure that what follows is
Li−1〈a〉Ls−ia〉a〉. For each value of i, this can be done using O(s) states.

Let A be a bottom-up NWA accepting Ls. Let q be the unique state of A having
read the prefix 〈a〈b〉m〈a. This state q is independent of m since A is bottom up.
The set Ls contains 2s well-matched words. If A has less than 2s states then there
must exist two distinct words n and n′ in Ls such that A goes to the same state q′

after reading both n and n′ starting in state q. Since n and n′ are distinct, they
must differ in some block. That is, there must exist 1 ≤ i ≤ s such that n is of
the form Li−1〈a〉Ls−i and n′ is of the form Li−1〈b〉Ls−i. Now consider the words
〈a〈b〉i〈an a〉a〉 and 〈a〈b〉i〈an′ a〉a〉. Only one of them is in Ls, but A will either
accept both or reject both. 2

Finally, let us revisit the grammar based characterization using visibly pushdown
grammars. If we are restricting to hedge words, then we do not need the right-linear
rules, and Dyck rules suffice. This leads to the following equivalence theorem.
The equivalence of regular hedge languages and the original balanced languages
(defined using rules of the form X → 〈aLa〉, where L is a regular word language
over nonterminals) implies that our definition of balanced grammars is equivalent
to the original one [Brüggermann-Klein and Wood 2004].

Theorem 7.6 (Regular Hedge Languages and Balanced Languages).
Let L ⊆ HW (Σ) be a set of hedge words over Σ. Then the following are equivalent

(1 ) L is a regular nested-word language.

(2 ) nw t(L) is a regular hedge language.

(3 ) nw w(L) is a balanced language.

Proof. We already know that over hedge words, NWAs have the same expres-
siveness as tree automata. From Theorem 5.3, we know that a balanced language, a
special case of a visibly pushdown grammar, can be translated into an NWA. What
remains to be shown is that while the translation from an NWA A to the grammar
GA can be done using only Dyck rules when L(A) contains only hedge words. The
translation is similar as in the proof of Theorem 5.3. Let A = (Q, q0, Qf , P, δc, δr)
be an NWA accepting only hedge words (initial hierarchical state, final hierar-
chical states, and internal transition relation are not used while processing hedge
words). We need only variables Zq,p generating hedge words with the interpreta-
tion that the current state is q and the state before the next pending return is
p. The start variables are of the Zq0,p with p ∈ Qf . For each state q, we have a
production Zq,q → ε. For each symbol a and states p, q, q′, we have a production
Zq,p → 〈aZδlc(q,a),q′a〉Zδr(q′,δhc (q,a),a),p. The grammar generates only those hedge
words accepted by A, and has only Dyck rules. 2

The relationship among various classes of languages is depicted in Figure 12.

7.3 Top-down Automata

A nested word automaton at a return position joins the information flowing along
the linear edge and the nesting edge. In this section, we study the impact of
disallowing such a join. A top-down automaton, at a call, processes the subword
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Regular Nested−word Languages

= Visibly Pushdown Word Languages

Deterministic Context−free Word Languages

Regular Word Languages
Regular Hedge Languages

= Balanced Word Languages

Fig. 12. Relationship among languages classes

upto the matching return and the suffix after the return independently. This can
be formulated as a restriction of the return transition relation: the next state is
based upon the state propagated along the nesting edge and the only information
along the linear edge is whether the inside subword is accepted or not.

A nondeterministic top-down nested word automaton is a nondeterministic NWA
(Q,Q0, Qf , P, δc, δi, δr) such that the return relation is specified by the hierarchical
return relation δhr ⊆ P × Σ×Q: (q, p, a, q′) ∈ δr iff (p, a, q′) ∈ δhr and q ∈ Qf . The
automaton is deterministic if there is only one initial state and choice of at most
one transition given the current state and symbol.

Over tree words, the standard definition of top-down tree automata is essen-
tially the same as our notion of top-down automata. A top-down tree automaton
processing hedges consists of states Q, initial state q0, final states F ⊆ Q, and a
transition function δ : Q × Σ 7→ 2Q×Q. The automaton starts in the initial state
q0 processing the root node of the left-most tree in the hedge t. While processing
an a-labeled node in state q, it chooses a transition (q1, q2) ∈ δ(q, a), and sends a
copy in state q1 to the left-most child of the current node, and a copy in state q2

to the right-sibling of the current node. If there is no child, then q1 is processing
the empty tree, and if there is no right sibling, q2 is processing the empty tree. An
empty tree is accepted in a state q iff q ∈ F . To accept the hedge t, all copies
must accept. Such a top-down tree automaton is deterministic if |δ(q, a)| ≤ 1 for
all states q and labels a.

Proposition 7.7 (Top-down tree automata). If L ⊆ H(Σ), then L is ac-
cepted by a (non)deterministic top-down tree automaton with s states iff there exists
a (non)deterministic top-down NWA A with s states such that nw t(L(A)) = L.

This implies that the well-known expressiveness deficiency of deterministic top-
down tree automata applies in case of nested words. Consider the requirement
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that the nested word contains some a-labeled symbol. This cannot be checked by
a top-down automaton.

Corollary 7.8 (Expressiveness of deterministic top-down automata).
Deterministic top-down nested word automata are strictly less expressive than nested
word automata.

Nondeterminism can be used to address this deficiency, provided we restrict at-
tention to well-matched words.

Theorem 7.9 (Expressiveness of nondeterministic top-down automata).
Given a nondeterministic NWA A with s states, one can effectively construct a
nondeterministic NWA B with O(s2|Σ|) states such that L(A) ∩ WNW (Σ) =
L(B) ∩WNW (Σ).

Proof. Let A = (Q,Q0, Qf , P, δc, δi, δr) be an NWA. We can ignore initial and
final hierarchical states, since we are interested only in well-matched words. For
every pair (q, q′) of states of A, B has a (linear) state meaning that the current
state of A is q and there is an obligation that the state of A will be q′ at the first
unmatched return. We will also need hierarchical states of the form (q, q′, a) to
label nesting edges to mean that the symbol at the return is guessed to be a. The
initial states are of the form (q, q′) with q ∈ Q0 and q′ ∈ Qf . States of the form
(q, q) are accepting. For every internal transition (q, a, q′) of A, for every p, B has
an internal transition ((q, p), a, (q′, p)). For every call transition (q, a, ql, qh) of A,
for every return transition (p, qh, b, r), for every state q′, B has a call transition
((q, q′), a, (ql, p), (r, q

′, b)). Note that here B is demanding a run from ql to p on
the inside subword, and the accepting condition ensures that this obligation is met.
The hierarchical return transitions of B are of the form ((q, q′, a), a, (q, q′)), and
ensure the consistency of the return symbol guessed at the call-predecessor with
the symbol being read. 2

7.4 Path Languages

The mix of top-down and bottom-up traversal in nested word automata can be bet-
ter explained on unary trees. We will consider a mapping that views a word as a
sequence of symbols along a hierarchical path. More precisely, consider the transfor-
mation function path : Σ∗ 7→ NW (Σ) such that path(a1 . . . a`) is w nw(〈a1 . . . 〈a`a`〉 . . . a1〉).
Note that for a word w, path(w) is rooted and has depth |w|.

For a word language L ⊆ Σ∗, let path(L) = {path(w) | w ∈ L} be the correspond-
ing language of tree words. We call such languages path languages. Observe that for
unary trees, the multitude of definitions of tree automata collapse to two: top-down
and bottom-up. Top-down tree automata for path(L) correspond to word automata
accepting L, while bottom-up tree automata correspond to word automata process-
ing the words in reverse. The following proposition follows from definitions:

Proposition 7.10 (Path languages). For a word language L, nw t(path(L))
is accepted by a deterministic top-down tree automaton with s states iff L is accepted
by a deterministic word automaton with s states, and nw t(path(L)) is accepted by
a deterministic bottom-up tree automaton with s states iff LR, the reverse of L, is
accepted by a deterministic word automaton with s states.
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It follows that path(L) is a regular language of nested words iff L is a regular
language of words. Also, for path languages, deterministic top-down and deter-
ministic bottom-up automata can express all regular languages. Given that a word
language L and its reverse can have exponentially different complexities in terms
of the number of states of deterministic acceptors, we get

Theorem 7.11 (Bottom-up and top-down traversal of NWAs). There ex-
ists a family Ls, s ≥ 1, of regular path languages such that each Ls is accepted by
a NWA with O(s) states, but every deterministic bottom-up or top-down NWA ac-
cepting Ls must have 2s states.

Proof. For Σ = {a, b}, let Ls be ΣsaΣ∗aΣs. An NWA with linear number of
states can accept the corresponding path language: it needs to count s calls going
down, count s returns on way back, and also make sure that the input word is
indeed a path word by passing each call-symbol along the hierarchical edge. It
is easy to see that Ls requires 2s states for a DFA to enforce the constraint that
s+1-th symbol from end is an a. Since Ls is its own reverse, from Proposition 7.10,
the theorem follows. 2

8. NESTED ω-WORDS

Automata over finite words are useful for specification and verification of safety
properties. To be able to specify and verify liveness properties (for example, “ev-
ery write is eventually followed by a read”), we need to consider infinite words.
Consequently, we now consider extensions of the results in the previous sections to
infinite words with a matching relation.

The definition of a matching relation over N as a subset of (N ∪ {−∞}) × (N ∪
{+∞}) is a straightforward generalization of the definition of matching relation of
length `; the axioms stay the same. A nested ω-word over Σ is a pair (a1a2 . . . ,;),
where a1a2 . . . is an ω-word over Σ and ; is a matching relation over N. The
notions such as word encoding and operations generalize to nested ω-words in the
obvious way.

In order to generalize NWAs to ω-automata over nested words, we need to define
the notion of acceptance of an infinite run over nested ω-words, where the run con-
sists of infinite sequences of linear and hierarchical states. Since there are multiple
possibilities here, we begin with the simplest possible notion of acceptance: Büchi
acceptance using linear states. Since Büchi word automata need to be nondeter-
ministic to capture all ω-regular languages, we will consider nondeterministic Büchi
automata over nested ω-words.

A (linearly-accepting) nondeterministic Büchi nested word automaton (BNWA)
over an alphabet Σ consists of states Q, initial states Q0 ⊆ Q, Büchi states Qf ⊆ Q,
hierarchical states P , initial hierarchical states P0 ⊆ P , a call transition relation
δc ⊆ Q× Σ×Q× P , an internal transition relation δi ⊆ Q× Σ×Q, and a return
transition relation δr ⊆ Q×P×Σ×Q. A run r of the BNWA A over a nested ω-word
n = (a1a2 . . . ,;) is an infinite sequence qi ∈ Q, for i ≥ 0, of states corresponding to
linear edges, and a sequence pi ∈ P , for calls i, of hierarchical states corresponding
to nesting edges, such that q0 ∈ Q0, and for each position i ≥ 1, if i is a call then
(qi−1, ai, qi, pi) ∈ δc; if i is an internal then (qi−1, ai, qi) ∈ δi; if i is a matched return
with call-predecessor j then (qi−1, pj , ai, qi) ∈ δr, and if i is a pending return then
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(qi−1, p0, ai, qi) ∈ δr for some p0 ∈ P0. The run is accepting if qi ∈ Qf for infinitely
many indices i ≥ 0. The automaton A accepts the nested ω-word n if A has some
accepting run over n. The language L(A) is the set of nested ω-words it accepts.
A set L of nested ω-words is regular iff there is a BNWA A such that L(A) = L.

The class of regular languages of nested ω-words is closed under various opera-
tions. In particular:

Theorem 8.1 (Closure for ω-languages). Let L1 and L2 be regular lan-
guages of nested ω-words over Σ. Then, L1 ∪ L2 and L1 ∩ L2 are also regular.
Further, if L3 is a regular language of nested words over Σ, then L3.L1 and (L3)ω

are regular languages of nested ω-words. If h is a language homomorphism such
that h respects nesting and for every a ∈ Σ̂, h(a) is a regular language of nested
words, then h(L1) is a regular language of nested ω-words.

Proof. The closure constructions for nondeterministic Büchi NWAs are similar
to the ones in Theorem 3.5. For the case of intersection, we need to make sure that
the Büchi states of both automata are visited infinitely often, and this can be done
by adding a bit to the state as is done for intersection of Büchi word automata.
The construction for Lω is similar to the construction for L∗ in Theorem 3.6.
In this construction, for every transition leading to a state q ∈ QF , the state is
nondeterministically reset to some initial state. To ensure membership in Lω, we
need to require that this reset happens infinitely often, and this can be captured
by a Büchi condition after adding a bit to the state. The proof of closure under
nesting-respecting homomorphisms is similar to the case of finite words. 2

For automata over ω-words, it is known that Büchi acceptance condition cannot
capture all regular languages if we restrict attention to deterministic automata.
For deterministic automata over ω-words, adequate acceptance conditions include
parity condition and Muller condition. For the nested case, it turns out that, for
deterministic automata, no condition on the set of linear states repeating infinitely
often can capture all regular languages.

A (linearly-accepting) deterministic Muller nested word automaton (MNWA) over
an alphabet Σ consists of states Q, initial state q0 ∈ Q, a Muller set F = {F1, . . . Fk}
of accepting sets Fi ⊆ Q, hierarchical states P , initial hierarchical state p0 ⊆ P ,
a call transition function δc : Q × Σ 7→ Q × P , an internal transition function
δi : Q×Σ 7→ Q, and a return transition function δr : Q×P×Σ 7→ Q. Given a nested
ω-word n, the unique run r of a MNWA A over n is defined as in case of deterministic
NWAs. This run is accepting if the set {q ∈ Q | for infinitely many indices i ≥
0, qi = q} ∈ F .

It is easy to see that Muller acceptance condition does not increase expressive-
ness if nondeterminism is allowed. However, the classical determinization of Büchi
automata fails in this case. Consider the language Lrepbdd consisting of all nested
ω-words on over the unary alphabet such that n has only finitely many pending
calls (that is, there exists k ∈ N such that the depth of infinitely many positions
is less than or equal to k). This property has been studied in the context of veri-
fication of pushdown programs, and is called “repeatedly bounded stack depth” in
[Cachat et al. 2002].

Theorem 8.2 (Inadequacy of deterministic linear Muller acceptance).
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The language Lrepbdd of nested ω-words with only finitely many pending calls is
accepted by a nondeterministic Büchi NWA but cannot be accepted by any deter-
ministic Muller NWA.

Proof. We can easily design a BNWA that accepts Lrepbdd. The automaton
nondeterministically chooses a position in the word, and checks that there are no
subsequent pending calls. The check can be performed by tagging the state. The
tag is propagated at internal positions. At calls, the tag is propagated only across
nesting edges, and at returns the tag is retrieved from the incoming nesting edges.
The check succeeds if a tagged state is encountered infinitely often.

Now to show that no MNWA can accept Lrepbdd, assume the contrary and let
A = (Q, q0,F , P, p0, δc, δi, δr) be a deterministic Muller automaton that accepts
Lrepbdd. Let G1 = (Q,→) be the summary-graph of A where q → q′ iff there exists
a well-matched nested word n that takes the automaton from q to q′. Note that if
q is a state reachable by A on some nested word n′, then there must be an outgoing
edge from q in G1 (if n is any well-matched nested word, then n′nω is in Lrepbdd, and
is accepted by the deterministic automaton A, and hence, there will be a summary
edge from q corresponding n). Also, since concatenation of well-matched words is
well-matched, G1 is transitively closed.

Consider the strongly connected components (SCC) of G1. A sink SCC of G1 is
a strongly connected component S′ such that every edge (q, q′) ∈ G1, if q ∈ S′ then
q′ is also in S′.

Now let G2 = (Q,⇒) which is a super-graph of G1 with additional call-edges:
(q, q′) is a call-edge if there is a transition from q to q′ in A on a call. We now show:

Lemma: There is a sink SCC S of G1 and a state q ∈ S reachable from
the initial state q0 in G2 such that there is a cycle involving q in G2 that
includes a call-edge.

If the lemma is true, then we can show a contradiction. Consider a nested word
that from q0 reaches q using the summary edges and call-edges in G2 and then
loops forever in S. This word has only finitely many pending calls, and hence must
be accepting and hence QS , the union of all states reachable using summary edges
in S must be in the Muller set F . Now consider another nested ω-word that takes
A from q0 to q but now follows the cycle that involves q. Along the cycle, some
are well-matched words corresponding to summary edges and some are calls; note
that there will be no returns that match these calls. If Q′ is the set of states visited
from going to q along the cycle, then we can show that Q′ ⊆ QS (after the cycle,
if we feed enough returns to match the calls then we get a summary edge from q;
however summary edges from q go only to S and hence the states seen must be a
subset of QS). Now, consider the infinite word that first goes from q0 to q, and then
alternately takes the cycle in G2 to reach q and takes the set of all possible summary
edges in S to reach q again. This word has infinitely many pending calls, but the
set of states seen infinitely often is QS and is hence accepted, a contradiction.

Now let us show the lemma. Note that from any state, one can take summary
edges in G1 to reach a sink SCC of G1. Let us take summary edges from q0 to
reach a state q1 in a sink SCC S1 of G1 and take the call edge from q1 to reach
q′1. If q′1 ∈ S1, we are done as we have a cycle from q1 to q1 using a call-edge.
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Otherwise take summary edges in G1 from q′1 to reach a state q2 in a sink SCC S2.
If S2 = S1, we are again done, else take a call-edge from q2 and repeat till some
sink SCC repeats. 2

This raises the question: what is the appropriate acceptance condition for au-
tomata over infinite nested words? This was answered in [Löding et al. 2004]. Given
a nested ω-word n, a position i is a top-level position if it is not within a nesting edge
(that is, there are no positions j < i < k with j ; k). If the acceptance condition
can examine the part of the run restricted to the top-level positions, then determin-
istic Muller (or deterministic Parity) condition suffices. More precisely, a determin-
istic stair Muller NWA is like a MNWA, but its run over a nested ω-word is accept-
ing if the set {q ∈ Q | for infinitely many top-level positions i ≥ 0, qi = q} ∈ F .
Deterministic stair Muller NWAs can accept all regular languages of nested ω-words.

Closure of BNWAs under complementation, can be shown without resorting to
determinization using the stair Muller acceptance condition.

Theorem 8.3 (Complementation for ω-languages). The class of regular
languages of nested ω-words is closed under complement: given a BNWA A with s
states, one can construct a BNWA with 2O(s2) states accepting the complement of
L(A).

Proof. Let A = (Q,Q0, Qf , P, P0, δc, δi, δr) be a BNWA with s states over Σ.
We can assume that there are transitions from every state on every letter, and that
there is a run of A on every nested ω-word. Consider an ω-word w ∈ Σ̂ω. Then w
can be factored into finite words where we treat a segment of symbols starting at a
call and ending at the matching return as a block. This factorization can be, say,
of the form w = a1a2w1a3w2w3a4 . . . where each wi is a finite word over Σ̂ that
starts with a call and ends with the matching return. The symbols ai can be calls,
returns or internal symbols but if some ai is a call, then aj (j > i) cannot be a
return. Consider the following ω-word which can be seen as a pseudo-run of A on
w: w′ = a1a2S1a3S2S3a4 . . . where each Si is the set of all triples (q, q′, f) where
q, q′ ∈ Q, f ∈ {0, 1} such that there is some run of A on wi starting at the state q
and ending at the state q′ and containing a state in Qf iff f = 1.

Let S denote the set of all sets S where S contains triples of the form (q, q′, f)
where q, q′ ∈ Q and f ∈ {0, 1}; the summary edges used above hence are in S. Then
PR = (Σ〉∪Σ∪S)ω∪(Σ〉∪Σ∪S)∗.(〈Σ∪Σ∪S)ω denotes the set of all possible pseudo-
runs. We can now construct a nondeterministic Büchi word automaton AR that
accepts the set LR of all accepting pseudo-runs; where a pseudo-run is accepting if
there is a run of A that runs over the Σ̂-segments of the word in the usual way, and
on letters S ∈ S, updates the state using a summary edge in S and either meets
Qf infinitely often or uses summary edges of the form (q, q′, 1) infinitely often.
Note that an ω-word w is accepted by A iff the pseudo-run corresponding to w is
accepting. Now we construct a deterministic Streett automaton BR that accepts
the complement of LR. The automaton AR has O(s) states. Due to complexity of
complementation, BR has 2O(s log s) states and O(s) accepting constraints [Thomas
1990].

We now construct a nondeterministic Büchi NWA B that, on reading w, generates
the pseudo-run of w online and checks whether it is in LR. The factorization of w
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into segments is done nondeterministically and the summary edges are computed
online using the nesting edges (as in the proof of determinization of NWAs on finite
words). The states of this automaton B correspond to the summaries in S, and

thus, it has 2O(s2) states.
The desired automaton is the product of B and BR, and has 2O(s2) states and

O(s) Streett accepting constraints. The resulting automaton can be converted to a

Büchi automaton and accepts the complement of L(A), and has 2O(s2) states. 2

We can also characterize the class of regular languages of nested ω-words using
monadic second order logic which is now interpreted over infinite words, using the
closure properties.

Theorem 8.4 (MSO characterization of ω-languages). A language L of
nested ω-words over Σ is regular iff there is an MSO sentence ϕ over Σ that defines
L.

Proof. The proof of Theorem 4.1 can be easily adopted to the infinite case.
To show that for a given MSO sentence, the set of its satisfying nested ω-words

can be accepted by a Büchi NWA, we use the same encoding. Consider any formula
ψ(x1, . . . , xm, X1, . . . , Xk), and consider the alphabet ΣZ consisting of pairs (a, V )
such that a ∈ Σ and V : Z 7→ {0, 1} is a valuation function. Then a nested ω-word
n′ over ΣZ encodes a nested ω-word n along with a valuation for the variables. Let
L(ψ) denote the set of nested words n′ over ΣZ such that the underlying nested
word n satisfies ψ under the valuation defined by n′. Then we show, by structural
induction, that L(ψ) is regular. The property that first-order variables are assigned
exactly once can be checked using the finite control of a Büchi NWA and the accep-
tance condition. The atomic formulas are handled as before. Disjunction,negation,
and existential quantification are handled using corresponding constructions for
Büchi NWAs.

The translation from Büchi NWAs to MSO uses the same encoding for capturing
the runs of the automaton by a formula. Only the conjunct corresponding to the
acceptance requirement for the run needs to be modified. 2

The emptiness problem ω-NWAs is decidable in polynomial time since they can be
interpreted as pushdown automata over infinite words over Σ̂ [Burkart and Steffen
1992]. From our results it also follows that the universality and inclusion prob-
lems are Exptime-complete for nondeterministic Büchi NWAs: the upper bounds
follow from the complexity of complementation, and lower bounds follow from the
corresponding bounds for NWAs.

9. RELATED WORK

Software Model Checking. Our work was motivated by the use of pushdown au-
tomata in software verification. It is worth noting that most of the algorithms for
inter-procedural program analysis and context-free reachability compute summary
edges between control locations to capture the computation of the called proce-
dure (see, for example [Sharir and Pnueli 1981; Reps et al. 1995]). The problem
of checking regular requirements of pushdown models has been extensively studied
in recent years leading to efficient implementations and applications to program
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analysis [Reps et al. 1995; Boujjani et al. 1997; Ball and Rajamani 2000; Alur et al.
2005; Henzinger et al. 2002; Esparza et al. 2003; Chen and Wagner 2002]. Decision
procedures for certain classes of non-regular properties already exist [Jensen et al.
1999; Chen and Wagner 2002; Esparza et al. 2003; Chatterjee et al. 2004]. The
idea of making calls and returns in a recursive program visible to the specifica-
tion language for writing properties appears implicitly in [Jensen et al. 1999] which
proposes a logic over stack contents to specify security constraints, and in [Esparza
et al. 2003] which augments linear temporal logic with regular valuations over stack
contents, and in our recent work on the temporal logic Caret that allows modal-
ities for matching calls and returns [Alur et al. 2004]. Also, properties expressing
boundedness of stack, and repeatedly boundedness, have received a lot of attention
recently [Cachat et al. 2002; Bouquet et al. 2003].

Context-free Languages. There is an extensive literature on pushdown automata,
context-free languages, deterministic pushdown automata, and context-free ω-languages
(c.f. [Autebert et al. 1997]). The most related work is McNaughton’s parenthesis
languages with a decidable equivalence problem [McNaughton 1967]. Knuth showed
that parentheses languages are closed under union, intersection, and difference (but
not under complementation, primarily because parenthesis languages can consist of
only well parenthesized words), and it is decidable to check whether a context-free
language is a parenthesis language [Knuth 1967]. These proofs are grammar-based
and complex, and connection to pushdown automata was not studied. Furthermore,
parenthesis languages are a strict subclass of visibly pushdown languages, even when
restricted to languages of well-bracketed words. Recently, balanced grammars are
defined as a generalization of parenthesis languages by allowing several kinds of
parentheses and regular languages in the right hand sides of productions [Berstel
and Boasson 2002]. It turns out that this class of languages is also a strict subclass
of VPLs. The class of visibly pushdown languages, was also considered implicitly in
papers related to parsing input-driven languages [von Braunmühl and Verbeek 1983;
Dymond 1988]. Input-driven languages are precisely visibly pushdown languages
(the stack operations are driven by the input). However, the papers considered
only the membership problem for these languages (namely showing that member-
ship is easier for these languages than for general context-free languages) and did
not systematically study the class of languages defined by such automata.

It has been observed that propositional dynamic logic can be augmented with
some restricted class of context-free languages, and simple-minded pushdown au-
tomata, which may be viewed as a restricted class of VPAs, have been proposed to
explain the phenomenon [Harel et al. 2000].

There is a logical characterization of context free languages using quantifications
over matchings [Lautemann et al. 1994], and Theorem 5.2 follows from that result.

Tree Automata. There is a rich literature on tree automata, and we used [Schwentick
2007; Comon et al. 2002] for our research. Besides classical top-down and bottom-
up automata over binary trees, stepwise bottom-up tree automata for process-
ing unranked ordered trees [Martens and Niehren 2005; Brüggemann-Klein et al.
2001] are the most relevant to this paper. The connection between balanced gram-
mars and regular hedge languages has been explored [Berstel and Boasson 2002;
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Brüggermann-Klein and Wood 2004]. Many of the constructions for nested word
automata can be traced to the corresponding constructions for tree automata. De-
terministic word automata have been also used for stream processing of XML doc-
uments [Green et al. 2003], where the authors argue, with experimental supporting
data, that finite-state word automata may be good enough given that hierarchical
depth of documents is small. Pushdown automata have been used in various ways
for streaming algorithms for querying XML data. For instance, [Gupta and Suciu
2003] defines XPush machines, a particular form deterministic pushdown automata
developed for processing multiple queries.

10. CONCLUSIONS

We have proposed a new model of nested words that allows capturing linear and
hierarchical structure simultaneously. Both words and ordered trees are special
cases of nested words, and nested words support both word and tree operations.
Automata over nested words lead to a robust class of languages with appealing
theoretical properties. Linear encodings of nested words gives the class of visi-
bly pushdown languages, and this class lies between the parenthesis languages and
deterministic context-free languages. Over trees, nested word automata combine
top-down and bottom-up traversals, and are exponentially more succinct than ex-
isting definitions of tree automata.

This theory offers a way of extending the expressiveness of specification languages
supported in model checking and program analysis tools: instead of modeling a
boolean program as a context-free language of words and checking regular proper-
ties, one can model both the program and the specification as regular languages
of nested words. More generally, pushdown automata can be replaced by NWAs,
provided the pushdown automaton is only a consumer, rather than a producer, of
the matching relation.

Given that NWAs can be more succinct than standard tree automata, and have
same complexity of decision problems as that of standard tree automata, NWAs can
potentially replace tree automata in some applications such as streaming algorithms
for query processing. We need to explore if compiling existing XML query languages
into nested word automata reduces query processing time in practice.
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von Braunmühl, B. and Verbeek, R. 1983. Input-driven languages are recognized in log n
space. In Fundamentals of Computation Theory, Proceedings. LNCS 158. Springer, 40–51.

Journal of the ACM, Vol. 56, No. 3, May 2009.


