
Realizability and Verification of MSC

Graphs ?

Rajeev Alur a,1

aDepartment of Computer and Information Science, University of Pennsylvania

Kousha Etessami b

bBell Laboratories, Lucent Technologies

Mihalis Yannakakis c

cAvaya Labs

Abstract

Scenario-based specifications such as message sequence charts (MSC) offer an intu-
itive and visual way to describe design requirements. MSC-graphs allow convenient
expression of multiple scenarios, and can be viewed as an early model of the system
that can be subjected to a variety of analyses. Problems such as LTL model check-
ing are undecidable for MSC-graphs in general, but are known to be decidable for
the class of bounded MSC-graphs.

Our first set of results concerns checking realizability of bounded MSC-graphs.
An MSC-graph is realizable if there is a distributed implementation that gener-
ates precisely the behaviors in the graph. There are two notions of realizability,
weak and safe, depending on whether or not we require the implementation to be
deadlock-free. It is known that for a finite set of MSCs, weak realizability is coNP-
complete while safe realizability has a polynomial-time solution. We establish that
for bounded MSC-graphs, weak realizability is, surprisingly, undecidable, while safe
realizability is in Expspace.

Our second set of results concerns verification of MSC-graphs. While checking
properties of a graph G, besides verifying all the scenarios in the set L(G) of MSCs
specified by G, it is desirable to verify all the scenarios in the set Lw(G)—the closure
of G, that contains the implied scenarios that any distributed implementation of G
must include. For checking whether a given MSC M is a possible behavior, checking
M ∈ L(G) is NP-complete, but checking M ∈ Lw(G) has a quadratic solution. For
temporal logic specifications, considering the closure makes the verification problem
harder: while checking LTL properties of L(G) is Pspace-complete for bounded
graphs G, checking even simple “local” properties of Lw(G) is undecidable.

Key words: Formal verification, Software specification, Message Sequence Charts

Preprint submitted to Elsevier Science 5 August 2002



1 Introduction

Message Sequence Charts (MSCs) are a commonly used visual notation for de-
scribing message exchanges between concurrent processes. They have become
popular among software engineers for early requirements specification. Re-
cently MSCs have been standardized by ITU [1], and incorporated in modern
software engineering notations such as UML [8]. In the simplest form, an MSC
depicts the desired exchange of messages, and corresponds to a single (partial-
order) execution of the system. In recent years, a variety of features have been
introduced so that a designer can specify multiple scenarios conveniently. In
particular, MSC-graphs allow MSCs to be combined using operations such
as choice, concatenation, and repetition. MSC-graphs can be viewed as an
early model of the system that can be subjected to formal analysis. This has
motivated the development of algorithms for a variety of analyses including
detecting race conditions and timing conflicts [3], pattern matching [14], de-
tecting non-local choice [6], and model checking [4], and tools such as uBET
[10] and MESA [5].

An MSC-graph consists of a graph G whose nodes are labeled by MSCs, and G
is viewed as defining the set L(G) of all MSCs obtained by concatenating the
MSCs that appear along any (directed) finite path from the designated start
node of G. It is worth noting that the traditional high-level model for concur-
rent systems has been communicating state machines. Both communicating
state machines and MSC-graphs can be viewed as specifying sets of behaviors,
but the two offer dual views: the former is a parallel composition of sequential
machines, while the latter is a sequential composition of concurrent executions.
The complexity of a variety of verification questions in the communicating-
state-machines model has been well understood: typically the problems are
undecidable, and we must assume a bound on the sizes of message-buffers to
obtain decidability results. Recent results indicate that verification problems
about MSC-graphs are also undecidable in general as a process can send a
potentially unbounded number of messages yet to be received [14,4]. The re-
quirement for decidability, for problems such as LTL model checking, seems
to be boundedness: in a bounded MSC-graph, in every cycle, for every pair

? A preliminary version of this paper appears in Proceedings of the 28th Interna-
tional Colloquium on Automata, Languages, and Programming (ICALP’01), LNCS
2076, Springer, pp. 797–808, 2001.
1 This research was partially supported by NSF Career award CCR97-34115, NSF
award CCR99-70925, and Alfred P. Sloan Faculty Fellowship.

2



of active processes p and q, there is a sequence of communications from p to
q and back, ensuring that all the active processes stay roughly synchronized,
thereby bounding the number of pending messages [4,13]. The boundedness
property of an MSC-graph can be checked in time exponential in the number
of processes [4], and linear in the size of the MSC-graph. In this paper, we
study a variety of analysis problems for bounded MSC-graphs.

The first analysis question studied in this paper concerns a form of consistency,
called realizability, of specifications given as an MSC-graph. As observed in
[2], a set of MSCs can potentially imply other, distinct, MSCs whose commu-
nication pattern must be exhibited by any concurrent system that realizes the
given MSCs. An MSC-graph G is said to be realizable if there exists a dis-
tributed implementation whose behaviors are precisely the ones specified by
G. The precise definition of realizability depends on the the underlying com-
munication architecture for the distributed system [2]. In this paper we focus
on realizability under a basic FIFO communication architecture. Unspecified,
but implied, behaviors can be indicative of logical errors, and can be revealed
by checking realizability. We prove that checking this form of realizability is,
surprisingly, undecidable for bounded MSC-graphs by a reduction from the
Post correspondence problem. Intuitively, this is because, while a bounded
graph ensures boundedness of buffers in the scenarios specified in the graph,
it does not ensure boundedness of buffers in its distributed implementation
where different processes can follow different paths in the graph.

We study a second form of realizability, called safe realizability, where the dis-
tributed implementation must be deadlock-free. Safe realizability is a stronger
notion of realizability, and corresponds to inferring partial global behaviors
from local views of the specified MSCs. For a finite set of MSCs, checking
weak realizability is coNP-complete, while checking safe realizability has a
polynomial-time solution [2]. For bounded MSC-graphs, we show that check-
ing safe realizability, unlike the weaker version, is decidable. We establish an
upper bound of Expspace. We show the problem is Pspace-hard, but match-
ing the lower and upper bounds remains an open problem.

For the purpose of verification of an MSC-graph G, due to the gap between an
MSC-graph and its implementation, besides L(G), we also consider Lw(G), the
weak-closure of G, containing all MSCs implied by MSCs in G, as a possible
semantics. As we will see, a verification question can have different answers
and different complexities depending upon this choice of semantics.

Our first verification problem concerns testing whether a given scenario M is
a possible behavior of a given MSC-graph G. This is relevant in identifying
if a new scenario is already present in the existing specification, and also for
detecting bugs if M specifies an undesired scenario. We show that the problem
of verifying whether M ∈ L(G) is NP-complete in general, but can be solved

3



request A
request A

ProxyClient

A

Client Server

A

request A

ProxyServer

A

Fig. 1. Two simple MSCs depict client-server scenarios through a proxy.

in polynomial-time if the number of processes is bounded. We establish that
testing whether M is in the closure of L(G) can be solved in quadratic time.
This shows that it is easier to determine whether an MSC exists in the closure
than in the originally given set, and furthermore, the questions about the
implementation of G can sometimes be verified without constructing it.

Finally, we consider the model checking problem, where the model is given
by an MSC graph G and the specification is given by automata or by tempo-
ral logic formulas. When the semantics of G is L(G), and the specification is
given by an automaton accepting linearizations corresponding to “bad” behav-
iors, the problem is undecidable in general and Pspace-complete for bounded
graphs [4]. If the specification is given by “local” properties that do not dis-
tinguish between different linearizations of the same MSC, model checking
can be solved in polynomial-time [15]. In this paper, we show that under the
closure-semantics, the model checking questions become harder: for an acyclic
graph the problem is coNP-complete, and for bounded graphs the problem is
undecidable, even for simple linearization-invariant local specifications.

2 Specification Languages

2.1 Message Sequence Charts

We start by recalling the definition of message sequence charts. Informally,
a single MSC depicts the message exchanges in one communication scenario
between entities of a concurrent system. For example, in Figure 1 two MSCs
are depicted giving two distinct communication scenarios in a client-server
system where messages pass through a proxy. In the left scenario, the proxy
simply relays the request message from the client to the server, while in the
right scenario the proxy has a cached copy of the requested item, and hence
responds to the client without involving the server.

Our formal definition of MSCs captures the essence of the ITU standard
MSC’96, and is analogous to the definitions of labeled MSCs given in [3,4,2].
Let {P1, . . . , Pn} be a set of processes, and Σ be a message alphabet. We use the
label send(i,j,a) to denote the event “process Pi sends the message a to process

4



Pj.” Similarly, receive(i,j,a) denotes the event “process Pj receives the message
a from process Pi.” Define the set ΣS = {send(i, j, a) | 1 ≤ i, j ≤ n & a ∈ Σ}
of send labels, the set ΣR = {receive(i, j, a) | 1 ≤ i, j ≤ n & a ∈ Σ} of receive
labels, and Σ̂ = ΣS ∪ ΣR as the set of event labels. A Σ-labeled MSC M over
processes {P1, . . . , Pn} is given by:

• a finite set E of events which is partitioned into a set S of “send” events
and a set R of “receive” events;

• a mapping p that maps each event e to a process 1 ≤ p(e) ≤ n on which it
occurs;

• a bijective mapping f : S 7→ R between send and receive events, matching
each send with its corresponding receive;

• a mapping l : E 7→ Σ̂ which labels each event such that l(S) ⊆ ΣS and
l(R) ⊆ ΣR, and furthermore for consistency of labels, for all s ∈ S, if l(s) =
send(i, j, a) then p(s) = i and l(f(s)) = receive(i, j, a) and p(f(s)) = j;

• for each 1 ≤ i ≤ n, a total order ≤i on the events of process Pi, that is, on
the elements of p−1(i), such that the transitive closure of the relation

≤ .
= ∪1≤i≤n ≤i ∪ {(s, f(s)) | s ∈ S}

is a partial order on E.

We require all our MSCs to satisfy an additional FIFO condition:

• there is no reversal of the order in which two messages sent by some process
Pi are received by another process Pj, that is, for send events s1, s2 ∈ S, if
p(s1) = p(s2) = i, and s1 ≤i s2, then f(s1) ≤j f(s2), where j = p(f(s1)).

If the underlying architecture is not FIFO, then a weaker non-degeneracy
condition can be used. Non-degeneracy condition disallows reversals between
a pair of identical messages between a given pair of processes [2]. The results
of this paper are developed using the FIFO condition, but we will indicate
when they also hold with the non-degeneracy condition.

Observe that the information in MSCs can be captured by any word over Σ̂
that corresponds to the sequence of labels of any linearization that is consistent
with the partial order ≤. Furthermore, any word over Σ̂ in which the send
and receive events can be matched, uniquely defines an MSC. Let us be more
precise. A word w = w1 · · ·w|E| over the alphabet Σ̂ is a linearization of an
MSC M iff there exists a total order e1 · · · e|E| of the events in E such that
whenever ei ≤ ej, we have i ≤ j, and for 1 ≤ i ≤ |E|, wi = l(ei). Let w

be a word over Σ̂, and consider processes i and j. We define the projections
w ⇑ send(i, j) and w ⇑ receive(i, j) as follows. If w is the empty word, then
w ⇑ send(i, j) and w ⇑ receive(i, j) equal the empty word. Suppose w = xv,
for x ∈ Σ̂. If x = send(i, j, a) then w ⇑ send(i, j) = a(v ⇑ send(i, j)) else w ⇑
send(i, j) = v ⇑ send(i, j). If x = receive(i, j, a) then w ⇑ receive(i, j) =

5



a(v ⇑ receive(i, j)) else w ⇑ receive(i, j) = v ⇑ receive(i, j). Now, a word
w is well-formed if for every prefix v of w, for every pair of processes i and
j, v ⇑ receive(i, j) is a prefix of v ⇑ send(i, j). A word w is complete if for
every pair of processes i and j, w ⇑ send(i, j) = w ⇑ receive(i, j). A word w
over Σ̂ is a linearization of an MSC iff it is well-formed and complete [2].

2.2 MSC Graphs

A natural way to structure multiple scenarios is to employ graphs whose nodes
are MSCs. Formally, an MSC-graph G consists of a set V of vertices, a binary
relation → over V , an initial vertex vI , a set of terminal vertices V T , and a
labeling function µ that maps each vertex v to an MSC. The paths that start
at the initial vertex and end at a terminal vertex represent (finite) accepting
paths of G, i.e., the finite executions of the system modeled by the MSC-
graph. To formally associate a set of MSCs with the MSC-graph G, we first
have to define a concatenation operation on MSCs. Concatenation M · M ′

corresponds to a natural process-by-process pasting of the two MSCs M and
M ′ together (see [4] for a formal definition). Then, we can associate an MSC
with each path by concatenating MSCs corresponding to individual vertices.
The (finite) language L(G) of the graph is then all MSCs of the form µ(v0) ·
µ(v1) · · ·µ(vn), where v0v1 . . . vn is an accepting path in G. Since MSCs are
uniquely characterized by their linearizations, we will also use L(G) to denote
the set of all linearizations of the MSCs in it.

In general, the set L(G) is not regular. The problem arises, for instance, when
there is a cycle in the graph such that some process sends a message at some
vertex in the cycle, but does not receive any message at any vertex in the cy-
cle. For example, consider the MSC-graph with a single node with a self-loop,
where the MSC associated with the node consists of a single message edge.
The language of this MSC graph is non-regular, because it consists of strings of
send’s and receive’s which are isomorphic to “properly parenthesized” expres-
sions over the alphabet {(, )}, a language known not to be a regular language.
The class of bounded MSCs avoids this problem. Given an MSC-graph G and
a subset U of its vertices, define the communication graph HU of U as follows:
the set of vertices of HU is the set P of all the processes, and there is an arc
from process p to process q if p sends a message to q in the MSC µ(v) for
some v ∈ U . For a set U of vertices, we denote by PU the set of processes
that send or receive a message in the MSC of some vertex in U , and call them
the active processes of the set U . We call an MSC-graph bounded if for every
cycle ρ of G, the subgraph of the communication graph Hρ induced by the set
Pρ of active processes of the cycle is strongly connected. In other words, com-
munication graph Hρ on all the processes consists of one nontrivial strongly
connected component and isolated nodes corresponding to processes that are

6



inactive throughout the cycle. In [4], it is shown that if G is bounded, the set
of linearizations of all the MSCs in L(G) is regular, and can be generated by
a nondeterministic automaton whose size is exponential in the size of G. The
converse of the question, namely, characterizing regular languages using MSC
graphs, is studied in [9].

2.3 Concurrent Automata

Our concurrency model is based on the standard buffered message-passing
model of communication. There are several choices to be made with regard
to the particular communication architecture of concurrent processes, such as
synchrony/asynchrony and the queuing disciplines on the buffers. We fix our
architecture to a standard asynchronous setting, with FIFO message buffers
between all pairs of processes. We now formally define our automata Ai, and
their (asynchronous) product Πn

i=1Ai, which captures their joint behavior.

As in the previous section, let Σ be the message alphabet. Let Σ̂i be the set
of labels of events belonging to process Pi, namely, the messages of the form
send(i, j, a) and receive(j, i, a). The behavior of process Pi is specified by an
automaton Ai over the alphabet Σ̂i with the following components: (1) a set
Qi of states, (2) a transition relation δi ⊆ Qi × Σ̂i × Qi, (3) an initial state
q0
i ∈ Qi, and (4) a set Fi ⊆ Qi of accepting states.

To define the joint behavior of the set of automata Ai, we need to describe
the message buffers. For each ordered pair (i, j) of process indices, we have
two message buffers Bs

i,j and Br
i,j. The first buffer, Bs

i,j, is a “pending” buffer
which stores the messages that have been sent by Pi but are still “in transit”
and not yet accessible by Pj. The second buffer Br

i,j contains those messages
that have already reached Pj, but are not yet accessed and removed from the
buffer by Pj. All the buffers are words over the message alphabet Σ. We define

the asynchronous product automaton A = Πn
i=1Ai over the alphabet Σ̂, given

by:

States. A state q of A consists of the (local) states qi of component processes
Ai, along with the contents of the buffers Bs

i,j and Br
i,j.

Initial state. The initial state q0 of A is given by having the component for
each process i be in the start state q0

i , and by having every buffer be empty.
Transitions. In the transition relation δ ⊆ Q×(Σ̂∪{τ})×Q, the τ -transitions

model the transfer of messages from the sender to the receiver. The transi-
tions are defined as follows:
(1) For an event x ∈ Σ̂i, (q, x, q′) ∈ δ iff (a) the local states of processes

k 6= i are identical in q and q′, (b) the local state of process i is qi

in q and q′i in q′ such that (qi, x, q′i) ∈ δi, (c) if x = receive(j, i, a)

7



a

a

b

b

p1 p2 p3 p4

MSC1

p1 p2 p3 p4

a

a

b

b

MSC2

a

p1 p2 p3 p4

a

b

b

M’

Fig. 2. Weak Inference

then the buffer Br
j,i in state q contains the message a in the front, and

the corresponding buffer in state q′ is obtained by deleting a, (d) if
x = send(i, j, a), the buffer Bs

i,j in state q′ is obtained by appending
the message a to the corresponding buffer in state q, and (e) all other
buffers are identical in states q and q′.

(2) There is a τ -labeled transition from state q to q′, iff states q and q′

are identical except that for one pair (i, j), the buffer Bs
i,j in state q′ is

obtained from the corresponding buffer in state q by deleting the first
message a, and the buffer Br

i,j in state q′ is obtained from that in q by
adding that message a at its end.

Accepting states. A state q of A is accepting if for all processes i, the local
state qi of process i in q is accepting, and all the buffers in q are empty.

We associate with A = ΠiAi the language of possible executions of A, denoted
L(A), which consists of all those words in Σ̂∗ leading A from start state q0

to an accepting state, where τ -transitions are viewed as ε-transitions in the
usual automata-theoretic sense. For any set of concurrent automata Ai, the
language L(ΠiAi) of the product of the automata contains only complete and
well-formed words. Furthermore, for a given MSC M , the language L(ΠiAi)
either contains all linearizations of M or it contains none.

3 Realizability

3.1 Weak Realizability

Consider the two MSCs MSC1 and MSC2 shown in Figure 2. Any distributed
implementation that exhibits these two behaviors must also exhibit the be-
havior depicted by M ′. This is because, as far as each process can locally tell,
the scenario is proceeding according to one of the two given scenarios. Con-
sequently, we say that the set of MSCs containing MSC1 and MSC2 (weakly)
implies M ′ [2].

Formally, given a set L of MSCs (or equivalently, their linearizations), and

8



another MSC M , we say that L weakly implies M , if for any sequence of
automata 〈Ai | 1 ≤ i ≤ n〉, if every MSC in L is in L(ΠiAi) then so is M
in L(ΠiAi). The weak closure Lw of a set L of MSCs contains all the MSCs
L weakly implies, and the set L is weakly realizable iff L = Lw. The notions
defined above naturally extend to MSC-graphs. The MSC-graph G is said to
be weakly realizable if the set L(G) of MSCs is. Thus, a weakly realizable graph
already contains all the implied scenarios.

For computational purposes, an alternative characterization of the weak re-
alizability is helpful. For an MSC M and a process Pi, let M |i denote the
sequence of events belonging to the process Pi in M . Then, a set L of MSCs
weakly implies an MSC M iff for all 1 ≤ i ≤ n, there exists an MSC Mi ∈ L
such that M |i = Mi|i [2]. In other words, for every process Pi, the events
occurring on Pi in MSC M are consistent with the events occurring on Pi in
some MSC known to be in the language L, then M is implied, and M must
be in L for L to be closed. Intuitively, a closed language L can be constructed
from the projections of the MSCs in L onto individual processes. For a finite
set of MSCs, checking weak realizability is coNP-complete [2]. We show that
checking weak realizability is undecidable for bounded graphs.

Theorem 1 Given a bounded MSC graph G, checking if G is weakly realizable
is undecidable.

Proof. The proof is a reduction from the Post Correspondence Problem (PCP).
The PCP is as follows: given a collection of pairs 〈(v1, w1), (v2, w2), . . . , (vr, wr)〉,
where vi, wi ∈ Σ∗, for some fixed finite alphabet Σ, with designated initial pair
(v1, w1), determine whether there is a sequence of indices i2, . . . , im, such that

v1vi2 . . . vim = w1wi2 . . . wim (1)

By examining the standard proof of undecidability for the PCP from the Tur-
ing machine halting problem, one can see that the constructed PCP instance
has the property that if there is a solution then there is one where the one
string is always a prefix of the other. In particular, the following version, call
it OneSidedPCP, remains undecidable: determine whether there is a sequence
of indices i2 . . . im, such that equality 1 holds, and furthermore, for all j ≤ m,
the string w1wi2 . . . wij is a prefix of the string v1vi2 . . . vij (that is, the right
string never overtakes the left one). We will reformulate OneSidedPCP slightly
further to suit our purposes. Let Relaxed PCP (RPCP) be the following prob-
lem: given {(v1, w1), (v2, w2), . . . , (vr, wr)}, determine whether there are indices
i1, . . . , im such that xi1 . . . xim = yi1 . . . yim , where xij , yij ∈ {vij , wij}, for some
index il xil 6= yil , and for all j ≤ m, yi1 . . . yij is a prefix of xi1 . . . xij .

We now prove that RPCP is undecidable.

9



Lemma 2 RPCP is undecidable.

Proof. Given an instance ∆ = 〈(v1, w1), (v2, w2), . . . , (vr, wr)〉 of the OneSid-
edPCP problem, we will reduce it to RPCP as follows: introduce three new
symbols: #, $, and β to the alphabet Σ, and call the new alphabet Σ′. We
first make the following transformation on the words vi and wi. For a ∈ Σ, let
hv(a) = aβ, and let hw(a) = βa. Extend hv and hw in the obvious way to a
homomorphism from Σ∗ to Σ′∗. Let v′i = hv(vi) and let w′

i = hw(wi).

We map an instance ∆ of OneSidedPCP, to the following instance of RPCP:

∆′ = {(#βv′1, #w′
1), (v

′
1, w

′
1), . . . , (v

′
r, w

′
r), ($, β$)}

Claim: ∆ ∈ OneSidedPCP if and only if ∆′ ∈ RPCP .

To see the “only if” direction, note that if v1vi2 . . . vim = w1wi2 . . . wim then
#βv′1v

′
i2

. . . v′im$ equals #w′
1w

′
i2

. . . w′
imβ$, and for j < m, |#βv′1v

′
i2

. . . v′ij | ex-
ceeds |#w′

1w
′
i2

. . . w′
ij
|.

To see the “if” direction, suppose (i1, . . . , im) are a sequence of indices for a
solution to ∆′. Since there must be some index ij for which the chosen xij , yij

differ, let ij be the first such index in the sequence. Then, w.l.o.g., xij = #βv′1
and yij = #w′

1, because for all other pairs one of them begins with β while
the other doesn’t. Note that since the “v” string thus far ends with β, while
the “w” string doesn’t, in the next choice of pairs, we must choose v′ij+1

and
w′

ij+1
to append to the “v” and “w” strings, respectively. Proceeding in this

way, we must end our string with the pair $ and β$, respectively. Now, if we
eliminate the initial symbol #, the final symbol $, and all the intermediate β
symbols from our solution for ∆′, beginning at the first distinct pair xij , yij ,
we obtain a solution for ∆. That establishes the claim. 2

Now we reduce RPCP to weak realizability. Given a finite set L of MSCs,
let L∗ denote the MSC graph that consists of the complete graph with |L|
vertices one per MSC in the set L, dummy initial and terminal vertices vI , vT

with empty MSC’s, and edges from vI to all vertices of L and from those to
vT . Thus, an MSC of this graph is simply a concatenation of MSC’s from the
set L. In the sequel, we say that a process p synchronously sends a message m
to process q, if p sends m to q immediately followed by q sending the message
m back to p. In figures, such messages will be depicted by double arrows.

Given an instance ∆ = {(v1, w1), . . . , (vm, wm)} of RPCP, we build a set L
of MSCs over 4 processes as follows. For a string u, let ul denote the l’th
character of the string. For each pair (vi, wi) we build two MSCs M0

i and M1
i ,

which are depicted in Figure 3. Thus in M0
i , process 1 sends synchronously

(i, 0) to process 2 then sends the index i to process 4, and then process 4

10



v

c

2

P4 P4

v

2 3

i

i

1
i

v

P

d

(i,0)
i

(i,0)

(i,1)
i

(i,1)

i

P2 3

w i
2

w

PP1 P1

w 1
i

P

Fig. 3. MSCs M0
i and M1

i

sends synchronously (i, 0) to process 3. After that, process 2 synchronously
sends the sequence of characters of vi to process 3 (note we assume c is the
length of vi and d the length of wi in the figure), M1

i is similar. Observe that
the communication graph of each of these MSCs is strongly connected and
involves all the processes, and hence, the MSC graph L∗ is bounded.

Claim 1 ∆ ∈ RPCP iff L∗ is not weakly realizable.

Proof. For the “only if” direction, suppose R = (i1, a1, b1, i2, a2, b2, . . . , im, am, bm)
are the indices for a solution to ∆, and the bits aj and bj indicate which string
(vij or wij) is chosen to go into the two (left and right) long strings.

Consider the new MSCs M and M ′ obtained from the sequences M = Ma1
i1 . . . Mam

im

and the sequence M ′ = M b1
i1 . . . M bm

im . Executions of both of these (sequences
of) MSCs must exist in any realization of L∗. We then look at the projections
M |1, M |2, M |3, and M |4 of M , and M ′|1, M ′|2 , M ′|3 and M ′|4 of M ′ onto
the 4 processes. Now consider an MSC M ′′ formed from M ′|1, M ′|2, M |3, and
M |4. The claim is that the combined MSC M ′′ is weakly implied by L∗. By
definition, the only thing to establish is that M ′′ is indeed an MSC, in the
sense that it is acyclic, well-formed and complete. The only new situation in
terms of communication in M ′′ is the communication between P1 and P4, and
between P2 and P3. But the communication between P1 and P4 is consistent
in M ′|1 and M |4 (i.e. the sequence of messages sent from P1 to P4 in M ′|1 is
equal to the sequence of messages received in M |4), and the communication
between P2 and P3 is consistent in M ′|2 and M |3 because R is a solution to
the RPCP. Furthermore, the acyclicity of M ′′ follows from the property of
the solution that the string formed by the first j words on processes 1 and
2 is always a prefix of the string formed by the first j words on processes 3
and 4. Consequently each message from P1 to P4 is sent before it needs to
be received. But note that M ′′ can not itself be in L∗ because there must be
some index ij where aj 6= bj, and no MSC exists in L where, after process 1
announces the index, what process 2 sends is not identical to what process 3
receives.

Now, for the “if” direction, suppose there is some MSC M@ which exists in any
realization of L∗, but is not in L∗ itself. We want to derive a solution to ∆ from

11



1 1

P1 P2

MSC3

P1 P2

MSC4

2 2 1

P1 P2

MSC5

2

Fig. 4. Safe realizability

M@. First, it is clear that the projection M@|1 must consist of a sequence of
pairs of messages (the first of each pair acknowledged), sent from process 1 to
process 2 and 4 respectively, with messages (i, b) and i, respectively. Likewise,
it is clear that, in order for process 2 to receive those messages, M@|2 must
consist of a sequence of receipts of (i, b) pairs, and after each (i, b), either vi

or wi is sent to process 3, based on whether b = 0 or b = 1, before the next
index pair is received. Likewise M@|4 consists of a sequence of receipt of an
index i from process 1 followed by sending of (i, 0) or (i, 1) to process 3, and
M@|3 consist of a sequence of receipt of (i, 0) or (i, 1) followed by receipt vi

or wi, respectively. Now, since M@ is not in L∗, for some index i the choice
of vi or wi must differ on process 2 and process 3. (Note, we are assuming
that the buffers between processes are FIFO.) Furthermore, because of the
precedences, the prefix formed by the first j words on process 2 must precede
the (j + 1)-th message from process 1 to process 4, which in turn precedes
the (j + 1)-th message from 4 to 3, and hence the (j + 1)-th word on process
3. That is, the string formed by the first j words on process 2 is a prefix of
the string formed by the first j words on process 3. Therefore, we can readily
build a solution for ∆ from M@. 2

3.2 Safe Realizability

As a motivation for safe realizability, consider the MSCs in Figure 4. In MSC3,
both processes send each other the value 1, while in MSC4, both processes send
each other the value 2, and thus, they agree in both cases. From these two,
we should be able to infer a partial scenario, depicted in MSC5, in which the
two processes start by sending each other conflicting values, and the scenario
is then completed in some way. However, the set containing only MSC3 and
MSC4 is weakly realizable. A closer examination reveals that the distributed
implementation of these two scenarios can potentially deadlock when one pro-
cess decides to send the message 1 while the other decides to send the message
2. We need a stronger version of implication closure.

To define this formally, consider a set Ai of concurrent automata and the
product A = ΠiAi. A state q of the product A is said to be a deadlock state if
no accepting state of A is reachable from q. For instance, a rejecting state in
which all processes are waiting to receive messages which do not exist in the

12



buffers will be a deadlock state. The product A is said to be deadlock-free if
no state reachable from its initial state is a deadlock state. A set L of MSCs
is said to be safely realizable if L = L(ΠAi) for some 〈Ai|1 ≤ i ≤ n〉 such that
ΠAi is deadlock-free 2 .

There is an equivalent characterization of safe realizability as follows. Let
pref (L) denote the set of prefixes of the MSCs or words in L. Then, a set L
of MSCs is safely realizable iff it satisfies the following two closure conditions:

(1) for a well-formed word w (i.e. a partial MSC), if for all 1 ≤ i ≤ n, there
exists a word vi ∈ pref (L) such that w|i = vi|i, then w is in pref (L);

(2) for a well-formed and complete word w (i.e. an MSC) in pref (L), if for
all 1 ≤ i ≤ n, there exists a word vi ∈ L such that w|i = vi|i, then w is
in L.

The first closure condition says that the set of partial MSCs (i.e. prefixes of
L) can be constructed from the projections of the MSCs in L onto individual
processes. The second condition is similar to the closure condition for weak
realizability, but allows us to focus attention only on complete MSCs that are
themselves prefixes of MSCs already in L The second condition is not implied
by the first, as pointed out in [11]. For the proof that these two conditions
capture safe realizability, please consult the full version of [2].

The MSC-graph G is said to be safely realizable if the set L(G) of MSCs is. For
a finite set of MSCs, we known that weak realizability is coNP-complete while
safe realizability has a polynomial-time solution ([2]). For bounded graphs,
even though weak realizability is undecidable, checking safe realizability is de-
cidable. In bounded graphs, if we consider the behaviors corresponding to the
paths in the graphs, a process cannot be far ahead of its communication part-
ner, thus keeping the buffer size bounded. While checking safe realizability,
when we consider the possible interactions among local behaviors (i.e. projec-
tions) of different processes, if the communication buffer between any pair of
processes exceeds this bound, we can immediately flag an error. In contrast,
while checking weak realizability, even when the buffer size exceeds the bound,
we need to check if there is a “complete” MSC that can extend this partial be-
havior. We establish an Expspace upper bound, as well as Pspace-hardness,
for checking safe realizability. Note that both the bounds also hold if we use
alternate communication architecture by relaxing the FIFO requirement on
buffers.

Theorem 3 Checking safe realizability of a bounded MSC-graph is in Ex-
pspace.

2 Recall that we identify MSCs with their linearizations, and thus, a set of MSCs
with the set of all linearizations of all the MSCs in that set.

13



Proof. Since G is bounded, we know that L(G) is definable by an exponential
sized automaton A each of whose states can be encoded in polynomial space
([4]). Likewise, we can build a concurrent product A′ = ΠiAi, where each Ai

is the local automaton formed by the projection onto process i of G, and then
determinized and minimized. If L(G) is safely realizable, then we know that A′

is such a realization ([2]). Moreover, since G is bounded, there is a polynomial
bound (actually, linear in the number of vertices of G) that we can place on
the lengths of queues in A′ such that if ever the queue length is exceeded we
will know that the partial MSC which exceeded the bound is not a prefix of
an MSC in L(G). Thus, we first check to see whether there is an execution
of A′ in which the buffer bound is exceeded. This can be done in Pspace by
guessing a bad path. If there is such an execution, we halt and report that
L(G) is not realizable. Thus we assume that A′ enforces the polynomial bound
on the buffers.

Next, we check whether the automaton A′ is deadlock-free. Note that checking
whether a state of A′ is a deadlock state is in Pspace: Pspace is closed under
negation, and to show that a state is not a deadlock state, it suffices to guess
a path from the state to an accepting state, and this can be done in Pspace
by a routine argument. Now, to show that A′ is not deadlock-free, we simply
guess a state, and show it be reachable as well as to be a deadlock state.
Consequently, checking deadlock-freedom of A′ is in Pspace.

Finally, we need to show that L(A′) and L(G) are identical. Consider the
complement automaton Ā for L(G) (we don’t actually build Ā, but compute its
states using the subset construction as we need them). We then need to know
whether L(A′)∩L(Ā) is empty or not. If it is, then A′ realizes L(G). If not, then
L(G) is not safely realizable. Since each state of Ā requires exponential size
to encode, we can determine whether L(A′)∩L(Ā) is nonempty in Expspace
by guessing an accepting path in each automaton. 2

Theorem 4 Checking safe realizability of a bounded MSC-graph is Pspace-
hard.

Proof. We reduce the Pspace-complete problem of determining whether
a given NFA, A, accepts Σ∗, to checking safe realizability. Assume A =
〈Q, Σ, δ, qinit, l, F 〉 is Σ-labeled on states rather than on transitions, i.e., l :
Q 7→ Σ, and δ ⊆ Q × Q. Let Σ = {a1, . . . , ak} and Q = {q1, . . . , qn}. We
build from A an MSC graph G, which will have nodes (Q′ = {q′1, . . . , q′n}) ∪
{start , left , right} ∪ (V = {va1 , . . . , vak

}). The edges between vertices in Q′

will be identical to the transition relation δ over Q, and every node q′ ∈ Q′

is labeled by an MSC with one synchronous (acknowledged) message from
process P1 to P2, where the content of the message is l(q). The vertices V will
form a complete subgraph and va ∈ V is labeled by an MSC where P1 sends a
(synchronously) to P2. The start node start is labeled with the empty MSC. It

14



has edges to both the left and right nodes. The node left is labeled by an MSC
where P3 sends the (synchronous) message “left” to P2 and the (synchronous)
message “go” to P1. The node right is labeled by an MSC where P3 sends the
(synch) message “right” to P2 and the (synch) message “go” to P1. The right
node has an edge to the initial state q′init ∈ Q′. The left node has edges to
all vertices in V . The terminal nodes of G are all nodes of V as well as those
nodes q′ ∈ Q′ such that q ∈ F .

We claim that L(G) is safely realizable iff L(A) = Σ∗. Let us consider whether
the product ΠAi of the component automata Ai, each associated with corre-
sponding process Pi, can deadlock. The component automaton A1 waits for
the message “go” from P3, acks it, and then synchronously sends all possible
message sequences to P2. (Note that this is so because the projection of V
onto process P1 accepts all possible strings following a “go”.)

Suppose L(A) = Σ∗. Then, the automaton A2 waits for the message “left” or
“right” from P3, and then can receive every possible message from P1 (each
message is acknowledged). Hence the product ΠAi is a safe realization. If
L(A) 6= Σ∗, then let w be a string such that w 6∈ L(A). Suppose P3 sends the
“right” instruction to P2 and “go” to P1. After P1 receives the “go” instruction
from P3, let P1 attempt to send w to P2 (by moving through the left node into
the V component). Since w 6∈ L(A), there is some prefix w′ of w such that,
after P1 sends w′ there is no execution of P2 (necessarily in the Q′ component)
that receives it, i.e., no path for P2 which after receiving the “right” instruction
receives w′. Hence L(G) is not safely realizable. 2

4 Verification

Now we turn our attention to the verification problem where the system to be
verified is described by an MSC-graph G. We will consider two semantics for
the verification problem, the set L(G) of all the MSCs specified by G, and the
set Lw(G) of all the MSCs in the weak closure. First suppose the specification
is given by an automaton A accepting linearizations corresponding to “bad”
behaviors. If the semantics of an MSC-graph G is L(G), then the verification
problem, namely, checking emptiness of L(G)∩L(A), is undecidable in general
and Pspace-complete for bounded graphs [4]. As our results will indicate,
when the semantics of G is Lw(G), the verification problem is undecidable
even for bounded graphs. Since MSCs specify partially ordered executions, we
proceed to consider partial-order specifications.

15



4.1 MSC Membership

Given MSC graph G and given an MSC M , we wish to know (1) is M ∈ L(G)?
and (2) is M ∈ Lw(G)? There are at least two reasons to consider this problem.
First, M may specify an undesirable scenario, so a positive answer to any of
these two questions imply existence of a bug. Second, M may specify a desired
behavior, and answering these questions can help avoid redundancy.

As discussed earlier, we can equate an MSC over k processes with a “well-
formed” k-tuple 〈s1, . . . , sk〉 of strings si, where si indicates the linearly or-
dered sequence of messages sent and received by process i.

First we consider the question of checking if a given MSC M belongs to L(G).
There are two cases to this question depending on whether the number of
processes k in the MSCs is fixed or not. We observe that for a fixed number of
processes, k, the question can be answered in time O(n2k), and we show that for
an arbitrary number of processes the question is NP-complete. Boundedness
is not relevant to these results.

Theorem 5 Given an MSC-graph G and an MSC M over k processes, there
is an algorithm that decides in O(|G||M |k) time whether M ∈ L(G).

Proof. Let M = 〈s1, . . . , sk〉. Let si[j, j
′] denote, for 0 ≤ j ≤ j′ ≤ |si|, the

substring of si starting at position j and ending at position j′. Since k is
fixed, we can build a graph H whose nodes are (v, d̄), where v is a node of
G and where d̄ = (d1, . . . , dk), 0 ≤ di ≤ |si|. There will be an edge (v, d̄) →
(v′, d̄′) in H if and only if there is an edge v → v′ in G and µ(v′) = 〈s1[d1 +
1, d′1], . . . , sk[dk + 1, d′k]〉. We mark an initial node of H, namely the node
(vinit, d̄) such that vinit is the initial node of the MSC graph, and µ(vinit) =
〈s1[0, d1], . . . , sk[0, dk]〉. (If this initial node does not exist, then we already
know M 6∈ L(G).) Now, M ∈ L(G) iff (v, (|s1|, . . . , |sk)) is reachable for some
terminal vertex v of G. The size of H is at most O((|G||M |k)), hence we
can compute reachability in that time bound. Note that we need not actually
construct H, but can compute reachability on it on the fly, computing nodes
only as needed. 2

Next we show NP-completeness for the membership problem. Our proof is very
similar to the proof given by [14] for “template matching” in MSC graphs, but
because template matching offers more flexibility than finding a given MSC,
we need a reduction from a slightly different NP-complete problem. The result
can also be derived from an earlier result on membership problems for trace
languages ([7]). We give our explicit proof, because it also yields the stronger
facts that the result remains true for complete MSC-graphs and acyclic MSC-
graphs.

16



Theorem 6 Given an MSC-graph G and an MSC M , it is NP-complete to
determine if M ∈ L(G), even when G is a complete graph, or when G is an
acyclic graph.

Proof. The problem is contained in NP because we can guess a path in G
and easily verify that the path generates M .

To show NP-hardness, we provide a reduction from the NP-complete problem
ONE-IN-THREE-3-SAT [16]: given a 3-CNF formula ϕ, is there a satisfying
assignment to the variables such that each clause of ϕ gets exactly one literal
assigned true? From a 3CNF formula ϕ = C1 ∧ . . . ∧ Cm, over variables
x1, . . . , xn, we define an MSC graph G and an MSC M over 2m+2n processes.
The underlying graph of G is a complete graph, and M does not depend on ϕ.
For each clause Cj, we have two processes Pj,1 and Pj,2, and for each variable
xi, we have two processes Qi,1 and Qi,2. The complete graph G has 2n vertices
V = {vi, wi | 1 ≤ i ≤ n}, where n is the number of variables in ϕ. All vertices
of G are initial vertices. For each i we label vi by an MSC Mxi

in which there is
one message (labeled, say, a) from process Pj,1 to Pj,2 precisely when variable
xi appears positively in Cj. In addition, there is a message a sent from Qi,1 to
Qi,2 in Mxi

. Likewise, wi is labeled by an MSC Mx̄i
, which does the opposite

of Mvi
: there is one message labeled a from process Pj,1 to Pj,2 when variable

xi appears negatively. Again, in addition, the message a is sent from Qi,1 to
Qi,2.

Finally, we define M , which does not depend on ϕ. In M , for each j, there
is one a-message sent from Pj,1 to Pj,2, and for each i there is an a-message
sent from Qi,1 to Qi,2. It is not difficult to see that M ∈ L(G) iff there is
a satisfying assignment to ϕ that sets precisely one literal in each clause to
true. 2

Now we consider the membership question for weak-closure semantics: is M ∈
Lw(G)? This problem turns out to be much easier:

Theorem 7 Given an MSC-graph G and an MSC M , there is an algorithm
that in time O(|G||M |) determines whether M ∈ Lw(G).

Proof. Suppose G and M = 〈s1, . . . , sk〉 are defined over k processes. Checking
whether M ∈ Lw(G) amounts to simply checking whether, for each process
i, si can be generated by the automaton given by the “projection” of G onto
process i (see [2]).

For each process i, let Gi be the projection of G onto the events of process i:
Gi is like G, but each vertex v in Gi is labeled with the projection onto process
i of the MSC labeling vj in G. The accept states of Gi are the same as those
of G. Gi can be viewed as an ordinary automaton over the alphabet of events
belonging to process i. Then M ∈ Lw(G) iff si ∈ Gi for each i. Building Gi’s

17



can be done in linear time, and checking whether si ∈ Gi can be done in time
O(|Gi||si|), for each i ∈ [k]. Thus, the total time is O(|G||M |). 2

4.2 Checking local properties

Given G, we want to know whether Lw(G) satisfies a property ϕ. A property
ϕ is linearization independent if it will hold for one linearization of an MSC
iff it holds for all. A property ϕ of MSCs is said to be local if it (syntactically)
only refers to events on one process, Pi. Such local properties are clearly lin-
earization independent, because every linearization of an MSC preserves the
local order of events on a given process. Boolean combinations of linearization
independent properties are also clearly linearization independent. In order to
make this a precise definition, we need to fix a specification logic. However,
our upper bound results are applicable irrespective of the particular choice as
long as checking whether a particular word satisfies a property can be done in
polynomial-time, and our negative results use properties of a very limited form
such as “event x eventually occurs on process Pi”, or “event x never occurs on
process Pi”. As an example of such a specification logic, consider the follow-
ing: a property is a Boolean combination of atomic properties, and an atomic
property is a regular language over the events of a single process, specified by
a deterministic finite automaton. Another example is the restricted temporal
logic TLC− interpreted over partially ordered structures [15].

Theorem 8 There are local properties ϕ1 and ϕ2 such that for a finite MSC
set L, it is coNP-complete to determine if every MSC in Lw satisfies ϕ1 ∨ϕ2.

Proof. The problem is in coNP, because we can guess projections on each
process, check that they combine into a valid MSC, and then check that the
respective local strings satisfy the simple eventuality described by the local
properties ¬ϕ1 and ¬ϕ2.

The hardness proof is a reduction from 3SAT. Let Γ = 〈C1, . . . , Cm〉 be the
clauses of the 3SAT formula, ordered in some arbitrary way, and let x1, . . . , xn

be its variables. We will add new variables y and z1, . . . , zm. Our new ordered
list of clauses will be ∆ = 〈y∨¬z1, y∨¬z2, . . . , y∨¬zm, C1∨z1, C2∨z2, . . . , Cm∨
zm〉. Clearly, Γ has a satisfying assignment iff ∆ has a satisfying assignment
with y = 0. Let ∆|k1 denote the first k clauses in the list ∆. Notice that for
every clause Ci and for every assignment to variables occurring in Ci, there
is a satisfying assignment of ∆|i+m−1

1 which agrees with that assignment (just
set y = 1, and zj = 1 for j < i. Now you are free to set the variables in Ci in
whichever way).

Now we are ready to describe our MSC set, and our properties ϕ1 and ϕ2. The
MSC set will consist of one process for every variable and every clause in ∆. In

18



addition, there will be an extra process called Pf , which will serve to tabulate
whether the formula has been satisfied or not. There will be one MSC, Mt

based on the “trivial” satisfying assignment to Γ, namely Py will send true to
every clause that contains it, in their lexicographical order. Likewise, the Pzi

’s
will send true to every clause that contains zi, respectively. The xi variables,
can either send true or false to their clauses, it doesn’t matter here. Each clause
process PC′ , after receiving its truth assignment in messages (which it reads
in the lexicographical order of the variables), then receives a message from its
predecessor clause (if there is one) which either indicates that the prior clauses
have all been satisfied or not. If the prior clauses have been satisfied, and if
C ′ itself has also been satisfied, then C ′ propagates the “satisfied” message to
the next clause in the ordered list. Otherwise, it propagates “not satisfied”.
The last clause C ′′ propagates this message to Pf , which does nothing other
than to receive it. Clearly, for the assignment on which Mt is based, Pf will
receive a satisfied message.

Next, for each clause Ci ∨ zi, and for each satisfying assignment ρ to the
variables in Ci ∨ zi (there are only a constant number of these, since Ci is a
3CNF clause), we will add a new MSC MCi,ρ which mimics the same thing
as above, only the assignment to the variables is one consistent with both ρ
and the assignment mentioned above which satisfies ∆|i+m−1

1 . Finally, we add
another MSC My, whose only purpose is to exhibit one MSC such that the
“assignment” to y is false.

Our set L of MSCs contains Mt, My and the MSCs MCi,ρ. Consider an MSC
M ∈ Lw. If Pf receives a “satisfied” message, then we can construct a satis-
fying assignment for ∆ from M . Moreover, if Py sends false’s in M , then we
can construct a satisfying assignment which assigns y = 0, i.e., a satisfying
assignment to Γ. We claim that the converse holds as well, i.e., if there is such
a satisfying assignment, then there will be an M weakly-implied by L where
Py sends false (call this ¬ϕ1) and Pf receives “satisfied” (call this ¬ϕ2).

To see this, note that, locally, each variable process sees both assignments to
that variable in some MSC in L. Moreover, locally each clause process sees
every satisfying assignment to that clause. Now, if there is global satisfying
assignment that sets y to false, then it must be possible to construct it by
combining the local satisfying assignment in a consistent way, i.e., by having
an implied MSC M ∈ L which exhibits this satisfying assignment. 2

It follows that checking whether every MSC in Lw(G), for an acyclic MSC-
graph G, satisfies a boolean combination of local properties is coNP-complete.

Theorem 9 There is a boolean combination ϕ of local properties, such that
given a bounded MSC-graph G, it is undecidable to check if every MSC in
Lw(G) satisfies ϕ.

19



finite set bounded graphs unbounded

weak coNP-complete undecidable undecidable

safe P-time EXPSPACE-complete undecidable

Fig. 5. Summary of results on realizability.

Proof. The proof uses precisely the same complete MSC graphs given in the
proof of Theorem 1, which reduce an instance of RPCP to checking whether
L(G) = Lw(G). Note that in that setting, if there is an implied but unspecified
MSC M , that is, if there is a solution to the RPCP, then by the construction,
there is a solution in which the two strings use exclusively words from different
lists. In the notation of the proof of Theorem 1, all ai bits are 0, and all bi

bits are 1, that is, in the implied MSC M , every message sent by the process
P1 to P2 is of the form (i, 1) (let’s call this property ψ1) and every message
sent by the process P4 to P3 is of the form (i, 0) (let’s call this property ψ2).
Conversely, if there is an implied MSC that satisfies the property ψ1∧ψ2, then
RPCP has a solution. Hence, RPCP has no solution iff every MSC in Lw(G)
satisfies the property ¬ψ1 ∨ ¬ψ2. Clearly, ψ1 and ψ2 are local properties (ψ1

depends only on the events of process P1, and ψ2 on the events of process
P4). 2

5 Conclusions

We have studied various algorithmic questions related to checking realizabil-
ity and verifying MSC-graphs and bounded MSC-graphs. A subsequent recent
paper by Lohrey solves the two gaps in our results [11]: checking safe realiz-
ability for bounded HMSCs is Expspace-hard, and is undecidable in the gen-
eral case. The table in Figure 5 summarizes the computational complexity of
various realizability problems. Note that our undecidability proof for weak re-
alizability applies only in the setting with FIFO communication architecture,
and a recent result by Morin [12] establishes decidability of weak realizability
of bounded MSC-graphs under a non-FIFO architecture.

Acknowledgments. Thanks to Remi Morin for comments that helped clarify
some ambiguity about our assumed communication architecture in Theorem
1. Thanks to an anonymous referee for pointing out the work of [7], and its
implications for Proposition 6.

20



References

[1] ITU-T recommendation Z.120. Message Sequence Charts (MSC’96), 1996.

[2] R. Alur, K. Etessami, and M. Yannakakis. Inference of message sequence charts.
In Proceedings of the 22nd International Conference on Software Engineering
(ICSE), pages 304–313, 2000.

[3] R. Alur, G.J. Holzmann, and D.A. Peled. An analyzer for message sequence
charts. Software Concepts and Tools, 17(2):70–77, 1996.

[4] R. Alur and M. Yannakakis. Model checking of message sequence charts.
In Proceedings of the Tenth International Conference on Concurrency Theory
(CONCUR), LNCS 1664, pages 114–129, 1999.

[5] H. Ben-Abdallah and S. Leue. MESA: Support for scenario-based design of
concurrent systems. In Proceedings of the Fourth International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
LNCS 1384, pages 118–135, 1998.

[6] H. Ben-Abdallah and S. Leue. Syntactic detection of process divergence and
non-local choice in message sequence charts. In Proceedings of the Third
International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), LNCS 1217, pages 259–276, 1997.

[7] A. Bertoni, G. Mauri, and N. Sabadini. Membership problems for regular and
context-free trace languages. Information and Computation, 82(2):135–150,
1989.

[8] G. Booch, I. Jacobson, and J. Rumbaugh. Unified Modeling Language User
Guide. Addison Wesley, 1997.

[9] J. Henriksen, M. Mukund, K. Narayan Kumar, and P.S. Thiagarajan. On
message sequence graphs and finitely generated regular MSC languages. In
Proceedings of the 27th International Colloquium on Automata, Languages and
Programming (ICALP), LNCS 1853, pp. 675–686, 2000.

[10] G.J. Holzmann, D.A. Peled, and M.H. Redberg. Design tools for for
requirements engineering. Lucent Bell Labs Technical Journal, 2(1):86–95, 1997.

[11] M. Lohrey. Safe realizability of high-level message charts. In Proceedings of the
13th International Conference on Concurrency Theory (CONCUR), 2002.

[12] R. Morin. Recognizable sets of message sequence charts. In Proceedings of the
19th Annual Symposium on Theoretical Aspects of Computer Science (STACS),
LNCS 2285, pages 523 – 534, 2002.

[13] A. Muscholl and D.A. Peled. Message sequence graphs and decision problems
on Mazurkiewicz traces. In Proceedings of the 24th International Symposium on
Mathematical Foundations of Computer Science (MFCS), pages 81–89, 2000.

21



[14] A. Muscholl, D.A. Peled, and Z. Su. Deciding properties of message sequence
charts. In Proceedings of the First International Conference on Foundations of
Software Science and Computation Structures, pages 226–242, 1998.

[15] D.A. Peled. Specification and verification of message sequence charts. In
Proceedings of the IFIP International Conference on Formal Description
Techniques for Distributed Systems and Communication Protocols (FORTE
XIII), pages 139–154, 2000.

[16] T.J. Schaefer. The complexity of satisfiability problems. In Proceedings of the
Tenth ACM Symposium on Theory of Computing (STOC), pages 216–226, 1978.

22


