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Abstract. We present a methodology and a toolkit for improving sim-
ulation coverage of Simulink/Stateflow models of hybrid systems using
symbolic analysis of simulation traces. We propose a novel instrumen-
tation scheme that allows the simulation engine of Simulink/Stateflow
to output, along with the concrete simulation trace, the symbolic trans-
formers needed for our analysis. Given a simulation trace, along with
the symbolic transformers, our analysis computes a set of initial states
that would lead to traces with the same sequence of discrete compo-
nents at each step of the simulation. Such an analysis relies critically
on the use of convex polyhedra to represent sets of states. However,
the exponential complexity of the polyhedral operations implies that the
performance of the analysis would degrade rapidly with the increasing
size of the model and the simulation traces. We propose a new represen-
tation, called the bounded vertex representation, which allows us to per-
form under-approximate computations while fixing the complexity of the
representation a priori. Using this representation we achieve a trade-off
between the complexity of the symbolic computation and the quality of
the under-approximation. We demonstrate the benefits of our approach
over existing simulation and verification methods with case studies.

1 Introduction

Simulink/Stateflow 1 (sl/sf) models are currently the de-facto standard in the
model-based development of real-time, embedded systems. They are widely used
in many domains, including automotive and avionics. Simulink models are con-
structed by interconnecting blocks representing operations such as gain, addition,
multiplexors, lookup tables, and integrators. Stateflow charts specify the control
in the form of concurrent and hierarchical finite state machines that interact
with the Simulink model. Together, they provide a powerful modeling frame-
work that enables the development, testing, and rapid prototyping of control
software, supported by automated code generation techniques.

The critical nature of the software developed with these models calls for the
use of formal design verification tools. However, there are many challenges for

1 Simulink and Stateflow are trademarks of The MathWorks Inc.



the construction of such verification tools. First of all, the semantics of these
models is loosely defined in terms of a simulation engine. The lack of clearly
specified semantics makes the construction of formal tools hard. Secondly, these
models incorporate both the discrete state changes due to the Stateflow charts
and the continuous evolution of the state due to the presence of blocks such as
integrators. Hybrid automata [3] and related formulations are ideal for repre-
senting these models. However, the task of model-level translation from sl/sf
to hybrid automata is difficult to automate.

In this paper, we present an approach for systematic exploration of distinct
behaviors of sl/sf models. Our approach provides practical solutions to some
of the key challenges using a novel approach to the problem of deciphering the
semantics of these models. Rather than translating these models statically into
hybrid automata [2] or Lustre programs [34], our approach performs an on-the-
fly translation by instrumenting Simulink blocks and Stateflow transitions with
callback functions. During numerical simulation, a callback function is called
whenever the corresponding block is evaluated. The callback functions construct
the symbolic transformer of the simulation step. An appropriate composition of
these transformers gives us the symbolic trace of the simulation.

Given the concrete and symbolic traces of a k-step simulation starting from
an initial model state m, our analysis constructs a set M of states that are
equivalent to m up to the given simulation length k. Two model states m and
m′ are equivalent if they yield the same sequence of discrete components at each
step of simulation. Systematic exploration of the model’s behaviors is obtained
by repeating simulation starting from an initial state outside the set M .

The performance of such analyses depends critically on the choice of a rep-
resentation for sets of continuous states. While the representation of convex
polyhedra as linear constraints with arbitrary coefficients [10] is expressive, it
suffers from worst-case exponential time complexity. Various restrictions have
been proposed to achieve tradeoff between precision and tractability. The typ-
ical restrictions include axis-parallel constraints (e.g. intervals [9]), difference
constraints (e.g. octagons [23] and octahedra [7]), or an arbitrary but fixed set
of linear constraints (e.g. template polyhedra [27]).

While most of these representations are designed for over-approximations,
our approach requires under-approximations of state-sets to eliminate only re-
dundant simulations. We therefore design an under-approximate bounded vertex

representation of polyhedra using a set of direction vectors. The size of this rep-
resentation is fixed by the number of direction vectors used to compute such a
representation. As a result, the time and space complexity of the analysis can be
controlled, allowing analysis of longer simulations for larger system models. This
representation can potentially be useful to improve precision of over-approximate
analyses, detect valid counter-examples, and in controller synthesis methods.

We have implemented our approach using model instrumentation and the
bounded vertex representation of polyhedra for sl/sf models with linear blocks.
The model instrumentation is implemented using the Simulink runtime API [31]



and operations over the bounded vertex representation are performed using the
GNU Linear Programming Kit (GLPK) [18].

We illustrate the benefits of our approach on three case studies: a Simulink
demo model from The MathWorks [1] and two instances of the room heating
benchmark [12]. These models use several commonly used modeling features of
sl/sf including hierarchical and concurrent Stateflow charts and lookup tables.
Nevertheless, the symbolic traces generated by our instrumentation technique
accurately capture the simulation semantics of these models. The experimental
results indicate that the test cases generated by our tool successfully exercise
distinct discrete mode switchings of these models, leading to better temporal
coverage of model behaviors. Further, the use of the bounded vertex representa-
tion leads to scalable analysis. While most of the verification tools [21, 30, 5, 13]
for hybrid systems are limited to systems with up to 10 continuous variables,
the small runtime of our analysis on a case study with 10 continuous variables
suggests that our technique can handle systems with large number of variables.
We also compare our tool with Reactis [25, 8] and with random testing on a case
study. The test cases generated by our tool explore significantly large number of
inequivalent simulation behaviors than both Reactis and random testing.

Related work. Bisimulation metrics and expansion functions provide a mech-
anism of identifying states whose continuous trajectories stay close in space and
time [17, 22, 11]. However, these techniques require transition guards to be planar
and are not suitable for the case studies considered in this paper.

Our recent work on analysis of sl/sf models [4] also considers the problem
of temporal coverage but requires static translation from sl/sf models to hy-
brid automata. The runtime technique of symbolic trace generation presented in
this paper overcomes this drawback, enabling automated analysis of large and
complex models. Further, the use of convex polyhedra may limit the scalabil-
ity of the earlier approach. The algorithm presented in this paper exploits the
scalability of linear programming solvers in under-approximate computations.
Some related approaches that combine concrete and symbolic executions with
constraint solving have been explored in software testing [19, 29].

There are many commercial and in-house tools for testing sl/sf models [14,
25, 28, 32, 35] which aim at structural coverage of model elements. These tools
combine randomization with constraint solving techniques to generate test cases.
Our notion of temporal coverage captures the simulation behaviors of models
instead of structural properties (like blocks and branches) of model designs.

In hybrid systems verification, convex polyhedra are widely used to repre-
sent sets of states [21, 20, 30, 5, 13, 16]. However, the scalability of verification
tools is limited by the worst-case exponential complexity of polyhedral opera-
tions. Restricted forms of polyhedra [6, 5, 33, 15, 26] have been designed for over-
approximate computations. Our approach proposes the use of bounded vertex
representations as under-approximations of sets of states. The bounded vertex
representation bears some similarities to zonotopes [15, 16] but it need not be
symmetric about a central vertex and computes under-approximations.
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Fig. 1. Single-step concrete and symbolic simulation semantics of sl/sf models

2 Discrete-time Simulations of Simulink/Stateflow

An sl/sf model of an embedded system defines time-dependent mathematical
relationships between the inputs, internal state variables, and outputs of the
system. These models are represented graphically as dataflow diagrams of inter-
connected blocks. Simulink provides a diverse family of continuous, discrete,
and logical building blocks. Stateflow complements these design features with
concurrent and hierarchical state machines called Stateflow charts that are used
for specifying discrete mode control logic.

2.1 Single-step Concrete and Symbolic Simulation Semantics

The sl/sf models are simulated on numerical data to generate concrete execu-
tions. The MathWorks simulation engine evaluates the blocks in a given model
at discrete time steps. Each block has an associated sampling time which speci-
fies the period at which the block is evaluated. Sampling times of the individual
blocks are used to determine the simulation time step h ∈ R+ of the overall
model, so that the model is evaluated every h time units. For simplicity, we
assume that the sampling time of each block equals the simulation time step h.

Each block in a model represents a mathematical function. For example,
an integrator block represents assignment to a continuous state variable of the
model such that the time derivative of its output equals the value of its input.
The output is computed by means of numerical integration. The precision of
the integration can be controlled by choosing an integration routine and the
simulation time step. We consider (explicit) fixed-step integration routines.

A continuous state s ∈ R
n of an sl/sf model consists of a valuation of the

continuous state variables in the model. A discrete state q ∈ Q of an sl/sf model
consists of the set of active states in a Stateflow chart of the model along with
the various choices of the conditional blocks in the model. Q denotes the set of
discrete states of the model. The model state of an sl/sf model is denoted by
m = (q, s) ∈ M where M = Q × R

n.
For the numerical simulation, we fix an integration routine S and a simulation

time step h. An sl/sf model defines a function f : M → M . The inputs to the



model are fixed at the beginning of a simulation run. A concrete simulation step

of an sl/sf model applies the function f to a model state (q, s) to yield a model
state (q′, s′) as shown in Figure 1(a). The transition between discrete states
consists of a change in the choices of the conditional blocks and the transitions
of the Stateflow charts. The transition between continuous states consists of an
assignment to the continuous state variables. The function f is deterministic but
it is defined operationally according to an evaluation order of the blocks in the
model determined by the MathWorks simulation engine.

In order to overcome the opacity in the evaluation order semantics of sl/sf,
we augment the concrete simulations of sl/sf models with symbolic simulations
by instrumenting the model with callback functions. Our method discovers the
function f defined by the model incrementally. The symbolic simulation emits
the description of f applicable in each simulation step. A concrete and symbolic

simulation step of the instrumented sl/sf model maps a model state (q, s) to a
tuple (q′, s′, P, F ) where (q′, s′) = f(q, s), P is a quantifier-free formula and F
is an expression over the continuous state variables. The simulation step of the
instrumented model is shown in Figure 1(b). The symbolic transformers (P, F )
generated by the simulation step satisfy the following properties: JP K(s) = true,
s′ = JF K(s), and for all v ∈ R

n, if JP K(v) = true then f(q, v) = (q′, JF K(v)).

2.2 Automated Instrumentation of Simulink/Stateflow Models

The ability to symbolically simulate sl/sf models presents many possibilities
for automated analysis. It is however challenging due to their complex seman-
tics. Factors such as concurrency and hierarchy in Stateflow charts, triggered or
conditional subsystems, and virtual blocks complicate the semantics.

In this section, we present a technique that enables symbolic simulation of
sl/sf models. It involves two steps: manual implementation of callback functions
for the block types in the sl/sf language and automated technique of composing
the callback functions through instrumentation of models.

Manual implementation of callback functions. For each block type T in a
given model, we implement a callback function fT that encodes the semantics of
the block type T . The callback function for a block of type T takes a symbolic
transformer (Pi, Fi) for each input port i of the block and generates a symbolic
transformer (P ′

j , F
′

j) for each output port j of the block. For example, if (P1, F1)
and (P2, F2) are the symbolic transformers of the inputs to a sum block then the
symbolic transformer of the output is (P1 ∧ P2, F1 + F2).

If a block type is conditional then we use the concrete input values to de-
termine which conditional branch is being executed to generate corresponding
symbolic transformer. Consider a relational operator block with relational oper-
ator <=. Suppose (P1, F1) and (P2, F2) are the input symbolic transformers. If
the concrete input values satisfy the relation then the symbolic transformer of
the output is (F1 ≤ F2 ∧ P1 ∧ P2, 1) otherwise it is (F1 > F2 ∧ P1 ∧ P2, 0).

The symbolic transformer for a constant block with constant value c is (true, c).
If the constant block corresponds to a continuous variable xi of the model then
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the symbolic transformer is (true, xi). An integrator block always corresponds
to some continuous variable of the model. If it represents a variable xi then the
output symbolic transformer is (P1, S(xi, h, F1)) where (P1, F1) is the input sym-
bolic transformer, h is the simulation time step, and S(xi, h, F1) is the expression
for the numerical integration. For the Euler solver, the expression is xi + hF1.

Automated composition of callback functions. For every block B of type
T in the model, we attach the callback function fT with it. During simulation,
the callback function of a block is evaluated immediately after the output of the
block is computed by Simulink and before the next block is executed.

Consider Figure 2(a) which shows three inter-connected blocks and a val-
uation to the inter-connections during a simulation step. We use the Simulink

block runtime API to access block data, such as block inputs and outputs, and
parameters, during simulation. The key part of our scheme is to correctly access
symbolic transformers of the blocks connected to the input of a given block. The
inter-connections between blocks can be identified programmatically through
the ‘PortConnectivity’ parameter of each block. This allows us to compose the
callback functions of the individual blocks in a model as shown in Figure 2(b).

The block evaluation order determined by the MathWorks simulation engine
is guided by data dependencies between the blocks so that a block is evaluated
only after its inputs are computed. The technique of callback functions works
with any valid block evaluation order. For instance, 〈B1, B2, B3〉 and 〈B2, B1, B3〉
are the valid block evaluation orders for the model in Figure 2. The callback
functions f+, f7, and f<= are also evaluated in the order chosen by the simulator.

The presence of virtual blocks and enabled, triggered, or conditional subsys-
tems requires special care. For instance, a virtual block (e.g. an inport) cannot
be attached a callback function because it is compiled away before simulation.
For a block whose input port is attached to a virtual block, we need to walk the
inter-connections to find the correct non-virtual input block.

The callback function for a Stateflow chart uses the Stateflow API to access
the elements of the chart. We annotate the transitions of a Stateflow chart to
monitor which transitions are taken in a simulation step. The guards on these
transitions are used for generating the corresponding symbolic transformers for
the simulation step. We check consistency of symbolic transformers with the
corresponding concrete simulation values by evaluating the transformers inde-
pendently in MATLAB and matching the output with the concrete values.



Limitations. Our current implementation is restricted to linear transformers.
While we support several block types and their configuration settings, the library
of callback functions that we built is not complete, given the rich set of modeling
features that Simulink provides. Most of these limitations can be overcome by
means of simple extensions to the basic scheme proposed here. We assume that
there are no local variables and functions in Stateflow charts and that all the
output variables take discrete values. While we handle many commonly used
Stateflow features including hierarchy and concurrency, extension to advanced
features such as recursive broadcasts and completion semantics is future work.

3 Under-approximations of Convex Polyhedra

Polyhedra form a natural representation of sets of continuous states. However,
the worst-case exponential complexity of polyhedral operations limits the scal-
ability of analysis tools. Several restricted forms of domains support efficient
over-approximate computations. Since the goal of our analysis is to eliminate
redundant simulations, it requires exact or under-approximate computations.

We now present a novel representation of polyhedra for under-approximate
computations. The representation called, the bounded vertex representation, con-
sists of a finite number, say k, of vectors where k is bounded a priori. The poly-
hedron represented by these vectors is their convex hull. In other words, the
vectors form the vertices of the polyhedron. The rapid increase in the number of
vertices with repeated operations affects the performance of an iterative analysis.
The approach of working with a bounded number of vertices overcomes this bot-
tleneck. In our analysis, the under-approximation of the set of states equivalent
to a given state s should contain the state s itself to ensure that s is not chosen
as an initial state subsequently. Therefore, given a vector v in a polyhedron P ,
the under-approximation of P with respect to v should contain v itself.

3.1 Bounded Vertex Representation

Consider the polyhedron P ⊆ R
n shown in Figure 3(a) (for n = 2) and a vector

v ∈ P . An under-approximation of P can be obtained by selecting a collection
U = [u1, . . . , u4] of vectors from the vertex set of P . To obtain these vertices, we
pick a collection C = [c1, . . . , c4] of vectors and maximize the objective functions
ci

T x over the polyhedron P where x is the n× 1 vector of real valued variables.
For instance, Figure 3(a) shows the vertices obtained by selecting ci parallel to
positive and negative axes of the 2-dimensional space. While the intersection of
the half-spaces ci

T x ≤ ci
T ui gives an over-approximation (bounding box) of P ,

the convex hull of the vertices ui gives an under-approximation. We denote the
convex hull of a collection U of vectors by CH(U). However, the given vector
v ∈ P may not belong to the convex hull of U as shown in Figure 3(a).

Another under-approximation of P is shown in Figure 3(b). It is formed with
respect to the vector v by extending rays starting from v along the directions
given by vectors in D = [d1, d2,−d1,−d2] where d1 and d2 are axis-parallel. Let
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W = [w1, . . . , w4] be the collection of vectors that lie at the intersection of these
rays v+µidi, where µi ∈ R

+ are the scaling factors, and facets of the polyhedron.
The convex hull of W is a subset of P . If there are at least two direction vectors
di, dj ∈ D such that di = −dj , the vector v is guaranteed to belong to CH(W ).

While the collection W ensures that the vector v is included in the under-
approximation, the collection U is potentially useful in obtaining a better under-
approximation. The under-approximation given by the union U ∪ W of the two
collections U and W is shown in Figure 3(c). We combine these two observations
to define the bounded vertex representation of P .

Consider two collections C = [c1, . . . , cm] and D = [d1, . . . , dr] of n × 1 real
vectors, called the coefficient and direction vectors respectively. We require that
there exist at least two vectors di, dj ∈ D such that di = −dj . Given C and
D, the bounded vertex representation (BVR) of a convex polyhedron P ⊆ R

n

with respect to a vector v ∈ P consists of a collection V = U ∪ W where
U = [u1, . . . , um] and W = [w1, . . . , wr] of vectors, called vertices, such that

1. The vector ui, i ∈ [1, m], maximizes the function ci
T x over P and

2. The vector wi = v+µidi, i ∈ [1, r], where µi = max {λ ≥ 0 | wi = v + λdi ∈ P} .

A bounded vertex representation V of a polyhedron P ⊆ R
n with respect to a

vector v ∈ P satisfies the following properties: CH(V ) ⊆ P (under-approximation)
and v ∈ CH(V ) (membership).

3.2 Computing Bounded Vertex Representations

In the following discussion, we consider collections C = [c1, . . . , cm] and D =
[d1, . . . , dr] of coefficient and direction vectors.

Construction. We define a procedure BVR(A, b, v, C, D) to compute a bounded
representation V = U∪W of a convex polyhedron P = {x : Ax ≤ b} with respect
to a vector v ∈ P using linear programming (LP). For each ci ∈ C, the vertex
ui ∈ U is computed by maximizing the linear objective function ci

T x over P .

ui = maximize ci
T x subject to Ax ≤ b (1)
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An optimal solution to a linear objective function over a convex polyhedron
occurs at a vertex of the polyhedron. A vector ui is thus a vertex of the poly-
hedron P . The optima with respect to ci

T x may not be unique but, given a
deterministic LP solver, the set U is uniquely defined.

For each direction vector d i ∈ D, the procedure BVR maximizes a scalar
variable µ such that v + µ d i ∈ P .

µi = maximize µ subject to (A d i) µ ≤ (b − Av) ∧ µ ≥ 0 (2)

The vector wi ∈ W is obtained from the optimal value µi as: wi = v + µi d i.

Intersection. We define a procedure Intersect(V ′, P, v, C, D) that takes as input
a bounded vertex representation V ′, a convex polyhedron P = {x : Ax ≤ b}, and
v ∈ P ∩ CH(V ′). It computes a bounded vertex representation V = U ∪ W of
the intersection of P and CH(V ′) with respect to the vector v.

Let |V ′| = k. For convenience, we treat the collection V ′ as k × n matrix.
The vertices in V ′ form the rows of the matrices. Let R(V ′) be the constraint
representation of CH(V ′) using a k × 1 vector λ of real-valued auxiliary vari-
ables. Informally, R represents vectors x and λ such that x ∈ CH(V ′) and λ are
multipliers that certify the membership of x.

R(V ′)(x, λ) : x = V ′T λ ∧ λ ≥ 0 ∧ 1T · λ = 1

A vertex ui ∈ U is computed by solving the following linear program:

ui = maximize ci
T x subject to Ax ≤ b ∧ R(V ′)(x, λ)

Consider Figure 4(a) as an example where |C| = 4 and |D| = 4. The vectors
in V ′ are shown as small black dots. The vectors in the set U are shown as small
gray circles and are vertices of P ∩ CH(V ′). A vector wi ∈ W is obtained by
solving the following linear program:

µi = maximize µ subject to x = v + µ d i ∧ Ax ≤ b ∧ R(V ′)(x, λ) ∧ µ ≥ 0

The optimal solution for x directly yields the required element wi of the collection
W . In Figure 4(a), the vectors in the set W are shown as ‘x’s.



Preimages of Affine Functions. We define a procedure PreImage(V ′, F, v, C, D)
that takes as input a bounded vertex representation V ′, an affine function
F (x) = Ax+b, and a vector v such that F (v) ∈ CH(V ′). It computes a bounded
vertex representation V = U ∪ W of the preimage of CH(V ′) under F with
respect to v. For each ci ∈ C, the following LP is solved to yield ui ∈ U :

ui = maximize ci
T x subject to x′ = Ax + b ∧ R(V ′)(x

′, λ)

Similarly, each direction vector d i ∈ D yields an element wi = v + µidi ∈ W :

µi = maximize µ subject to x = v + µ d i ∧ x′ = Ax + b ∧ R(V ′)(x
′, λ) ∧ µ ≥ 0

Figure 4(b) illustrates the preimage computation using BVR.

Complexity. Consider bounded vertex representations V = U∪W where |U | = m
and |V | = r. The construction of a BVR of a polyhedron P ⊆ R

n involves solving
m LP instances in n variables and r LP instances in a single variable. The
intersection and preimage operations involve solving m instances in (m + r + n)
variables and r instances in (m+r+1) variables. Each LP instance can be solved
in time polynomial in the number of variables.

We have implemented BVR using the GNU linear programming kit (GLPK).
We present preliminary evaluation of BVR in the context of a case study with
10 continuous variables in Section 5.

4 Symbolic Analysis of Simulation Traces

The sl/sf models are typically analyzed through numerical simulation. However,
the usual practice of random testing does not guarantee coverage of all the
model behaviors. In this section, we propose an automated testing technique
to systematically explore distinct behaviors of sl/sf models. Our technique is
based on an analysis of simulation traces of the model.

Consider an sl/sf model instrumented for symbolic simulation (Section 2).
We fix a simulation framework 〈S, h, k〉 where S is the integration routine, h is
the simulation time step, and k > 0 is the bound on the number of simulation
steps. The concrete trace of the simulation of the model starting from an initial
model state (q1, s1) is 〈(q1, s1), . . . , (qk+1, sk+1)〉 where (qi, si) and (qi+1, si+1)
are the model states before and after the ith simulation step, for i ∈ [1, k]. The
symbolic trace of the simulation is a sequence 〈(P1, F1)....(Pk, Fk)〉 where (Pi, Fi)
is the symbolic transformer of the ith simulation step. We consider models with
linear transformers, that is, Pi is a conjunction of linear predicates over the
continuous state variables of the model and Fi is a linear transformation of the
state variables. During a simulation step, the blocks in the model are evaluated
in a deterministic order chosen by the MathWorks simulation engine. Thus, the
choice of the initial model state completely determines the simulation trace of
the model. Presently, we do not allow time-varying inputs to the models.



Algorithm 1: Iterative preimage computation

Input :
1. A k-step concrete simulation trace 〈(q1, s1), . . . , (qk+1, sk+1)〉
2. A k-step symbolic simulation trace 〈(P1, F1), . . . , (Pk, Fk)〉
3. A polyhedron X = {x : Ax ≤ b} of the continuous state-space of the model
4. Collections C = [c1, . . . , cm] and D = [d1, . . . , dr] of coefficients and directions

Output: A BVR V such that for all s ∈ CH(V ), (q1, s) ≡k (q1, s1)

V := BVR(A, b, sk+1, C, D)1

for i := k; i > 0; i := i − 1 do2

V ′ := PreImage(V, Fi, si, C, D)3

V := Intersect(V ′, Pi, si, C, D)4

return V5

We propose the notion of equivalence of states to improve effectiveness of
simulation-based analysis. If two states are equivalent, it is sufficient to simula-
tion the model from only one of them and search for different model behaviors
starting with states that are not equivalent to the already chosen one.

Definition 1. Consider an sl/sf model SL with a simulation framework 〈S, h, k〉.
Two model states (q, s) and (q′, s′) are equivalent up to k simulation steps, de-

noted by (q, s) ≡k (q′, s′), if the discrete components of the concrete traces start-

ing from them agree at each step of the simulation.

Note that the notion of equivalence is valid even for models which do not
have any Stateflow chart because the discrete component of a model state also
consists of the outcomes of the conditional blocks in the model (Section 2.1).

Our overall testing technique proceeds as follows. We choose an initial state
(q1, s1) and simulate the model for k steps. Using the concrete and symbolic
traces of the simulation, we infer the set of states that are equivalent to (q1, s1)
up to k steps. Even with a single simulation, we can thus declare a non-trivial set
of model states as covered. Below we discuss the algorithm for computation of
equivalent states. The initial model state for the next simulation is then chosen
randomly from outside the covered region.

Algorithm. Given the concrete trace 〈(q1, s1), . . . , (qk+1, sk+1)〉 and the sym-
bolic trace 〈(P1, F1), . . . , (Pk, Fk)〉 of a k-step simulation of an sl/sf model,
Algorithm 1 computes the bounded vertex representation V of the set of contin-
uous states equivalent to s1. Thus, for each continuous state s ∈ CH(V ), (q1, s)
is equivalent to (q1, s1) up to k simulation steps.

Let Vi+1 be the bounded vertex representation at the beginning of an itera-
tion with the loop counter equal to i (Lines 2–4). Initially, Vk+1 is the BVR of
the continuous state-space X of the model (Line 1). The loop body computes the
intersection of the convex polyhedron Pi and the preimage of CH(Vi+1) under
the function Fi, where (Pi, Fi) is the symbolic transformer of the ith simulation



Model Variables sl blocks sl conn. sf states sf trans. Discrete states State-space

VCC 2 75 83 12 28 106 [172, 373]2

RHB{3} 3 33 42 1 18 12 [16.5, 23]3

RHB{10} 10 33 42 1 18 3360 [15, 23]10

Fig. 5. Characteristics of the case studies

step. The bounded vertex representation Vi is the under-approximation of the
intersection. The symbolic operations are computed as defined in Section 3 using
an LP solver. The number of vertices in the bounded vertex representations is
bounded by the number of coefficient and direction vectors chosen as input to
the algorithm. For each i ∈ [1, k + 1], |Vi| = m + r where m = |C| and r = |D|.

Performance optimizations. The quality of the result in the iterative analy-
sis of long simulation runs may reduce due to successive under-approximations.
We achieve a tradeoff between runtime and quality of under-approximations by
reducing the number of preimage computations. We select a parameter called
the width of preimage computation. If w is the width then we perform a preim-
age computation at every wth simulation step instead of every step. For ex-
ample, if w = 2 and the symbolic trace is 〈(P1, F1), . . . , (P2k, F2k)〉 then the
symbolic transformer for the ith preimage computation is (P ′

i , F
′

i ) where P ′

i =
Pj ∧ Pj+1[Fj(x)/x], F ′

i = Fj+1 ◦ Fj , and j = 2k − 2i + 1. The expression e[y/x]
denotes substitution of y for x in e and G ◦ H is the function composition. The
number of variables in a preimage computation (a linear program) is independent
of the width but the number of constraints is proportional to the width.

The quality of an under-approximate bounded vertex representation can be
improved by selecting more coefficient and direction vectors but at higher com-
putational cost. In Section 5, we discuss the effect of varying these parameters
on performance of the algorithm and quality of analysis results.

5 Experimental Results

We evaluated our model instrumentation and analysis tool on the following case
studies: a Simulink demo model (VCC) from The MathWorks [1] and two in-
stances, with 3 and 10 continuous state variables, of a parametrized hybrid sys-
tems verification benchmark (RHB) [12]. Figure 5 shows their characteristics.
The VCC model uses many modeling features of sl/sf including hierarchical
and concurrent Stateflow and lookup tables. RHB{10} models a system with 4
heaters that can be distributed among 10 rooms. Each heater can be either on or
off. The number of discrete states is

(

10
4

)

·24. The runtime technique of symbolic
trace generation enables analysis of such large models.

An instrumented model is simulated from a randomly chosen initial state
(q, s) and a set of states equivalent to (q, s) up to 100 simulation steps is com-
puted. The initial state for the next simulation is chosen from outside the states



Model
Total BVR

Width
Avg. constraints Inequivalent Avg. analysis time

simulations size per simulation simulations per simulation(sec.)

VCC 592 8 10 1170 575 (97%) 0.1697

RHB{3} 957 10 10 500 531 (55%) 0.1503

RHB{10} 324 24 50 1292 298 (92%) 7.1514

Fig. 6. Analysis results for the case studies: Total runtime is 1 hour for each case study.

covered in all the preceding simulations. Figure 6 summarizes the test results. For
VCC, over 97% initial states chosen by our tool explore inequivalent simulation
traces, each exhibiting distinct discrete mode switches. The tool however cannot
eliminate all equivalent initial states because of the use of under-approximations
in the analysis and the presence of disjunctive guards in the models, as can be
seen for the results on RHB{3} and RHB{10} models. The small runtime of our
analysis for RHB{10} suggests that our technique of using the bounded vertex
representation can scale to systems with large number of variables.

We compared effectiveness of our tool with Reactis [25, 8] and with random
testing for the VCC model on 100 test cases generated by these tools individu-
ally. Given the model, Reactis selects test inputs at different simulation steps.
We treat the test inputs generated by Reactis as distinct initial states and also
choose a set of initial states by random sampling. Our tool successfully explores
96 inequivalent simulations as compared to 56 by Reactis and 73 by random test-
ing as summarized in Figure 7. The last 4 columns report the typical structural
coverage metric as percentages of the total number of conditions, decisions, mod-
ified condition/decision (MC/DC), and lookup table rows covered by the tools.

We evaluate the effect of various parameters to the analysis algorithm in
the context of the RHB{10} case study. The quality of under-approximations
and the computational cost can be balanced by varying the size of the bounded
vertex representation and the width of preimage computation. Figure 8 shows
the relative growth in computation time and coverage with increasing BVR size
and width. The coverage plots show the percentage of the volume of the entire
initial continuous state-space covered by a single simulation. The volumes are
estimated using the MATLAB interface to the QuickHull algorithm [24]. While
the number of variables is independent of the width, the number of constraints
for a preimage computation increases with the width. The number of calls to
the LP solver increase for decreasing widths. For small widths, the cost of calls
to the LP solver may slow down the analysis as shown in Figure 8(b).

Tool Inequivalent simulations Conditions Decisions MC/DC Lookup table rows

Our tool 96 58 84 16 29

Reactis 56 55 86 17 30

Random 73 58 84 16 29

Fig. 7. Comparison with Reactis and random testing on 100 step simulations
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Fig. 8. Results are measured for the RHB{10} model and are averages over 10 runs of
100 simulation steps each. In (a), the width is 25; and in (b), the size of BVR is 24.

6 Conclusions

We have presented an analysis technique for systematic exploration of distinct
behaviors of sl/sf models. The completely automated analysis of sl/sf mod-
els is made possible via symbolic trace generation using model instrumentation.
Through the use of under-approximate bounded vertex representation, we can
analyze models with large number of continuous variables. We have demon-
strated the benefits of our approach with case studies, including a model that
has 10 continuous variables. Our current implementation covers many sl/sf
modeling features and extending it is future work.
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