Predictable Programs in Barcodes

Alwyn Goodloe, Michael McDougall, Carl A. Gunter, and Rajeev Alur
Department of Computer and Information Science
University of Pennsylvania
200 South 33rd Street
Philadelphia, PA 19104-6389

agoodloe@saul.cis.upenn.edu, mmcdouga@saul.cis.upenn.edu,
gunter@cis.upenn.edu, alur@cis.upenn.edu

ABSTRACT

We explore the challenges for making the programming iates$
for embedded devices open and safe, and present a prototype a
tecture for delivering verified programs using barcodespdrtic-
ular, we consider programs for microwave ovens, which plea
basic open API for controlling cooking times. In our architee,
recipes are written in Java, and their safety propertie$canaally
verified using the model checker Spin. We use off-the-shiifieis
for compressing the byte code, and use two-dimensionabtasc
for program delivery. We report on experiments that denratet
the feasibility of the proposed architecture for predidtgband
delivery.

Categories and Subject Descriptors

C.3 [Computer Systems Organizatio: Special-Purpose and
Application-Based Systemsreal-time and embedded systems
D.2.1 [Software Engineering: Requirements/Specifications;
D.2.4 [Software Engineering: Software/Program Verification—
formal methods; model checkinB.2.7 [Software Engineering:
Distribution, Maintenance, and Enhancement; D.2.%affware
Engineering]: Software Architectures-domain-specific architec-
tures; languages (e.g., description, interconnectiorinitgon)

General Terms
Languages, Reliability, Verification

Keywords

Programmability of embedded devices, Code delivery, Actiar-
codes, Formal verification

1. INTRODUCTION

The aim of this paper is to look at some issues related to the

programming of embedded systems throogkn Application Pro-
gramming Interface (API) platformsQOur specific case study is

Permission to make digital or hard copies of all or part o thvork for

personal or classroom use is granted without fee providatiabpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listgyies prior specific
permission and/or a fee.

CASES 2002X)ctober 8-11, 2002, Grenoble, France.

Copyright 2002 ACM 1-58113-575-0/02/0010$5.00.

programming microwave ovens using two-dimensional (20} ba
codes, but the general topic is how embedded systems candze ma
to have open programming interfaces that enable users @add th
party vendors to customize their functionality. The opeatfpkm
idea is really a spectrum that ranges from open source cadede

est customization hooks, but it is an important driver in grde-
vices. For example, Personal Digital Assistants (PDAS)game
erally based on open platforms whereas other devices, &Ke c
phones, are sometimes open (the Java phone) but usuall@ et
devices, like embedded systems in automobiles, are maioly p
grammable only by their manufacturer. Microwave ovens pgcu
an interesting place in this spectrum since they are safétigal
devices that must provide at least a rudimentary open APh-Co
sumers probably would not buy a microwave from Samsung if it
could cook food from Samsung, but not from Stouffer's orRill
bury. The microwave hardware vendors and the third-party so
ware vendors\iz. frozen food manufacturers in this case) have a
common interest in improving the interface of the devicedoept
better programs.

Our objective is to explore two issues of particular intefes
open APIs on embedded devicekeliverability andpredictability.
Deliverability concerns the means used to get a program amto
embedded device. Such devices are often mobile and may have
very limited interfaces so practical program delivery igeafquite
device-specific, as the microwave example shows. Preditfab
concerns the means of knowing how an open API will be used,
or misused, by a third party vendor. For example, an operator
entering a microwave recipe is likely to see an error in apeci
that recommends heating for 30 hours rather than 30 minbtiés,
program in a barcode may not receive a similar sanity checkdy
operator.

This paper describes a prototype implementation of ouritach
ture, together with some experiments and alternatives daous
steps. We created a simple microwave oven interface for diagda
coded several programs using this interface. Our prograare w
based on typical recipes we found, but we augmented them with
various enhancements that would not be feasible if the tpera
had to key in the recipe. We studied the problem of prediataig
source usage of these programs by expressing desired tiesper
linear temporal logic and checking them with the model chegk
tool Spin. We used off-the-shelf compression and barcodecden
ing techniques to represent the programs, and set up a system
read the code and execute it on a laptop simulating a micrewav
oven.

Using barcodes printed on food packages to deliver programs
seems natural for microwaves. In fact, there have been nmiany s
ilar proposals in recent years to enhance programmabifitpio

crowaves. One proposal envisions using a 10 digit number as a
program, and a recently-marketed product uses a triple of-nu
bers for programs. However, such programs must be very simpl
and cannot easily be adapted to the evolution of the deviess t
program, such as the addition of new sensors and actuatbesno
visioned when the original code was written. Our architectises
barcodes to carry programs written in general purpose Egegi—
Java byte-code in our experiments, and thus, provides fliéxib
Two-dimensional barcodes have a capacity of 1-2 KB, and xur e
periments indicate that reasonably interesting recipaseacom-
pressed using off-the-shelf utilities likgzi p to meet this resource
constraint.

Concerning predictability, our experiments show feaibibf
applying existing formal verification technology to forraté and
verify safety properties such as establishing the the tmiaking
time for a given recipe does not exceed a specified limit. kenli
typical applications of model checking, our programs acgisatial
and non-determinism arises almost exclusively from operat-
tions, not from concurrent interleaving. Applying a modeécker
like Spin requires significant effort in manually transtatithe Java
recipes into the modeling language of Spin, as well as in fiban
ing the assumptions about the environment. However, bloinru
computational requirements seems to be less critical icootext,
and there is potential for developing domain-specific weatfon
tools that are applicable directly to the source code.

The remaining paper is organized as follows. The second sec-
tion discusses some of the relevant language issues. Treati
fourth sections discuss methods related to predictatatity deliv-
ery respectively. We provide more details about our praetgnd
experiments in the fifth section. The sixth section sumnearcon-
clusions and discusses future work.

2. PROGRAMMING LANGUAGES

Naturally, our recipe programs need to be written in some pro
gramming language. General purpose programming langayes
evolved to have high degrees of modularity that help manafie s
ware complexity. At the same time, domain-specific langsage
have been created that adapt modularity to their own péaticu
needs. We therefore have arich field of language featurdwiuse
from in selecting an appropriate language for our programs.

Languages with high degrees of modularity like Java [3]édse
http://java. sun. conl) have evolved to support resource-
rich platforms where the constraints on timing and comparnat
power are fairly generous. This modularity, along with thmp-
ularity, makes general purpose languages an attractivieefior
taking advantage of open APIs. This explains the exciterteit
is driving the development of thidicro Edition(ht t p: / / j ava.
sun. cont j 2rre/) of Java, known as J2ME. J2ME attempts to
constrain Java in order to allow it to run on devices with tedi
resources, while leaving the core features of Java intact.

Another strategy is to choose a language that has been ddsign
with embedded systems in mind. Programs for embedded system
typically focus on reacting to the environment instead ahs-
forming data. Consequently, languages that can expresstipt
handling and real-time operations elegantly will be a goadaim.
We discuss Esterel, a language for reactive systems, beltw.
Functional Reactive Programmin{RP) family of languages uses
a declarative syntax to program reactive systems. Var@rfE&RP
has been used for animation [11] and real-time embeddeeraggi 8].

Our language should have two additional features. It shalild
low, or even enhance, the predictability and deliverapditits pro-
grams. These issues are discussed in general terms in&e8tio
and 4, respectively. It is worth noting mentioning here, aeer,

Make 1 inch slit in plastic
50% power for 5 mnutes
Rermove pl astic overw ap
Rotate tray 1/2 turn

100% for 1:45

gL E

Figure 1: A microwave recipe for enchiladas.

public static void run(Mcrowave i nMcro) {
inMcro.display("Make 1 inch slit in plastic");
inM cro.reset CookTi me();
while (inMcro.getCookTi me() < 300) {
try {
inM cro. cook(50, 300 - inMcro.getCookTime(), true);
} catch (PauseException pe) {
try {
inM cro. decr enment CookTi ne(1) ;
} catch (StartException se) {
/11 o0op again
}

}
}
inMcro. di splay("Renove Overw ap");
if (!inMcro.canRotate()) {
inMcro.display("Rotate tray 1/2 turn");
}
inM cro.reset CookTi me();
while (inMcro.get CookTi ne() < 105) {
try {
inM cro.cook(100, 105 - inM cro.get CookTine(), true);
} catch (PauseException pe) {
try {
inM cro. decr ement CookTi ne(1);
} catch (StartException se) {
/11 oop again
}
}
}
}

Figure 2: The enchilada recipe in Java.

that the choice of the language must take account of the tayegsl
implications for predictability and deliverability.

What would be an appropriate programming language for high
level programming of embedded processors? The questiards h
to answer in absolute generality, but some range of reqeintsn
can be explored in our ongoing case study of programmable mi-
crowave ovens. Consider the enchilada recipe from Figunedl a
suppose it was to be delivered as high-level code. One plitysib
is to create a recipe scripting language. This has many talyes
for usability, but domain-specific languages have the dizathge
of being, well, domain specific. We therefore explore a grelavvel
of generality first.

Java is a possible choice. Java is increasingly popular lad t
J2ME variant of Java is explicitly targeted to run on deviagth
few resources. Figure 2 shows the same enchilada reciperas a p
gram in Java based on a small (conjectural) microwave obga-
ble of performing operations like cooking and displayingeTpro-
gram additionally illustrates the potential for enhancetaevhen
the program does not need to be keyed in by the user. In partic-
ular, it has two features not present in the English recipehea
microwave has a rotating turntable then step 4 is skipped,ifan
the user pauses the cooking (by opening the oven door or-press
ing a ‘pause’ button) the program will increase the totalkiog
to account for the food cooling while the oven is paused. €kis
tra functionality could certainly be added to the Englistipe, but
such a complex recipe would be burdensome for the user.

Another possibility is to choose a language that was dedigne
for programming reactive systems. For example, Esterel 25,
(see alschtt p: // ww«+ sop.inria.fr/meijelesterel/
est erel - eng. ht nl) is a language for synchronous program-
ming of reactive systems. The enchilada recipe is given tarek
in Figure 3. This recipe also skips step 4 if the oven is capabto-
tating the food on its own. In order to make the program cenesis

input Pause, Start, CanRotate;
ouput Power:integer, Rotate;
signal CookTinme : integer in
di splay("Make 1 inch slit in plastic wap");
await Start;
abort
| oop
abort
sustain Rotate || sustain Power(50)
|| every Second do
enmit CookTime(1l + pre(?CookTine)
end every
when Pause
await Start;
end | oop
when CookTime = 300
di spl ay("Renove plastic overwap");
present CanRotate el se
display("Turn tray 1/2 turn");
end
enmit CookTi me(0);
await Start;
abor t
| oop
abort
sustain Rotate || sustain Power(100)
|| every Second do
emt CookTine(1l + pre(?CookTine)
end every
when Pause
await Start;
end | oop
when CookTime = 105

Figure 3: The enchilada recipe in Esterel.

do not account for food cooling while the oven is paused—agldi
this functionality is simple.

abort

sust ai n Power (80)

|| every Second do

emt CookTinme(1

+ pre(?CookTi ne)
end every
abort

sustain Rotate
when Cooktime = 10
when CookTime = 20

(@)

i nM cro. cook(80, 10
i nM cro. cook(80, 10

(b)

true);
fal se);

Figure 4: (a) Esterel code fragment. (b) Java code fragment

it will behave as intended for all environments and usersecip
ically, we would like to know the following: 1. Will the progm
terminate? 2. Will the food be cooked for at least 405 secprds
What is the maximum power that will be applied to the food?

Formal methodg9] techniques model programs as mathemati-
cal structures which can then be reasoned about matheihatica
Model checkindg8] is a formal methods technique that explores
all possible configurations of a finite-state system. Wit ttiree

If we compare the two programs we can see some advantages an@uestions listed above in mind, we examined Spin [13], asthe

disadvantages of each language. In Java, programs aredlivith
objects which are manipulated using methods. The recip&aisn
the microwave by invoking theook () method, for example, and
therefore passing control to the microwave object. Thepeeniust
then trust the microwave object to rotate the turntablethegpower
level, and intercept signals from the user interface. Thigeshas
no control while thecook method is executing, so all the param-
eters relevant to the cook operation must be grouped as argam
to the method. The Esterel program allows finer grain corbrat
suits the real-time operation of the microwave. The micrenia
controlled by settingignalssuch asRot at e andPower . Signals
can be manipulated in parallel. For example, a recipe tHidca
for cooking at 80% power for 20 seconds while only rotating fo
the first 10 seconds could be written as Figure 4a. The equival
Java code fragment, shown in Figure 4b, would require twis tal
thecook method (the third argument obok determines whether
the turntable should rotate), requiring the developer peat the
power setting even though it has not changed. On the othetl, han
the Java code fragment is more concise (though this is paetly
cause some of the functionality has been moved inside tiuk
method) and more natural for most programmers.

In our current prototype we have chosen to use Java. We fatel th
its popularity and the availability of tools outweighs thekavard-
ness of representing real-time programs.

3. PREDICTABILITY

A computer program should do things it is supposed to do, and
only those things. In general, it is notoriously difficultascertain
that a given program meets a specification. Many embedded de-
vices have actuators that can manipulate the physical@mmient
so it is especially frustrating, even dangerous, when arprogle-
viates from its intended behavior. Unlike general purpasaut-
ers, many embedded devices offer a very limited interfadbe
users, making it difficult to diagnose and work around progea-
rors. Programs that control embedded systems are theigdok
candidates for analysis techniques that make programstablk.

In the case of our recipe program, we would like to know that

shelf model checking tool.

Spin is a formal verification tool that analyzes a system by ex
ploring all its possible states. Spin is a mature tool sorilatively
fast and easy to use. Spin’s input must be in the form of Pramel
programs so we had to manually translate our Java program int
Promela.

The Java program of Figure 2 is sequential so we do not need to
worry about race conditions that arise when two or more tisese
interleaved. The nondeterminism comes from the user'srest-
when and how often the user pauses and restarts the microwave
Our Promela model includes a simple process that simulatesra

In a simple sense the answer to our first question is no: a patho
logical user can always pause the microwave until the foal ha
cooled so much that it needs to be re-cooked for the full 4@5 se
onds. A more precise statement of the question would be “will
the recipe terminate if the user eventually stops pausiegnh
crowave?” We augmented our user simulation process sotthat i
would randomly switch into a dormant state where it wouldosto
pausing the microwave. We then constructed a linear terhpora
logic (LTL) expression,d(user _st op — <reci pe_fi ni shed)’,
which encodes our more precise question. Spin verified tat t
Promela program satisfied the LTL expression. The verificate-
quired 35 megabytes of memory and 1.03 million states wese vi
ited.

Answering our second question required further changeketo t
Promela model. We added a new variable that counts the nushber
seconds of cooking that have taken place. If this countedded
naively then state space becomes infinite—a user can alvesys k
the food cooking for ever, driving the counter arbitrariigih To
overcome this we had to explicitly limit this counter to abigmary
maximum level. This made the state space finite but it was il
large to search efficiently so we were forced to use an ab&tmac
of our recipe in which each clock tick corresponds to threpsds
instead of one. Spin was able to verify that in this abstraotieh
the recipe would always cook the food for at least 405 secoFiks
verification required 192 megabytes and visited 5.92 nmiltates.
We used a Promela assertion to ensure the cooking time weesat |

405 seconds.

Our final question dealt with the maximum power used to cook
the food. As was the case for the first question, we need taasph
this more precisely as “What is the maximum power that will be
applied to the food once the user stops pausing the micr@®Vave
In fact, we answered a related question: “will the food bekeao
for no more than 405 seconds once the user stops pressingaus
It would be convenient if Spin could find the maximum amount of
time exerted, but we know of no way of finding this maximum shor
of guessing a maximum and trying it. We modified the countedus
above so that it would only increment once the user stopped-in
fering. We then verified that the counter was no greater tidn 4
for all states. The verification required 36 megabytes asded
0.94 million states.

Spin was able to answer all three questions we posed about ou
program, although some of the analysis required us to usara&no
model of time than we had used initially. The advantages @i Sp
are its speed and flexibility—constructing and analyzirgrttodel
involved some careful thought but the task was mostly dtéog-
ward. However, it would be more convenient to use a tool which
could take the original program as input; the translatioRrmmela
is error prone, and problems found in the Promela model may no
correspond to problems in the original program. An addélon
problem with Spin was the need to tune the model in order toaed
the state space—it is not always clear whether this tunirggbs
the fundamental behavior of the model, rendering the aisaiys
relevant.

4. DELIVERABILITY

There is a class of embedded devices for which network cennec
tivity is currently either optional, sporadic or impragtic The ob-
vious solution may seem to be traditional media such as flastsc
floppy disks and CDs. Floppy disks, for example, have theradva
tage of being both familiar and of moderate cost. Yet for sdee
vices, these may not be be feasible. In the case of prepatkaoe
for programmable microwave ovens, price constraints lihgtme-
dia cost to a few cents, and the fact that it must be includéhl tive
package means that it has to withstand sub-freezing tetuperadt
must also be convenient enough to use by people uncomfertabl
with technology such as the elderly. We believe that barsqule-
vide a viable solution in such situations as the media isextétly
cheap, reliable and easy to use. In the rest of this sectioshai
explore barcodes as means for the delivery of Java bytesodela
as how compression technology can aid in this task.

4.1 Barcodes

Barcodes are interesting because of their low price andezonv
nience. The most common barcode formats are linear codes. Th
information is represented linearly and vertical redurngas used
to compensate for printing defects and damage while in uiseal
barcodes based on the Universal Product Code (UPC-A) [46} st
dard are widely used in grocery checkout lines. These use nin
to eleven decimal digits and essentially provide an indés m
database connected to the reader and cash register. Gtear li
codes such as Code 39 [2] or Code 128 [1] hold about thirtysbyte
The data capacity for linear barcodes is clearly insufficiende-
livering programs which has led us to investigate a morentece
development in barcode technology—2D barcodes.

Tool Enchilada (894 Bytes])| Collection (2498 Bytes)
None 100% 100 %

gzip 2% 51 %

jar 180 % 96 %

Pack 60 % 27 %

Sequitur | 75 % 54 %

Table 1: Comparison of Compression Programs.

and horizontal dimensions much the way the letters in thbaalp
bet or pictures use both dimensions to communicate infoomat
Since one dimension can no longer be used for redundancy, err
correction coding techniques are usually employed. Thahghe
(are many proposed 2D standards, the following are repretsent
of those that have gained industrial acceptance: Aztec holtks
1.9KB [5]; Xerox's DataGlyph It t p: / / www. dat agl yphs.
com) holds 1KB per sq inch; Data Matrix holds a maximum
of approximately 2KB per symbol [4]; Datastrip (patent nienb
4,782,221) holds a maximum of 1KB per square inch. While the
storage capacity for these formats may seem modest, withidiod
compression, a large class of useful programs may be detivea
this medium. There are also several commercial tools on dre m
ket that can convert both binary and text files into two dinnemesl
barcode formats. Figure 5 shows the Java class file for thei-enc
lada recipe program given in Aztec and DataGlyph formatse Th
former was generated by B-Coder from TAL Technologies Ind. a
the latter by Xerox's GlyphServer atwv. dat agl yphs. com

A drawback to the use of 2D barcodes is that they require a
somewhat more sophisticated reading device than the onendim
sional case; they are usually Charged Coupled Devices (C3i2)
prices for industrial-strength hand-held CCD 2D bar-catinsers
is currently around $250.00. Less sturdy devices are dlailat
lower prices. In general prices will probably decline sorhatv
with greater adoption and advances in CCD technology.

4.2 Compression

In order to decrease the burden imposed by the size cortstrain
associated with using barcodes, we have been investigedimg
pression of small Java programs. The desire to comprespdava
grams has been around almost as long as the language and was
usually driven by limited network bandwidth. Unfortungtehany
of the ideas that have emerged for compressing Java proguams
not applicable to the embedded environment. Since embetieled
vices have limited resources, delivery of source code kamjalust-
in-Time (JIT) compilation on the device is probably impieaat in
most causes because of the large memory footprint requitedce
we do not consider compressing source code or proposalsasuch
delivering source code as compact abstract syntax tregs \4&
also ruled out schemes (such as [15], which is targeted fior- co
pressing code for embedded systems, or [14]) that alter ¥Hd K
or JVM or involve new representations, since these are kelylto
gain wide acceptance in the near term. Most such proposaistdo
have available implementations anyway.

We can report results for the following compression tools; (
GNU gzip, (2) jar, which uses zip, (3) Pack [16], which is cus-
tomized for Java bytecode, and (3) SEQUITUR [7], which uses
hierarchical grammars. These were applied to the Java qrogr
given in Figure 2. We calculated the effect of each progranaon

As linear barcodes have become almost ubiquitous, there hascollection of small class files. The results are reportedabld 1.

been a growing desire to store more information in barcode fo
mat. This is particularly true in situations where datadas&ups
are impractical and has led to the development of 2D codeshé\s
name indicates, 2D barcodes store information in both thicee

Based on this small experiment, Pack seems to be the most effe
tive, probably because it is optimized for Java bytecode.
One aspect of our architecture that we suspect will occurgnym

(b)

Figure 5: Enchilada Program as (a) Aztec Barcode and (b) Xem DataGlyph. The DataGlyph format allows images to be embeded

in the barcode—we embedded the University of Pennsylvaniago.

other application domains is that programs for a particelar
bedded device will have similar structure. For example,ttadl
programs for Microwave ovens are recipes. We believe that th
fact can be exploited to gain an improvement over most dietip
schemes. The idea is to build a dictionary from a corpus of-sam
ple programs. This dictionary is stored at both the comjgass
and decompression locations and used by both algorithmpaAs

of a simple experiment we created such a dictionary usingsi ba
implementation of the LZ78 algorithm [19]. This algorithrmasv
then modified to use the new dictionary. A 15% improvement was
achieved over the original algorithm. We believe that thiticates
that the idea has promise.

5. PROTOTYPE ARCHITECTURE

We have implemented a prototype of our proposed architectur
The prototype includes a set of Java classes that form anoARét
microwave oven. A recipe developer’s program uses thesseta
to access and respond to the microwave. Different microwagas
manufacturers will support this API, though manufactucens cus-
tomize the implementation details according to the cajtegslof
the oven.

Once the recipe program is written in Java it is manuallysran
lated into Promela, Spin’s input language. The recipe d@asl
verifies that the recipe behaves as intended by construefing
propriate linear temporal logic properties and assertionsthe
Promela recipe, annotating the recipe with extra variahtesec-
essary. Spin’s exhaustive search will find any anomaliehén t
recipe and display an execution sequence that demonsttetes
anomaly. If the anomaly is due to a bug in the original Javipeec
that recipe and its Promela model must be updated to fix the bug
If the anomaly is due to a discrepancy between the Java raaipe

the Promela model the model must be updated to bring the model

in line with the original Java recipe.

When Spin shows that a recipe satisfies the necessary pespert
the Java version of the recipe is compiled to a class file. Tdmsc
file is compressed using gzip (our system also supports Rexk)
converted to an Encapsulated PostScript (EPS) containizigcA
barcode. The EPS file is then printed using a normal lasetgorin

We used a Linux workstation with an attached barcode scaaner
simulate a microwave oven. The workstation runs a Per| strg
takes input from the barcode scanner, decompresses it,raed |
it to a Java program that displays a mock-up microwave. A user
can interfere with the mock-up by opening and closing doanmsl,

pausing and restarting the cooking.

We exercised our prototype system with three microwavepesgi
chosen from actual frozen food packages. All three recipaew
encoded as barcodes and run on our microwave simulatoglthou
only one recipe was analyzed using Spin.

We used the compiler and virtual machine from Sun’s JDK1.3.1
for all the steps where we used Java. The recipe analysisevas p
formed using Spin 3.4.13 and Xspin 3.4.7 on a workstation run
ning RedHat Linux 7.2. The workstation had 512 megabytes of
RAM and a 1.5 GHz Pentium 4 processor. A discussion of the
analysis can be found in Section 3. The class file of the recipe
was compressed using gzip 1.3 and then converted to an Aztec
barcode using B-Coder from TAL Technologies version 4.0e Th
microwave simulator ran on a workstation with 80 megabytes o
RAM, a 166MHz Pentium MMX processor and an Imageteam 4410
barcode scanner, running RedHat 6.2.

The recipes, Java classes and Promela models are avaitable a
http://ww. cis.upenn.edu/sdrl/mrl.

6. CONCLUSION

The main contribution of this paper is our experimental grot
type which demonstrates feasibility of delivering verifigdgrams
in barcodes. Such a set up can be used for open API for cangoll
myriad of devices from home appliances to medical devices.

We have shown that existing off-the-shelf model checkéws li
Spin are capable of analyzing the kind of small programs we en
sion running on top of embedded systems. Unfortunately; &pi
quires translating a program into an input language likerf@la—
an error-prone process that may lead to a model that doesnot ¢
respond to the original program, and we would like to develop
domain-specific tools that can analyze source code.

Finally, while we have not assumed any network connectfaity
our prototype, there are interesting architectural pdgssis com-
bining barcodes with network access. We plan to explore alich
ternative architectures in the future.

7. ACKNOWLEDGMENTS

This research was supported in part by NSF award CCR 0208990,
NSF award ITR/SY 0121431, and ARO URI award DAAD19-01-
1-0473.

8. REFERENCES

[1] 1. 15417:2000. Automatic identification and data captur
techniques - bar code symbology specification - code 128.
Technical report, International Standards Organizatiopn
2000.

[2] I.16388:1999. Automatic identification and data captur
techniques -bar code symbology specifications — code 39.
Technical report, International Standards Organizati®99.

[3] K. Arnold, J. Gosling, and D. Holme3he Java
Programming LanguageéAddison-Wesley, Reading, MA,
USA, third edition, 2000.

[4] A. BC11-ISS. Data matrix. Technical report, AIM, 1996.

[5] A. BC13-ISS. Aztec code. Technical report, AIM, 1997.

[6] G. Berry and G. Gonthier. The synchronous programming
languageESTEREL design, semantics, implementation.
Technical Report 842, INRIA, 1988.

[7] D. M. C. Nevill-Manning, 1.H. Witten. Compression by
induction of hierarchial grammars. In J. A. Storer and
M. Cohen, editorsProceeding Data Compression
Conferencepages 244-253. IEEE Press, 1994.

[8] E. Clarke and R. Kurshan. Computer-aided verification.
IEEE Spectrum33(6):61-67, 1996.

[9] E. Clarke and J. Wing. Formal methods: State of the art and
future directionsACM Computing Survey28(4):626-643,
1996.

[10] U. C. Council. Ansi/ucc1-2000:u.p.c. symbol specifica
manual. Technical report, American National Standards
Institute, 2000.

[11] C. Elliott and P. Hudak. Functional reactive animatibmn
Proceedings of the ACM SIGPLAN International Conference
on Functional Programming (ICFP '97yolume 32(8),
pages 263-273, 1997.

[12] N. HalbwachsSynchronous Programming of Reactive
SystemsKluwer Academic Publishers, 1993.

[13] G. HolzmannDesign and Validation of Computer Protocols
Prentice-Hall, Englewood Cliffs, New Jersey, 1991.

[14] T. Kistler and M. Franz. A tree-based alternative tajav
byte-codeslnternational Journal of Parallel Programming
27(1):21-34, January 1999.

[15] C. C. L. Clausen, U. Oagh-Schultz and G. Muller. Java
bytecode compression for low-end embedded systA@y]
Transactions on Programming Languag@2(3):1-19, May
2000.

[16] W. Pugh. Compressing java clas files AGM Sigplan
Conference on Programming Language Design and
Implementationpages 247-258. ACM Press, 1999.

[17] C. Stork and V. Haldar. Compressed abstact syntax fozes
mobile code. IrProceeding of Workshop on Intermediate
Representation Engineering001.

[18] Z. Wan, W. Taha, and P. Hudak. Real-time FRP. In
International Conference on Functional Programming
(ICFP '01), Florence, ltaly, September 2001.

[19] J. Zivand A. Lempel. Compression of individual sequesnc
via variable-rate coding. IEEE Transactions Information
Theory, 24(5):530-536, 1978.

