
Hedging bets in Markov decision processes∗

Rajeev Alur1, Marco Faella2, Sampath Kannan3, and Nimit
Singhania4

1 University of Pennsylvania
alur@cis.upenn.edu

2 Università di Napoli “Federico II”, Italy
m.faella@unina.it

3 University of Pennsylvania
kannan@cis.upenn.edu

4 University of Pennsylvania
nimits@seas.upenn.edu

Abstract
The classical model of Markov decision processes with costs or rewards, while widely used to
formalize optimal decision making, cannot capture scenarios where there are multiple objectives
for the agent during the system evolution, but only one of these objectives gets actualized upon
termination. We introduce the model of Markov decision processes with alternative objectives
(MDPAO) for formalizing optimization in such scenarios. To compute the strategy to optimize
the expected cost/reward upon termination, we need to figure out how to balance the values of the
alternative objectives. This requires analysis of the underlying infinite-state process that tracks
the accumulated values of all the objectives. While the decidability of the problem of computing
the exact optimal strategy for the general model remains open, we present the following results.
First, for a Markov chain with alternative objectives, the optimal expected cost/reward can be
computed in polynomial-time. Second, for a single-state process with two actions and multiple
objectives we show how to compute the optimal decision strategy. Third, for a process with only
two alternative objectives, we present a reduction to the minimum expected accumulated reward
problem for one-counter MDPs, and this leads to decidability for this case under some technical
restrictions. Finally, we show that optimal cost/reward can be approximated up to a constant
additive factor for the general problem.
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1 Introduction

The mathematical model of Markov decision processes (MDP) is suitable for modeling
decision making in situations where the evolution of a system is partly probabilistic and
partly controlled by strategic choices. To define the notion of an optimal strategy we need to
associate costs (or equivalently, rewards) with an execution of an MDP. Traditionally, this
is done by associating a numerical value with each action in each state, and the cost of a
terminating execution is the sum of the costs of all the decisions made along the way. The
optimization problem then is to minimize the expected cost (or equivalently, maximize the

∗ This research was partially supported by NSF Expeditions award CCF 1138996.

© Rajeev Alur, Marco Faella, Sampath Kannan and Nimit Singhania;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs...
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


XX:2 Hedging bets in Markov decision processes

expected reward) over the set of all strategies. It is well known that there exists a memoryless
optimal strategy, where-in the globally optimal decision at any step during an execution is a
function of the current state, and the optimization problem can be solved in polynomial-time
using linear programming [3].

While this classical framework is used in a variety of disciplines such as optimal control,
finance, and robotic motion planning, it cannot capture scenarios where there are multiple
objectives to optimize but only one of these gets realized in the end. This occurs commonly
in real life situations, when there are multiple goals only one of which is achieved in the
end. Examples of such scenarios include a candidate applying for jobs, a student applying
to schools or a company marketing its product to different audiences. As an illustrative
scenario, imagine a venture capitalist (VC) investing in pharmaceutical research, where there
are multiple companies all competing to develop a vaccine for malaria. At each point in time,
the investor has several choices for how much to invest in each company’s research. When
one company succeeds in creating the vaccine, it patents the discovery and the investor reaps
financial benefits proportional to the total amount (s)he has invested in that company, but
does not get any reward for investments in the other companies. We can model the evolution
of the system as an MDP. Each state of the system corresponds to the current conditions of
all the companies. In each state, each company has a probability of succeeding resulting in
termination, or the system continues to evolve probabilistically, partially influenced by the
VC’s investment choice.

The optimal investment strategy is not immediately obvious and is contingent on the
company that succeeds in creating the vaccine. Particularly, it depends on the dynamics of
the competition and how investment influences each company. If the competition is positive
where investing in one firm boosts the other companies to improve their research, then
spreading the investment to each firm is optimal. Whereas, if the competition is negative
and investing in one firm demotivates others, then investing in a single best firm is optimal.
Note that an objective here is to improve the research of a company and depending on the
dynamics, the VC might decide how to balance optimization of every objective.

This scenario can be represented in our formal model of MDPs with alternative objectives,
where the MDP is augmented with a set of registers corresponding to the different objectives.
At each step, based on the current state and the chosen action, each register is updated
by a specified integer amount. Then, following action-dependent transition probabilities,
the process either continues in another state or terminates. When terminating, the value of
one of the registers is probabilistically chosen as the cost/reward of the whole path. The
optimization problem then is to minimize the expected cost or equivalently, maximize the
expected reward upon termination over the set of all strategies. In this work, we focus on
costs and minimization of the expected cost.

It turns out that for an MDP with alternative objectives, the optimal decision at any
step depends not only on the current state but also on the register values. Since the space of
register values is unbounded, analysis is challenging. For a Markov chain (that is, an MDP
with a single action), we show that the expected cost in a given state is a linear function
of the register values, whose coefficients can be computed in polynomial-time by solving a
system of linear equations (see Section 4).

For an MDP, the optimal expected cost is no longer a linear function of the register values.
To solve this general case, in Section 7, we present an approximation algorithm that can
approximate the optimal expected cost with a specified error ε in pseudo-polynomial time,
that is, polynomial in the number of states, actions, and the binary encoding of probabilities
and ε, but exponential in the number of registers and binary encoding of register updates.
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We present exact solutions for two special cases: systems with a single state and two
actions (Section 5), and two-register systems with an arbitrary number of states and actions,
subject to a mild condition (Section 6).

For systems with a single state and two actions, we observe that the choice of the optimal
action depends on a linear function P of register values with one action being optimal when
P is positive and the other action when P is negative or zero. Moreover, only a finite number
of distinct values for P needs to be taken into account, so that the minimal cost problem
can be solved by a reduction to a Markov chain with alternative objectives.

When instead the input system has only two registers, we show that optimal strategies
only need to track the difference between register values, allowing us to relate our model
to one-counter MDPs of Bradzil et al. [6, 5]. However, this is not sufficient to achieve
decidability, as the corresponding problem for one-counter MDPs has not been solved either.
If the input system is additionally tie-less (as defined in Section 6), optimal strategies issue
the same action whenever the difference between the registers is greater, in absolute value,
than a certain threshold. Thanks to this property, we can reduce our problem to a bounded
number of expected accumulated reward problems for probabilistic one-counter automata,
which are analogous to one-counter MDPs with a single action. Since the latter problem is
decidable, we obtain decidability of our original question.

The exact solution for the general case of MDPs with alternative objectives, even estab-
lishing decidability, remains an open problem.

Related work.

Optimization problems for MDPs with different cost criteria have been studied extensively
(see [10] for an overview and [11] for applications to computer-aided verification), but we are
not aware of existing results directly relevant to the model we propose. A closely related
model is that of MDPs with multiple objectives (see [12] for an overview), where multiple
objectives similar to our model are associated with the MDP. These objectives are mixed
together via a scalarization function to get the final expected cost/reward, which does not
correspond to choosing a single cost/reward based on the final state that we want to model.

Our model with alternative costs is a special case of cost register automata that associate
numerical costs with strings [1], and for such automata, optimization in a two-player game
(without probabilistic transitions) is solvable in PSPACE [2]. Optimization problems for
MDPs where the state-space is augmented with an unbounded counter have been studied
recently [6, 5, 8]. The reduction of the special case of our model considered in Section 6 has
similar state-space, but is different since the cost upon termination is proportional to the
counter value.

2 Model

We describe here the model of Markov decision processes with alternative objectives (MDPAO).
As in a traditional MDP, the process consists of a set of states and a set of actions. At a state,
an action is chosen and based on the action, the process probabilistically transitions to the
next state or terminates. Upon termination, the cost of the run of the process is calculated
and this is where our model differs from the standard MDP. The process maintains a set
of registers that start off at some initial values and are updated at every step depending
on the action chosen at the current state. For each register and each action, the update
consists of the addition of some integer, possibly negative, to the register value and upon
termination, the value of one of the registers is probabilistically chosen as the cost. Given an
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Figure 1 Example MDPAO with two registers x and y.

initial state and the initial values for registers, we consider the problem of computing the
minimum expected cost of a run of the process for the optimal choice of actions at each state.

We explain this further using an MDPAO with a single state q, two actions α and β

and two registers x and y as shown in Figure 1. On choosing action α (β), with probability
0.5, the process returns back to q and increments x (y) by 1, and with probability 0.5, it
terminates with value of register x (y) as the cost. A possible path when the process is
started at q with (x, y) = (0, 0) is ρ = (q, (0, 0)) α−→ (q, (1, 0)) β−→ (q, (1, 1)) α−→ x, i.e., the
process returns to q with (x, y) = (1, 0) on choosing α, and then with (x, y) = (1, 1) on
choosing β and finally, it terminates with value of register x = 1 as the cost, on choosing α.

Now we formally define the model. An MDPAOM consists of the following:
Q, a finite set of states.
X, a finite set of registers with V , the set of valuation functions X → Z that map registers
to their values.
Γ, a finite set of actions.
δ : Q× Γ×X → Z, a function that defines the updates to the register values on a state
transition. Note that we use δ(q, α) to refer to a function that maps registers to their
updates on action α at state q.
p : Q × Γ × (Q ∪X) → [0, 1], a function that defines the probability of transition to a
state or termination with a register value, given a state and the action selected at the
state. The probability of transition from q to a state q′ when action α is chosen is given
by p(q, α, q′) and the probability that the process terminates with value of register x as
the cost is given by p(q, α, x). Note that, probabilities of transitions out of a state sum
to 1, i.e.,

∑
q′∈Q p(q, α, q′) +

∑
x∈X p(q, α, x) = 1. We assume that

∑
x∈X p(q, α, x) > 0

for all q ∈ Q and α ∈ Γ to ensure that probability that a process does not terminate
decreases exponentially with the number of steps.

Strategy. A (full) strategy is a function σ : Q+ ×V → Γ, that given a sequence of states
and initial valuation of registers determines the next action to be chosen at the current state.
A path-oblivious strategy is a strategy that only depends on the current state and the current
value of the registers and hence is a function of type σ : Q× V → Γ. Given a strategy, the
choice of action at each state is fixed and the Markov decision process is transformed into a
Markov chain.

Path. A (finite) path ρ = (q0, ν0) α0−→ (q1, ν1) α1−→ . . .
αn−1−−−→ (qn, νn) αn−−→ x, qi ∈ Q,αi ∈

Γ, νi ∈ V, x ∈ X, is a sequence of states, register values and actions chosen such that, for every
transition (qi, νi)

αi−→ (qi+1, νi+1), its probability is greater than 0, i.e., p(qi, αi, qi+1) > 0
and νi+1 = νi + δ(qi, αi), and the path terminates with value of register x with a probability
greater than 0, i.e., p(qn, αn, x) > 0. A path ρ is consistent with a strategy σ if every action
αi chosen in ρ is consistent with σ, i.e., αi = σ(q0q1 . . . qi, ν0). The probability of the process
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following the path ρ is given by Pr(ρ) = (
∏n−1
i=0 p(qi, αi, qi+1))p(qn, αn, x). The cost of the

path ρ is defined as f(ρ) = νn(x).
Cost. Let Πσ(q, ν) be the set of all paths that start in q ∈ Q with register values ν and

are consistent with σ, i.e., Πσ(q, ν) = {ρ|(q0, ν0) = (q, ν), ρ is consistent with σ}. Given an
initial valuation of registers ν and a strategy σ, the expected cost of a run started from a
state q is fσ(q, ν) =

∑
ρ∈Πσ(q,ν) Pr(ρ) · f(ρ).

In the example shown in Figure 1, suppose the process starts with ν(x) = 0 and ν(y) = 0.
For a strategy that always chooses α i.e. σ(qi, ν) = α, the process terminates after k steps with
probability 0.5k and cost k−1 and thus, the expected cost is (0×0.5+1×0.52+2×0.53+. . . ) =
1. Similarly for a strategy that always chooses β, the expected cost is 1. Now for a strategy
that alternately chooses α and β, i.e., σ(q2i, ν) = α and σ(q2i+1, ν) = β, we get a lower
expected cost of 1

3 . In fact, this is the minimum expected cost. Note that, unlike traditional
MDPs, the optimal strategy chooses multiple actions at state q.

Problem. Given an MDPAO M, we consider here the problem of computing the
minimum expected cost of a run ofM started in an initial state q ∈ Q with initial valuation
of registers ν ∈ V. Let f(q, ν) denote this minimum expected cost and σ∗ the optimal
strategy, i.e., f(q, ν) = minσ fσ(q, ν), σ∗ = argminσfσ(q, ν).

Variations of the model. The above model can be further extended as follows. A first
extension is one where the update function δ depends also on the next state, along with the
current state and the action chosen. A second extension is one where, upon termination, the
cost is a non-negative linear combination of register values rather than a single register’s
value. Note that our algorithms generalize to these extensions immediately and to keep the
presentation simple, we describe solutions only for the model defined above.

3 Useful results

We describe here some results that are useful in solving the problem of computing the
minimum expected cost.

We first show that |fσ(q, ν)| is bounded by a linear function of maxx∈X |ν(x)| for all
strategies σ and thus, |f(q, ν)| is bounded by this function. We use this result to compute an
approximation for the minimum expected cost in Section 7 and to prove subsequent results
in this section. Let pM be the maximum probability of continuation and δM be magnitude
of maximum change made to any register, in one step of the process. We state the result in
the following lemma.

I Lemma 1. Given ν ∈ V, for all q ∈ Q and strategies σ,

|fσ(q, ν)| ≤
(

maxx∈X |ν(x)|
1− pM

+ pMδM
(1− pM )2

)
, B(max

x∈X
|ν(x)|),

where pM = maxq∈Q,α∈Γ

(∑
q′∈Q p(q, α, q′)

)
and δM = maxq∈Q,α∈Γ,x∈X |δ(q, α, x)|.

Proof. We claim that for any strategy σ and for all i ≥ 0, the probability that the process
does not terminate in first i steps, pi is bounded by piM , the absolute value of any register after
i steps, νi is bounded by (maxx∈X |ν(x)|+ iδM ) and thus, the absolute value of the expected
cost paid in the (i+ 1)th step by the process, ci, is bounded by piM (maxx∈X |ν(x)|+ iδM ).

We prove this by induction. It is trivially true when i = 0. Assuming it is true in the ith
step, we prove that it is also true in (i+ 1)th step. Probability that the process continues to
the next step at the (i+ 1)th step at any state and for any action chosen is less than pM
and thus, pi+1 ≤ pipM = pi+1

M . Similarly, the register values can be changed by at most δM
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in a step and thus, the absolute value of registers after (i+ 1) steps must be bounded by
maxx∈X |ν(x)|+ (i+ 1)δM . Note that the absolute value of expected cost paid at a state q
with register values ν′ for an action α is∣∣∑

x∈Γ
p(q, α, x)ν′(x)

∣∣ ≤ (
max
x∈X
|ν′(x)|

)∑
x∈Γ

p(q, α, x) ≤ max
x∈X
|ν′(x)|.

Therefore, ci+1 is bounded by the maximum probability to reach the (i+ 2)th step × the
expected cost paid in the (i+ 2)th step ≤ pi+1

M (maxx∈X |ν(x)|+ (i+ 1)δM ).
Now, the absolute value of the total expected cost of strategy σ is less than

∑∞
i=0 ci ≤∑∞

i=0
(
piM (maxx∈X |ν(x)|+ iδM )

)
. Since the probability of termination in each step is strictly

greater than 0, the maximum probability pM < 1 and the required result follows. J

Next, minimum expected cost f(q, ν) can be expressed recursively using the costs at the
next step, f(q′, ν + δ(q, α)). Let a cost function be a function Q× V → R that maps a state
and valuation of registers to a real valued cost and let the set of cost functions be C. We
define an operator T : C → C as follows.

Tg(q, ν) = min
α∈Γ

(∑
x∈X

p(q, α, x)ν(x) +
∑
q′∈Q

p(q, α, q′)g(q′, ν + δ(q, α))
)

The minimum expected cost function f is a fixed point of this operator, i.e., Tf = f .
In fact, we can show that a strategy σ is an optimal strategy if fσ is a fixed point of T , as
stated in Lemma 2. Our proof for Lemma 2 closely follows the proof by Bertsekas et al in [4]
to show that the recursive equation describing the stochastic shortest path problem has a
unique solution which represents the optimal cost vector. We use this lemma to compute the
optimal strategies in Sections 5 and 6. Another consequence of this lemma is that we can
limit our investigation to path-oblivious strategies, i.e., strategies that only depend on the
current state and the current value of the registers.

I Lemma 2. Given a strategy σ in an MDPAOM, the cost function fσ is a fixed point of
T , i.e., Tfσ(q, ν) = fσ(q, ν) for all q ∈ Q and ν ∈ V, if and only if σ is an optimal strategy
and fσ is the minimum expected cost function.

Proof. To prove this lemma, we show that set of the cost functions, realizable by strategies,
forms a partially ordered set such that the operator T has a unique fixed point in this set.
Since the minimum expected cost function must be the least fixed point of T , any fixed point
of T is the required minimum expected cost function.

For a strategy σ, we define a new operator on cost functions, Tσ : C → C, where Tσg
computes the cost of using strategy σ for one step and then paying the cost as given by g.
Let α = σ(q, ν), we have:

Tσg(q, ν) =
∑
x∈X

p(q, α, x)ν(x) +
∑
q′∈Q

p(q, α, q′)g(q′, ν + δ(q, α))

We also define a complete partial order L on cost functions as follows. Let f>, f⊥ ∈
C be the two cost functions defined by f>(q, ν) = B(maxx∈X |ν(x)|) and f⊥(q, ν) =
−B(maxx∈X |ν(x)|), where B is defined in Lemma 1. Further, g ≤ h, where g, h ∈ C,
if for all q ∈ Q, ν ∈ V , g(q, ν) ≤ h(q, ν). Now, L is a complete partial order for relation ≤ on
the set {g ∈ C | f⊥ ≤ g ≤ f>}. Note that by Lemma 1, for all strategies σ, f⊥ ≤ fσ ≤ f>
and hence fσ ∈ L.

The operators T and Tσ are closed in L, i.e. g ∈ L ⇒ Tg, Tσg ∈ L since Tf> ≤
f>, Tσf> ≤ f> and Tf⊥ ≥ f⊥, Tσf⊥ ≥ f⊥ (by Lemma 1). Further, operators T and Tσ
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are monotonic and continuous, since they apply linear transformations and the minimum
operator on cost functions, which preserve both properties. Hence, by Kleene’s fixed point
theorem, both T and Tσ must have a least fixed point in L given by limk→∞ T kf⊥ and
limk→∞ T kσ f⊥ respectively.

Next, we prove that Tσ has a unique fixed point in L. To prove this, we show that
for all g, h ∈ L, limk→∞ T kσ g(q, ν) = limk→∞ T kσh(q, ν). Note that, T kσ g corresponds to the
expected cost of using strategy σ for first k steps and then terminating with the cost given
by g at the (k + 1)th step. Hence, the difference T kσ g(q, ν)− T kσh(q, ν) corresponds to the
difference in costs paid at the (k + 1)th step, since the cost paid till k steps is same for
both T kσ g(q, ν) and T kσh(q, ν). As described in the proof for Lemma 1, the probability of
the process not terminating in first k steps is bounded by pkM and the magnitude of register
values are bounded by (maxx∈X |ν(x)|+ kδM ). Since g, h ∈ L, we have:

|T kσ g(q, ν)− T kσh(q, ν)| ≤ 2pkMB
(

max
x∈X
|ν(x)|+ kδM

)
.

Note that pkM decreases exponentially with k, whereas B(maxx∈X |ν(x)|+ kδM ) increases
only linearly with k. Hence, limk→∞(T kσ g(q, ν)− T kσh(q, ν)) = 0, and thus Tσ has a unique
fixed point in L.

Now we prove that T has a unique fixed point in L. Suppose T had two fixed points in
L, say f1, f2. Then we can find strategies σ1, σ2 such that Tσ1f1 = f1 and Tσ2f2 = f2 by
using the actions that minimize Tf1 and Tf2 respectively. Further, Tf1 ≤ Tσ2f1 since Tf1
corresponds to the minimum of the costs for different actions, while Tσ2f1 corresponds to
one of these costs. This implies f1 = limk→∞ T kf1 ≤ limk→∞ T kσ2

f1 = f2 and thus, f1 ≤ f2.
By a symmetric argument, f2 ≤ f1. Hence, T must have a unique fixed point in L. The
minimum expected cost f is the least fixed point of T in L and hence, any fixed point of T
in L is the required minimum expected cost. J

Our final result shows that the optimal strategy σ∗ depends only on the relative difference
between the initial register values and not their absolute values. We state it in Lemma 3.
We prove this by showing that f(q, ν + k)− k is also a fixed point of T and hence, must be
equal to f(q, ν). Note that, this result can be used to reduce a model with |X| registers into
a model with |X| − 1 registers. We use it to simplify the problem in Section 6.

I Lemma 3. Given an MDPAOM, for all q ∈ Q, ν ∈ V, k ∈ Z, it holds that f(q, ν + k) =
f(q, ν) + k, where (ν + k)(x) = ν(x) + k for all x ∈ X.

Proof. We use Lemma 2 to prove this. Let g ∈ C be a function such that g(q, ν) =
f(q, ν + k)− k for all q ∈ Q and ν ∈ V . Note that g may not lie in the complete partial order
L as described in the proof for Lemma 2. However if we define the partial order L′ using
f ′> = f>+ |k|(1+ 1

1−pM ) and f ′⊥ = f⊥−|k|(1+ 1
1−pM ), the proof of Lemma 2 still follows and

T must have a unique fixed point in L′. Also g belongs to L′ since |g(q, ν)| ≤ |f(q, ν+k)|+ |k|.
Further,

Tg(q, ν) = T (f(q, ν + k)− k)
= Tf(q, ν + k)− k
= f(q, ν + k)− k
= g(q, ν).

Hence, g is a fixed point of T and thus, by Lemma 2, it must be the minimum expected cost
function f . J



XX:8 Hedging bets in Markov decision processes

4 Markov chains with alternative objectives

We consider a special case of the problem when the set of actions consists of a single action,
i.e. Γ = {α}. Since f is a fixed point for the operator T as defined in Section 3, for all q ∈ Q
and ν ∈ V,

f(q, ν) =
∑
x∈X

p(q, x)ν(x) +
∑
q′∈Q

p(q, q′)f(q′, ν + δ(q)). (1)

The above system of equations may have more than one solutions. However, we show
that f(q, ν) is a linear function of the initial register values ν for all q ∈ Q, as stated in
Lemma 4. The cost incurred by a path ρ consists of two components: the initial value of a
register x, ν(x) and the updates to x along the path which are independent of ν. Also, the
contribution of ν(x) to the expected cost f(q, ν) depends only on the probability with which
paths starting at (q, ν) end in x, which again is independent of ν. Therefore, f(q, ν) must be
linear in ν.

I Lemma 4. Given an MDPAO with a single action, the minimum expected cost f(q, ν) is
linear in ν, i.e., for all q ∈ Q and ν ∈ V, it holds that f(q, ν) =

∑
x∈X aq,xν(x) + f(q, ν0),

where ν0(x) = 0 for all x ∈ X and aq,x is the probability that a path starting at (q, ν) ends in
register x.

Proof. To prove the lemma we show that f(q, ν + δx) = f(q, ν) + aq,xd, where δx(x) = d

and δx(y) = 0 for all y ∈ X \ {x}, for some d ∈ Z. Let ρ = (q0, ν0) α0−→ (q1, ν1) α1−→ . . .
αn−1−−−→

(qn, νn) αn−−→ y and ρ′ = (q0, ν
′
0) α0−→ (q1, ν

′
1) α1−→ . . .

αn−1−−−→ (qn, ν′n) αn−−→ y be paths that follow
the same sequence of states but are started with different valuations of registers ν and ν + δx
respectively. We can see that ν′i = νi + δx for all i, since the same changes are made to
both ν and ν′ along the way. Therefore, if a path ρ′ terminates in x, denoted by ρ′  x,
then f(ρ′) = ν′n(x) = νn(x) + d = f(ρ) + d, and f(ρ′) = f(ρ) otherwise. Also note that
Pr(ρ′) = Pr(ρ).

By definition, f(q, ν + δx) =
∑
ρ′∈Π(q,ν+δx)(Pr(ρ′)f(ρ′)). Since f(ρ′) = f(ρ) + d for all

runs ρ′  x, f(q, ν + δx) = f(q, ν) + d
∑
ρ∈Π(q,ν),ρ x Pr(ρ) which implies f(q, ν + δx) =

f(q, ν) + aq,xd. The required lemma follows immediately. J

Now, from (1) and Lemma 4, we can compute f(q, ν) by solving the following system of
linear equations.

aq,x = p(q, x) +
∑
q′∈Q

p(q, q′)aq′,x

f(q, ν0) =
∑
q′∈Q

p(q, q′)
(∑
x∈X

aq′,xδ(q, x) + f(q′, ν0)
)

The above system consists of |Q| × (|X|+ 1) equations and variables and thus, can be solved
in O(|Q|3|X|3) time using a linear constraint solver.

I Theorem 5. The problem of computing f(q, ν) for q ∈ Q and ν ∈ V for an MDPAOM
with a single action can be solved in O(|Q|3|X|3) time.
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5 Two action single state MDPs with alternative objectives

In this section, we solve the problem for an MDPAO M where Q = {q} and Γ = {α, β}.
To simplify notation, let ax = p(q, α, x), bx = p(q, β, x), a0 = p(q, α, q) and b0 = p(q, β, q).
Further, let the register updates be δα = δ(q, α) and δβ = δ(q, β).

We observe that in this case while the minimum expected cost f(ν) is no longer a linear
function of ν, the choice of optimal action in the optimal strategy does depend on a linear
preference function P of current register values. So if P (ν) ≤ 0 then the optimal action at ν
is α i.e. σ∗(ν) = α, and otherwise σ∗(ν) = β.

To define P , we need to consider the change in preference ∆P on taking actions α and
β. Since P (ν) is a linear function of ν, the change in preference ∆P (δ) = P (ν + δ)− P (ν)
depends only on the change in register values δ. We define ∆P (δ) as follows:

∆P (δ) =
∑
x∈X

(
ax

1− a0
− bx

1− b0

)
δ(x).

Now ∆P (δα) and ∆P (δβ) capture the change in preference on taking the two actions, where
δα and δβ are the corresponding register updates. Depending on whether these values are
positive or negative, we can have four possible scenarios.

To illustrate this further, consider the example shown in Figure 1 which is also an instance
of this model. On choosing α, the process either terminates with value of register x or
increments x and returns to q. Note that if the process does not terminate, the value of x
increases and we are likely to pay a higher cost by choosing α in the next step. Hence, our
preference P to choose β increases. Similarly on choosing β, our preference P to choose β
decreases. This corresponds to the case where ∆P (δα) ≥ 0 and ∆P (δβ) < 0 and the optimal
strategy oscillates between choosing the two actions.

Now we give a concrete definition of the preference function P for the different scenarios
described above. Let fw(ν) be the cost of an infinite sequence of actions given by an infinite
word w = w1w2w3 . . . in {α, β}ω. Note that fαw(ν) =

∑
x∈X axν(x) + a0fw(ν + δα) and

fβw(ν) =
∑
x∈X bxν(x) + b0fw(ν + δβ). We can also compute fαω(ν) by reducingM to a

Markov chain where action α is chosen always, and fαω(ν) =
∑
x∈X

(
axν(x)
1−a0

+ a0axδα(x)
(1−a0)2

)
.

Using this, we can further compute fβαω (ν). We can compute fβω (ν) and fαβω (ν) similarly.
Further, for all infinite words w, the difference fαβw(ν)−fβαw(ν) =

∑
x∈X(((1− b0)ax− (1−

a0)bx)ν(x) + a0bxδα(x)− b0axδβ(x)) and is independent of w. We abbreviate this difference
as fαβ·(ν)− fβα·(ν). We use these quantities to define P (ν) and the optimal strategy σ∗ in
Lemma 6.

I Lemma 6. In a two action single state MDPAOM, if P (ν) ≤ 0, then the optimal strategy
at ν, σ∗(ν) = α and otherwise σ∗(ν) = β, where P (ν) is defined as follows:
1. If ∆P (δα) ≥ 0 and ∆P (δβ) < 0, P (ν) = fαβ·(ν)− fβα·(ν).
2. If ∆P (δα) ≥ 0 and ∆P (δβ) ≥ 0, P (ν) = fαβω (ν)− fβω (ν).
3. If ∆P (δα) < 0 and ∆P (δβ) < 0, P (ν) = fαω (ν)− fβαω (ν).
4. If ∆P (δα) < 0 and ∆P (δβ) ≥ 0, P (ν) = fαω (ν)− fβω (ν).

Proof. To prove this lemma, we show that in each case, fσ∗ is a fixed point of T and then
by Lemma 2, σ∗ is the optimal strategy. To compute the optimal action at ν, we need to
consider the difference between the minimum expected cost on choosing action α and that
on choosing β. This would require us to consider all possible sequences of actions starting
from α and β and compute the expected cost for each sequence, which would be difficult.
However, Lemma 2 helps us break down the problem into recursive cases, and consider only
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a few of sequences of actions for both α and β and whichever leads to a lower cost gives the
desired optimal action. For Cases 1, 2 and 3, we also give alternate proofs, since fσ∗ is only
recursively defined in these cases and a closed form representation is not available.

Case 4 : ∆P (δα) < 0,∆P (δβ) ≥ 0, P (ν) = fαω(ν) − fβω(ν). It is easy to see that
fσ∗(ν) = min(fαω (ν), fβω(ν)). This is because, if α is preferred in the current state at ν, it is
also preferred in all subsequent steps and thus, αω should lead to the minimum expected
cost. Similarly, for β. We need to show that Tfσ∗(ν) = fσ∗(ν) for all ν ∈ V. Suppose
P (ν) ≤ 0. Then, P (ν + δα) ≤ 0 since ∆P (δα) < 0 and thus, fσ∗(ν + δα) = fαω(ν + δα).
Therefore, the cost of taking action α at ν is cα = fαω(ν). If P (ν + δβ) > 0, then the cost
of taking action β, at ν is cβ = fβω(ν) and therefore, Tfσ∗(ν) = min(cα, cβ) = fσ∗(ν). If
P (ν + δβ) < 0, then cβ = fβαω(ν). But we can show that fαω(ν) − fβαω(ν) = fαω(ν) −
fβω(ν) − (fβαω(ν) − fβω(ν)) = P (ν) − b0P (ν + δβ) = (1 − b0)P (ν) − b0∆P (δβ) ≤ 0. This
implies fαω(ν) ≤ fβαω(ν) and therefore, Tfσ∗(ν) = fσ∗(ν). The other case, P (ν) > 0 is
symmetric and thus, σ∗ is the optimal strategy.

Case 1 : ∆P (δα) ≥ 0,∆P (δβ) < 0, P (ν) = fαβ·(ν) − fβα·(ν). Note that the optimal
strategy σ∗ here oscillates between α and β. Thus, the cost fσ∗ can be defined only recursively
and its exact representation can not be known a priori. Therefore, we use the recursive
definition to show that it is the fixed point. We also give an alternate proof based on an
exchange argument for clarity.

We define fσ∗(ν) as follows. If P (ν) ≤ 0, fσ∗(ν) = fασ∗(ν) =
∑
x∈X axν(x)+a0fσ∗(ν+δα)

else, fσ∗(ν) = fβσ∗(ν). We also assume that fσ∗(ν) is the minimum expected cost i.e.
fσ∗(ν) ≤ fw(ν) for all w ∈ {α, β}ω and ν ∈ V. Now we show that Tfσ∗ = fσ∗ . Suppose
P (ν) ≤ 0. Then since ∆P (δβ) < 0, P (ν + δβ) < 0 and fσ∗(ν + δβ) = fασ∗(ν + δβ) or α is
the preferred action at ν + δβ . Thus on taking action β at ν, the cost is cβ = fβασ∗(ν).
Since P (ν) ≤ 0, fαβσ∗(ν) ≤ fβασ∗(ν) and thus, fαβσ∗(ν) ≤ cβ . Further by assumption, cα =
fασ∗(ν) is the minimum expected cost of taking action α at ν and thus, cα ≤ fαβσ∗(ν) ≤ cβ .
Hence Tfσ∗(ν) = min{cα, cβ} = fασ∗(ν) = fσ∗(ν). Further by assumption cα and cβ are
the minimum expected costs of taking actions α and β and thus Tfσ∗(ν) is the minimum
expected cost for all ν. The sub-case when P (ν) > 0 is symmetric and thus, σ∗ is the optimal
strategy.

Alternate proof. We now show a proof based on an exchange argument. Suppose
P (ν) ≤ 0. We can show that every infinite sequence of actions at ν can be transformed to a
sequence starting with action α with a lower expected cost, by exchanging pairs βα with
αβ. Formally, we show that for all infinite sequence of actions βw,, there exists w′ such
that fαw′(ν) ≤ fβw(ν). First, we can show by induction on k that for all k > 0, z ∈ {α, β}ω,
fαβkz(ν) ≤ fβkαz(ν). Base case is implied by P (ν) ≤ 0. Assuming it is true for k − 1, we
show that it holds for k. Since ∆P (δβ) ≤ 0, we can see that P (ν + (k − 1)δβ) ≤ 0 and
thus, fβk−1αβz(ν) ≤ fβkαz(ν). Further, by inductive hypothesis fαβk−1z(ν) ≤ fβk−1αz(ν) for
all z and thus, fαβkz(ν) ≤ fβkαz(ν). Further, we can show that fαβω(ν) ≤ fβω(ν) because,
fαβω (ν)− fβω (ν) =

∑∞
i=0 b

i
0P (ν+ iδβ) ≤ 0. Hence, for infinite sequence of actions, βw, there

is a sequence starting with α that has a lower cost and thus, α must be the optimal action
at ν. Similarly, we can show that when P (ν) > 0, σ∗(ν) = β.

Case 2 : ∆P (δα) ≥ 0,∆P (δβ) ≥ 0, P (ν) = fαβω(ν)− fβω(ν). We again give two proofs,
one based on fixed point and other based on an exchange argument like in Case 1.

We define fσ∗(ν) as follows. If P (ν) > 0, fσ∗(ν) = fβω(ν) else fσ∗(ν) = fασ∗(ν). Also,
like in Case 1, we assume that fσ∗(ν) is the minimum expected cost i.e. fσ∗(ν) ≤ fw(ν)
for all w ∈ {α, β}ω and ν ∈ V. We show that Tfσ∗ = fσ∗ . Suppose P (ν) ≥ 0. Then
P (ν + δβ) ≥ 0, P (ν + δα) ≥ 0, and cα = fαβω(ν), cβ = fβω(ν). Since P (ν) ≥ 0, cα ≥ cβ
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Figure 2 Markov chain conversion of example in Figure 1 when initially ν(x) = 8 and ν(y) = 5
where f(ν) is the expected cost at (q, .75).

and Tfσ∗(ν) = fβω(ν) = fσ∗(ν). Next, suppose P (ν) < 0. Then, if P (ν + δβ) > 0,
cβ = fβω(ν) > fαβω(ν) ≥ cα. If P (ν + δβ) ≤ 0, then cβ = fβαw(ν) for some w ∈ {α, β}ω.
However, fαβw(ν)−fβαw(ν) = fαβω (ν)−fβαβω (ν) = fαβω (ν)−fβω (ν)+fβω (ν)−fβαβω (ν) =
P (ν) − b0P (ν + δβ) = (1 − b0)P (ν) − b0(1 − a0)∆P (δβ) < 0. Thus, cβ > fαβw(ν) ≥ cα =
fασ∗(ν). Hence, Tfσ∗(ν) = fσ∗(ν) for all ν and therefore σ∗ is the optimal strategy.

Alternate proof. We again use an exchange argument to give an alternate proof. First
we show that the the optimal strategy at ν is of the form αkβω for some k ≥ 0. Let
R(ν) = fαβw(ν)− fβαw(ν). Note that ∆R(ν) = (1− b0)∆P (ν). If R(ν) ≥ 0, then by similar
argument as in Case 1, σ∗(ν) = β. In fact, R(ν + iδβ) ≥ 0 and hence, σ∗(ν + iδβ) = β

for all i ≥ 0. Therefore, the optimal sequence of actions at ν is βω or fσ∗(ν) = fβω(ν).
Suppose R(ν) < 0. We show that for each sequence of actions w = w1w2 · · · ∈ {α, β}ω,
fαkβω(ν) ≤ fw(ν) for some k. Let νi represent the value of registers after the sequence of
actions w1w2 . . . wi. Let l = {i | R(νi) ≥ 0, R(νj) < 0 for all j < i}. Thus, l is the first
index such that R(νl) ≥ 0 and for all i < l,R(νi) < 0. From the argument above, cost of
w′ = w1w2 . . . wlβ

ω is lower than that of w. Further, we can show that cost of αkβl−kβω is
smaller than w′. Since R(νj) < 0 for all j < l, every pair βα in w1w2 . . . wl can be exchanged
with αβ to improve the strategy and thus, give the required result. Thus, the optimal
strategy is of the form αkβω for some k ≥ 0.

If P (ν) < 0, fαβω(ν) < fβω(ν) and hence, α is the optimal action at ν. Further, if
P (ν) ≥ 0, then for all k, P (ν + kδα) ≥ 0, thus, fβω(ν) ≤ fαkβω(ν). Therefore, β is the
optimal action at ν and hence, σ∗ is the required optimal strategy.

Case 3 : ∆P (δα) < 0,∆P (δβ) < 0, P (ν) = fαω(ν)− fβαω(ν). This case is symmetric to
Case 2 and can be proven similarly. J

Given a two action single state MDPAOM, we compute the minimum expected cost f(ν)
as follows. We first compute the optimal strategy using Lemma 6, then convert the MDPM
into a Markov chainM′ and useM′ to compute the expected cost. In the conversion, since
the optimal strategy at a state depends on P (ν), we associate this value with each state in
M′. We start with a state annotated with P (ν) and, based on the action chosen, transition
to a state labelled with P (ν + δ), where the registers are incremented by δ. Note that if we
reach a state inM′ such that P (ν) > 0 and ∆P (δβ) ≥ 0, then we always choose β after this
step, and thus transition back to the same state. Similarly when P (ν) ≤ 0 and ∆P (δα) < 0.
Figure 2 shows the transformation of the example in Figure 1 into a Markov chain where
initially, ν(x) = 8 and ν(y) = 5 and f(ν) is the expected cost at state (q, .75).

The converted chain consists of a cycle with
(

L
|∆P (δα)| + L

|∆P (δβ)|

)
nodes, where L is the

least common multiple of |∆P (δα)| and |∆P (δβ)|. Note that the number of nodes is finite only
if L is finite. Further, it might consist of a sequence of O

(
P (ν)
|∆P (δα)|+

P (ν)
|∆P (δβ)|

)
states leading to
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Figure 3 Diagram of the reductions between different models developed in Section 6.

the cycle. Thus, time to compute cost function in the cycle is O
((

L
|∆P (δα)| + L

|∆P (δβ)|

)3
|X|3

)
and f(ν) can be computed in O

((
P (ν)
|∆P (δα)| + P (ν)

|∆P (δβ)|

)
|X|
)
time using the costs in the cycle.

I Theorem 7. The problem of computing f(q, ν) for a two action single state MDPAOM,
i.e., Γ = {α, β} and Q = {q}, can be solved in time

O
( ( L

|∆P (δα)| + L

|∆P (δβ)|

)3
|X|3 +

( P (ν)
|∆P (δα)| + P (ν)

|∆P (δβ)|

)
|X|
)
,

where L is the l.c.m. of |∆P (δα)| and |∆P (δβ)|. Note that if |∆P (δα)|/|∆P (δβ)| is irrational,
then L is infinite.

6 Two register MDPs with alternative objectives

In this section, we tackle the problem for MDPAOs with two registers x, y, and an arbitrary
number of states and actions. Note that by Lemma 3, the optimal strategy depends only
on the relative difference between the registers and the strategy needs to maintain a single
counter that keeps track of the difference between the values of the two registers.

We show the following results in this section. First, we reduce our problem to the
minimum expected accumulated reward problem for one-counter MDPs (OC-MDPs), which
is another decision problem whose decidability status is open. Next, we show that for the
class of tie-less MDPAOs, the optimal strategy is eventually counter-oblivious, i.e., there
exists a natural number k such that in each state the strategy plays in the same way for all
values of the counter higher than k. In turn, this property implies decidability by a reduction
of the corresponding OC-MDP to the expected accumulated reward problem for probabilistic
1-counter automata (p1CAs). This sequence of results is summarized in Figure 3.

6.1 Reduction to one-counter Markov decision processes
The problem of computing the minimum expected cost of a 2-register MDPAO can be easily
reduced to the minimum expected accumulated reward problem for one-counter Markov
decision processes (OC-MDPs) [6, 5]. We employ OC-MDPs with boundary, which means
that the counter value is always non-negative.

A one-counter MDP is a tuple A = (S,Γ,∆0,∆>0) 1, where S is a finite set of control
states, Γ is a finite set of actions, and ∆0, ∆>0 are the transitions, with the intended meaning

1 For technical convenience, our presentation of OC-MDPs includes explicit actions and rewards attached
to transitions. It is straightforward to convert this form to the one of Brádzil et al. [6, 8], where rewards
are represented by a simple reward function.
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that ∆0 applies when the counter is zero and ∆>0 applies otherwise. Each transition is a
tuple of the type:

(source, action, probability, counter update, reward, destination).

So, we have ∆0 ⊆ S×Γ×[0, 1]×{0, 1}×Q+×S and ∆>0 ⊆ S×Γ×[0, 1]×{−1, 0, 1}×Q+×S.
Moreover, for all s ∈ S and γ ∈ Γ, the sum of the probabilities of all transitions in ∆0 (resp.,
∆>0) starting from s and γ is 1. A transition (s, α, p, d, r, s′) ∈ δ>0 signifies that when the
system is in control state s with a positive value of its counter, action α may lead to state s′
with probability p, while updating the counter value from n to n+ d and obtaining reward r.

The reward associated with a finite run is the sum of the rewards of each transition. The
minimum expected accumulated reward problem takes as inputs an OC-MDP, two control
states s, s′, and an initial counter value n, and consists of computing the minimum over all
policies of the expected reward along all runs that start in (s, n) and end in (s′, 0). As usual,
by “computing a value” we mean decide whether such value is smaller than or equal to a
given rational number.

Consider a 2-register MDPAOM with non-negative register updates. In order to convert
it into an OC-MDP, we first restrict the register updates to the values {0, 1}. This can be
easily accomplished by adding more states and splitting a transition with updates (+dx,+dy)
into a sequence of max{dx, dy} transitions with {0, 1} updates. Notice that the newly
added transitions violate the assumption that each transition carries a positive probability
of termination. However, in the resulting system each sequence of k transitions carries a
positive probability of termination, for a bounded k. Hence, the only consequence is a slight
modification to the bound provided by Lemma 1.

Once register updates have been simplified, the reduction is based on the following idea.
Let f(q, x, y) represent the minimum expected cost when the initial state is q and initial
values of registers are given by x and y. By Lemma 3, we know that

f(q, x, y) = f(q, x− y, 0) + y = f(q, 0, y − x) + x. (2)

Clearly, at least one of x− y and y − x is non-negative. By (2), to compute the minimum
expected cost of an arbitrary configuration (q, x, y) it is sufficient to know the minimum
expected cost of all configurations of the type (q, z, 0) and (q, 0, z) for all z ≥ 0. All these
configurations can be encoded by an OC-MDP, whose counter encodes z and whose control
states are pairs (q, r), where r ∈ {x, y} identifies which register has value z. An equivalent
way to look at this encoding is that the counter stores the difference between the register
that currently holds the highest value and the other register, and the flag r encodes which of
the two registers holds the highest value.

It remains to encode the cost structure of the MDPAO. To this purpose, suppose that
we are in the configuration (q, z, 0), for some z ≥ 0 (encoded by the OC-MDP state (q, x)
with counter value z), and we want to simulate the effect of an action γ, which leads to state
q′ with probability p(q, γ, q′) and carries register updates δ(q, γ, x) = dx and δ(q, γ, y) = dy.
Then, Lemma 3 tells us that f(q′, z + dx, dy) = f(q′, z + dx − dy, 0) + dy. So, assuming that
z + dx − dy ≥ 0, the corresponding OC-MDP will move with probability p(q, γ, q′) from
state (q, x) to state (q′, x), while updating the counter from z to z + dx − dy, and gaining an
immediate reward of dy. Two special states called accrue and stop model the termination of
the MDPAO. We restrict the analysis to non-negative register updates so that the rewards
in the OC-MDP will be non-negative too.

Formally, given a 2-register MDPAO M, we define the corresponding OC-MDP A as
follows. The set of control states S comprises pairs (q, r), where q ∈ Q and r ∈ {x, y},
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plus the special states accrue and stop. The actions are the same as in the MDPAO. For
all q, q′ ∈ Q, r ∈ {x, y}, and γ ∈ Γ, the following transitions belong to ∆0 (recall that
δ(·, ·, ·) ∈ {0, 1}):

((q, r), γ, p(q, γ, q′), δ(q, γ, x)− δ(q, γ, y), δ(q, γ, y), (q′, x)) whenever δ(q, γ, x) ≥ δ(q, γ, y)

((q, r), γ, p(q, γ, q′), δ(q, γ, y)− δ(q, γ, x), δ(q, γ, x), (q′, y)) whenever δ(q, γ, x) < δ(q, γ, y)

(accrue, γ, 1, 0, 0, stop)

Similarly, the following transitions belong to ∆>0:

((q, x), γ, p(q, γ, q′), δ(q, γ, x)− δ(q, γ, y), δ(q, γ, y), (q′, x))
((q, y), γ, p(q, γ, q′), δ(q, γ, y)− δ(q, γ, x), δ(q, γ, x), (q′, y))
(accrue, γ, 1,−1, 1, accrue)
(stop, γ, 1,−1, 0, stop)

Moreover, both in ∆0 and in ∆>0 we find the following transitions, where ¬r denotes the
register different from r:

((q, r), γ, p(q, γ, r), 0, 0, accrue) ((q, r), γ, p(q, γ,¬r), 0, 0, stop)

As an example, consider the 2-register MDPAO in Figure 4. To keep the figure readable,
we do not draw the edges connecting each state to the exit nodes x and y, except for action
γ′ from state q3, because the only effect of γ′ is to exit with value x. The corresponding
probabilities are reported in the table on the r.h.s. of the figure. No action modifies register
y, whereas updates to register x appear next to the action name. As an example, for action β
taken from q2 we have p(q2, β, x) = 1/4, p(q2, β, y) = 1/4, and p(q2, β, q1) = 1/2, with register
updates δ(q2, β, x) = 1 and δ(q2, β, y) = 0.

q0

q1q2 q3 x

y

λ1 : 0λ2 : 0

β : +1

γ : +dβ : +1 γ′ : 0

action p(x) p(y)
λ1 ε ε

λ2 ε ε

β 1
4

1
4

γ ε 0
γ′ 1 0

Figure 4 A 2-register MDPAO. Edges are labeled with an action name followed by the update to
variable x. The probabilities of terminating with x or y for each action are reported in the table.

Figure 5 shows a fragment of the corresponding OC-MDP, starting from state (q2, x),
representing the original state q2 when y = 0. Termination of the original MDP in register x
is simulated by moving to accrue. In that state, the counter is repeatedly decremented until
it reaches 0, with each iteration adding 1 to the reward. When the counter reaches 0, the
OC-MDP moves to the final state stop. Termination in register y is simulated by moving
directly to stop, as no further reward needs to be accrued, because we are assuming that
y = 0 and the counter contains the value of register x.

I Theorem 8. Let M be a 2-register MDPAO with non-negative register updates. The
minimum expected cost f(q, 0, 0) inM is equal to the minimum expected accumulated reward
in A from ((q, x), 0) to (stop, 0).
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q2, x

accrue stop

q1, x
∆∗ : β, 1

2 , 1, 0

∆∗ : β, 1
4 , 0, 0 ∆∗ : β, 1

4 , 0, 0

∆>0 : ∗, 1,−1, 1

∆0 : ∗, 1, 0, 0

∆>0 : ∗, 1,−1, 0

Figure 5 A fragment of the OC-MDP corresponding to the MDPAO in Figure 4. Edges report
action, probability, counter update, and reward. The asterisk is used as a wildcard.

The minimum expected accumulated reward problem is a generalization of the minimum
expected termination time problem considered in [8]. Neither problem is known to be
decidable for OC-MDPs, whereas both are solvable in PSPACE for probabilistic 1-counter
automata (p1CAs) [9, 7], which are equivalent to OC-MDPs with a single action. In
Subsection 6.3, we employ the decidability on p1CAs to solve the minimum expected cost
problem on a class of 2-register MDPAOs.

6.2 Tie-less MDPAOs
In this subsection, we introduce the class of tie-less MDPAOs and show that for this class
there exists an optimal strategy that is eventually counter-oblivious.

Note that from equation (2), f(q, x, y) can be computed from f(q, x− y, 0) and thus it
suffices to compute f(q, n, 0), with n ∈ Z. In the following we write f(q, n) as a shortcut for
f(q, n, 0). A simple strategy is a function σ : Q→ Γ and we denote by S the set of all simple
strategies. An ω-strategy is an infinite sequence of simple strategies, i.e., an element of Sω.
Notice that given a full strategy σ, an initial state q and an initial valuation ν there exists
at least one ω-strategy π that is equivalent to it. In particular, it holds fσ(q, ν) = fπ(q, ν).
Hence, in order to compute f(q, 0, 0) it is sufficient to consider ω-strategies rather than full
strategies.

Similarly to Lemma 4, we can show that for all ω-strategies π, fπ(q, n) is a linear function
of n, i.e.: fπ(q, n) = slopeq,x(π) · n + fπ(q, 0), where slopeq,x(π) is the probability that a
path starting at q ends in register x under strategy π. Notice that slopeq,x(π) generalizes
the notation aq,x used in Section 4 to denote the probability of terminating with a specific
register.

In fact, if the same simple strategy σ ∈ S is used at every step (equivalently, the ω-strategy
σω is used), the system becomes equivalent to an MDPAO with a single action and therefore
slopeq,x(σω) can be computed for all q in polynomial time as explained in Section 4. In
particular, the simple strategy α with the minimum x-slope can be found by solving the
following linear program, on the set of variables {aq | q ∈ Q}.

maximize:
∑
q∈Q

aq (3)

subject to: aq ≤ p(q, γ, x) +
∑
q′∈Q

p(q, γ, q′)aq′ ∀ q ∈ Q, γ ∈ Γ

The optimal solution a∗ provides the minimal x-slope in each state. We say that the
MDPAO is x-tie-less if there exists a unique simple strategy α that has the minimum x-slope
from all states q. Equivalently, the MDPAO is x-tie-less if at a∗ exactly one of the constraints
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for each state is tight, i.e., for all q there exists a unique αq ∈ Γ such that

a∗q = p(q, αq, x) +
∑
q′∈Q

p(q, αq, q′)a∗q′ . (4)

We can similarly define the y-slope of a strategy as the probability of terminating in
register y using that strategy. Since runs terminate with probability one, for each strategy
the sum of the x-slope and the y-slope is 1. We then say that the MDPAO is y-tie-less if
there exists a unique simple strategy that has the minimum y-slope (or equivalently the
maximum x-slope) from all states. Finally, the MDPAO is tie-less if it is both x-tie-less and
y-tie-less.

Notice that if an MDPAO is not tie-less then it can be made tie-less by an arbitrarily
small perturbation of its transition probabilities. In contrast, a tie-less MDPAO can be
perturbed by a sufficiently small amount and still be tie-less. So, being tie-less is a robust
property of MDPAOs, whereas its opposite is not. In the following Lemmas 9-12 we assume
that the MDPAO is x-tie-less and α is the simple strategy with minimum x-slope from all
states.

By inspecting the linear program (3), we observe that, for all q ∈ Q, the slope of using α
indefinitely cannot be improved (i.e., lowered) by starting with any other action. This is
formalized by the following result.

I Lemma 9. For all σ ∈ S and q ∈ Q, we have that slopeq,x(σαω) ≥ slopeq,x(αω).

The following lemma extends the previous one from simple strategies to arbitrary ω-strategies.

I Lemma 10. For all π ∈ Sω and q ∈ Q, we have that slopeq,x(π) ≥ slopeq,x(αω).

Proof. First, we prove the result for an ω-strategy that starts with an arbitrary finite prefix
and then switches permanently to α, i.e., a strategy of the form π = ταω, for τ ∈ S∗. We
proceed by induction on |τ |. If |τ | = 0, the result is trivial. Otherwise, τ = τ0τ

′ and the
induction hypothesis guarantees that slopeq,x(τ ′αω) ≥ slopeq,x(αω). Then,

slopeq,x(ταω) = p(q, τ0(q), x) +
∑
q′∈Q

p(q, τ0(q), q′)slopeq′,x(τ ′αω)

≥ p(q, τ0(q), x) +
∑
q′∈Q

p(q, τ0(q), q′)slopeq′,x(αω) by ind. hyp.

= slopeq,x(τ0αω)
≥ slopeq,x(αω) by Lemma 9.

Next, consider an arbitrary ω-strategy π. By contradiction, let q ∈ Q be such that
slopeq,x(αω, q)− slopeq,x(π) = c > 0. Let p0

max be the maximum probability of continuation,
i.e., p0

max = maxq∈Q,γ∈Γ
(
1− p(q, γ, x)− p(q, γ, y)

)
. Clearly p0

max < 1.
One can easily prove the following claim: Let π1, π2 ∈ Sω be two ω-strategies that

coincide on the first k steps. Then, |slopeq,x(π1)− slopeq,x(π2)| ≤ (p0
max)k.

Now, let n > 0 be such that (p0
max)n < c (i.e., n > log c

log p0
max

). It holds

slopeq,x(π≤nαω) ≤ slopeq,x(π) + (p0
max)n < slopeq,x(π) + c = slopeq,x(αω).

This contradicts the above argument for finite prefixes and the thesis follows. J

The following lemma shows that when the initial value of register x grows, the x-slope
of any optimal strategy approaches the minimum possible x-slope, i.e., the x-slope of the
strategy αω. We denote by M an upper bound to |fπ(q, 0)|, for all π and q, as provided by
Lemma 1.
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I Lemma 11. For all q ∈ Q, let (π(k))k∈N be a sequence of ω-strategies s.t. for all k,
fπ(k)(q, k) = f(q, k) (i.e., π(k) is optimal from q and k). We have that limk→∞ slopeq,x(π(k)) =
slopeq,x(αω).

Proof. By Lemma 10, slopeq,x(π(k)) ≥ slopeq,x(αω). We prove that for all ε > 0 there exists
k > 0 such that for all m ≥ k it holds slopeq,x(π(m)) < slopeq,x(αω) + ε. Let k > 2M

ε and
m ≥ k. Assume by contradiction that slopeq,x(π(m)) ≥ slopeq,x(αω) + ε. Then, we have:

fπ(m)(q,m) = slopeq,x(π(m))m+ fπ(m)(q, 0)

≥ slopeq,x(π(m))m−M
≥
(
slopeq,x(αω) + ε

)
m−M

> slopeq,x(αω)m+ ε
2M
ε
−M

= slopeq,x(αω)m+M

≥ fαω (q,m).

This contradicts the fact that π(m) is optimal from q and m, and the thesis follows. J

For a state q, let Sq be the set of simple strategies σ such that σ(q) 6= α(q), and let

cq = min
σ∈Sq

slopeq,x(σαω)− slopeq,x(αω)

= min
γ∈Γ\{α(q)}

(
p(q, γ, x) +

∑
q′∈Q

p(q, γ, q′)slopeq′,x(αω)
)
− slopeq,x(αω).

IfM is x-tie-less then cq > 0 and the following lemma states that for large enough m the
optimal strategy π(m) starts with the action α(q).

I Lemma 12. For all q ∈ Q and m > 2M
cq

, let π(m) be an ω-strategy that is optimal from q

and m. We have that π(m)
0 (q) = α(q).

Proof. According to the proof of Lemma 11, for all m > 2M
cq

it holds slopeq,x(π(m)) <
slopeq,x(αω) + cq. Assume by contradiction that there exists m such that π(m)

0 (q) = γ 6= α(q).
Then, we have

slopeq,x(π(m)) = p(q, γ, x) +
∑
q′∈Q

p(q, γ, q′)slopeq′,x(π(m)
≥1 )

≥ p(q, γ, x) +
∑
q′∈Q

p(q, γ, q′)slopeq′,x(αω) by Lemma 10

≥ slopeq,x(αω) + cq by def. of cq.

This is a contradiction and the thesis follows. J

A series of symmetrical arguments shows that for m � 0, the optimal strategies from
a configuration (q,m, 0) start with the simple strategy that has the maximum x-slope, or
equivalently the minimum y-slope. By combining Lemma 12 and its symmetrical counterpart
for negative m, we obtain the following, where a path-oblivious strategy σ is said to also
be counter-oblivious beyond m if for all m1,m2 ≥ m and all q ∈ Q, it holds σ(q,m1, 0) =
σ(q,m2, 0) and σ(q,−m1, 0) = σ(q,−m2, 0).

I Theorem 13. For all tie-less 2-register MDPAOs, we can compute in polynomial time a
number m such that there exists a strategy that is counter-oblivious beyond m and optimal.
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In the following subsection, Theorem 13 is used to prove computability of the minimum
expected cost.

To conclude this subsection, we show that the property of Lemma 12 does not hold for
general 2-register MDPAOs. The already mentioned MDPAO in Figure 4 is such that the
optimal strategy is not eventually counter-oblivious. This example is inspired by the proof that
approximating the minimum expected termination time of an OC-MDP is computationally
hard [8]. Notice that said MDPAO is not x-tie-less, because both simple strategies σ1 =
{q0 → λ1, q1 → β, q2 → β, q3 → γ′} and σ2 = {q0 → λ2, q1 → β, q2 → β, q3 → γ′} achieve
the minimal x-slope from each state.

When starting from q1 or q2, with register values x� 0 and y = 0, the optimal strategy
consists in staying in the q1q2 loop for some time and then eventually exiting the loop by
choosing action γ in q1. This is because the x-slope of the strategy that stays in the loop is
1/2, smaller than the x-slope of the strategy that exits the loop, which is 1. Later, when the
value of x gets close to 0 and then positive, it becomes convenient to exit the loop, increase x
by d and pay the current value of x. Moreover, depending on parameters d and ε, there is a
specific value k for x at which it is maximally convenient to exit the loop. If the system is in
q1 when x = k, then the optimal strategy picks γ and exits the loop. If instead the system is
in q2, the strategy cannot immediately exit from the loop, so it must either exit the loop at
x = k − 1 or at x = k + 1, whichever gives the least cost.

When starting in q0, the optimal move is the one that ensures that the system will be in
q1 when x strikes the critical value k. Specifically, one can check that for sufficiently small ε
and for d ∈ (5, 5.5) 2 we obtain k = 8, so that the optimal move from (q0,−n, 0) is λ1 when
n is even and λ2 when n is odd.

6.3 From tie-less MDPAOs to probabilistic 1-counter automata

Given a tie-less 2-register MDPAO M and a state q, we reduce its minimum expected
cost problem from (q, 0, 0) to a finite number of expected accumulated reward problems for
probabilistic 1-counter automata (p1CA), each of which is decidable via an encoding in the
existential Theory of Reals [7]. A p1CA is essentially an OC-MDP with a single action, also
equivalent to a probabilistic pushdown automaton with a single stack symbol.

By Theorem 8, let A = (S,Γ,∆0,∆>0) be the OC-MDP equivalent toM. Let n be the
threshold provided by Theorem 13 forM. When looking for an optimal strategy forM, we
can limit our search to strategies that are path-oblivious and counter-oblivious beyond n.
The set of all such strategies has cardinality |Γ||Q|·n, which is doubly exponential in the size
of the original MDPAO.

Given such a strategy σ, we build a single-action OC-MDP Aσ = (S′, {γ},∆′0,∆′>0),
whose expected accumulated reward from a distinguished state is equal to the expected cost
of σ from (q, 0, 0). The automaton Aσ is obtained from A as follows:

By embedding the counter values {0, . . . , n} into the state, i.e., S′ = S × {0, . . . , n}, with
the intended meaning that each enlarged state 〈s, k〉, with k < n, is only visited with
counter value 0 and corresponds to state s with counter value k in A, whereas each
enlarged state 〈s, n〉 with counter value l corresponds to state s and counter value n+ l

in A.

2 A rational register update d can be easily simulated by probabilistically inducing the appropriate convex
combination of the integer updates bdc and dde.
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By modifying the transitions according to the above encoding, while retaining only the
actions chosen by the strategy σ. For instance, consider the enlarged state 〈(q, x), k〉 ∈ S′,
with 0 < k < n, and let α = σ(q, k, 0). Assume that the following transition occurs in
A: ((q, x), α, p, d, r, (q′, x)) ∈ ∆>0. Then, the following occurs in Aσ:

(
〈(q, x), k〉, γ, p, 0,

r, 〈(q′, x), k + d〉
)
∈ ∆′0.

Notice that under our assumptions, d ∈ {−1, 0, 1} and so k + d ∈ {0, . . . , n}. On the
other hand, ∆′>0 contains no transitions starting from 〈(q, x), k〉, because that state is
only intended to be visited with counter value zero.

It is easy to prove by construction that the expected accumulated reward from 〈(q, x), 0〉
in Aσ is equal to the expected cost of σ from (q, 0, 0) inM. Hence, we obtain the following.

I Theorem 14. The minimum expected cost problem for tie-less 2-register MDPAOs with
non-negative register updates is decidable in 2EXPTIME.

7 Approximation algorithm for MDPs with alternative objectives

While computing the minimum expected cost even for simple models proves to be difficult, it
is possible to compute the minimum expected cost in a general MDPAOM up to an additive
error ε given q ∈ Q and ν ∈ V . The idea is to compute the minimum expected cost of paths
of length at most k and for large values of k, we can show that it is close to the actual
minimum expected cost. Let fk(q, ν) be this cost, i.e. fk(q, ν) = minσ

∑
ρ∈Πkσ(q,ν) Pr(ρ)f(ρ)

where Πk
σ(q, ν) is the set of paths of length at most k that start in (q, ν) and are consistent

with σ.
Now, we show a result in Lemma 15 that bounds the difference between the actual cost

f(q, ν) and fk(q, ν) for any positive k. Let δM be the maximum change to a register in a step
in the process and pM be the maximum probability of continuation as defined in Lemma 1.

I Lemma 15. Given a state q ∈ Q and ν ∈ V in an MDPAOM,

−pkMB(max
x∈X
|ν(x)|+ kδM ) ≤ f(q, ν)− fk(q, ν) ≤ pkMB(max

x∈X
|ν(x)|+ kδM ) , z,

where B is a function of δM and pM is described in Lemma 1.

Proof. To prove the lower bound, we split the cost f(q, ν) into two components fk1 , which is
the cost paid in the first k steps, and f∞k+1, the cost paid in the remaining steps. Note that
fk1 ≥ fk(q, ν), since fk(q, ν) is the minimum expected cost of k steps. Further, after k steps,
the probability that the process does not terminate is at most pkM and the register values are
at least −(maxx∈X |ν(x)|+ kδM ). Thus, using Lemma 1, we can see that f∞k+1 > −z which
gives the required lower bound. To show the upper bound, we consider a strategy σ, where
the first k actions minimize the expected cost of paths of length k, and the subsequent actions
are arbitrary. By a similar analysis as above, fσ(q, ν) ≤ fk(q, ν) + z. Also, f(q, ν) ≤ fσ(q, ν)
and hence, we have the required upper bound. J

Now, if we choose k such that z = ε, the difference |f(q, ν)− fk(q, ν)| is bounded by ε
and thus, k is O(| log ε

log pM |). To compute fk(q, ν), we transformM into an MDPM′ with a
node for each state and register valuation possible on paths of length at most k, starting
from (q, ν). Note that there are at most 2kδM + 1 values possible for each register. Therefore,
total number of states inM′ is at most O(|Q|(kδM )|X|). We use dynamic programming to
compute fk(q, ν) by computing the minimum expected cost for i+ 1 steps using the cost for
i steps. We can see that time to compute fk(q, ν) is (|Γ||Q|(| log ε

log pM |δM )O(|X|)).
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I Theorem 16. In an MDPAOM, the minimum expected cost f(q, ν) can be computed up
to an additive error ε in |Γ||Q|(| log ε

log pM |δM )O(|X|) time.

8 Conclusions

We have introduced the model of Markov decision processes with alternative objectives to
analyze situations where there are a number of alternative cost/reward objectives of which
only a single one is actualized upon termination. We believe that the formalization and our
results will find practical applications to planning scenarios with uncertain future rewards.

From a theoretical viewpoint, compared with the existing literature on MDPs, the
optimization problem we have considered has an unusual structure worthy of further research:
the underlying process is finite-state but the optimal choice depends on the infinite set of
cumulative costs. Finding an exact solution for the general case remains an open problem,
and as a next step, we would like to investigate whether it is always the case that two-register
MDPAOs admit optimal strategies that are eventually periodic (see Section 6).
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