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The Net Mechanism: A Partial Converse

Finishing up from last time.
Last time we showed:

Theorem 1 (Net Mechanism Theorem) For any class of counting queries C the Net Mechanism is
(2α, β)-useful for any α such that:

α ≥ 2

εn
log

Nα(C)

β

and:

Theorem 2 For any finite class of counting queries C:

|Nα(C)| ≤ |X|
log |C|
α2

We can now state our utility theorem for the net mechanism.

Theorem 3 NetMechanism(D,C, ε, α2 ) is (α, β)-accurate for any α such that:

α ≥

16 log |X| log |C|+ 2 log
(

1
β

)
εn

1/3

(1)

Equivalently, the required size of the database D is:

n ≥
16 log |X| log |C|+ 4 log

(
1
β

)
εα3

(2)

Proof By Theorem 1, the mechanism is (α, β)-useful for any α such that:

α

2
≥ 2

εn
log

Nα(C)

β

By Theorem 2, it is sufficient to take:

α

2
≥ 8

εn

(
log |X| log |C|

α2
+ log

1

β

)
Solving for α completes the proof.

The accuracy bound we have just proven depends only on the cardinality of the class of functions
C. But this does not seem like the right measure of complexity. What if the class just contains a single
query Q over and over again? And for super-exponentially sized concept classes, the bound we have
proven gives no guarantee. It turns out that we can instead use another measure of function complexity.

Definition 4 (Shattering) A class of predicates P shatters a collection of points S ⊆ X if for every
T ⊆ S, there exists an ϕ ∈ P such that {x ∈ S : ϕ(x) = 1} = T . That is, P shatters S if for every one
of the 2|S| subsets T of S, there is some predicate in P that labels exactly those elements as positive, and
does not label any of the elements in S \ T as positive.
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We can now define our complexity measure for counting queries.

Definition 5 (VC-Dimension) A collection of predicates P has VC-dimension d if there exists some
set S ⊆ X of cardinality |S| = d such that P shatters S, and P does not shatter any set of cardinality
d + 1. We can denote this quantity by VC-DIM(P ). We abuse notation and also write VC-DIM(C)
where C is a class of counting queries, to denote the VC-dimension of the corresponding collection of
predicates.

It turns out that we can essentially replace the log |C| term in the above bounds with VCDIM(C).
Note that for finite concept classes, we always have VCDIM(C) ≤ log |C|, and so this is always a stronger
bound.

We can replace the sampling lemma from last time with the following lemma:

Lemma 6 For any D ∈ N|X | and for any collection of counting queries C, there exists a database D′

of size
|D′| = O(VCDIM(C)log(1/α)/α2)

such that:
max
Q∈C
|Q(D)−Q(D′)| ≤ α

This lemma straightforwardly gives an analogue of Theorem 2:

Theorem 7 For any class of counting queries C:

|Nα(C)| ≤ |X|O(VCDIM(C)log(1/α)/α2)

Finally, we can instantiate Theorem 1 to give our main utility theorem for the Net Mechanism.

Theorem 8 For any class of counting queries C the Net Mechanism is (α, β)-useful for any α such
that:

α ≥ O
(

1

εα2n
(VCDIM(C) log |X| log(1/α) + log 1/β)

)
Solving for α, the Net Mechanism is (α, δ)-useful for:

α = Õ

((
VCDIM(C) logX + log 1/β

εn

)1/3
)

Theorem 8 shows that a database of size Õ( logXVCDIM(C)
α3ε ) is sufficient in order to output a set of

points that is α-useful for a concept class C, while simultaneously preserving ε-differential privacy. If we
were to view our database as having been drawn from some distribution D, this is only an extra Õ( logX

αε )
factor larger than what would be required to achieve α-usefulness with respect to D, even without any
privacy guarantee!

Lets take a step back and restate our net mechanism theorem with different notation.
First let us define the query metric with respect to C:

Definition 9 (Query Metric) With respect to a class of functions C, the query metric dC : N|X | ×
N|X | → R is defined as:

dC(D,D′) = max
Q∈C
|Q(D)−Q(D′)|

Note that with respect to any set of datastructures R on which we can evaluate queries C (i.e. such
that there exists a function EV AL : R×C → R and a convention that Q(r) = Eval(r,Q)) we can abuse
notation and apply the query metric dC to pairs D ∈ N|X | and r ∈ R.
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Definition 10 The α-ball around a point x with respect to a class of queries C is:

Bα(x) = {D ∈ N|X | : dC(x,D) ≤ α}

We recall our definition of useful mechanisms.

Definition 11 A mechanism M : N|X | → R is (α, β)-useful if for every D ∈ N|X |, we have that
Pr[M(D) ∈ Bα(D)] ≥ 1− β.

Recall that with respect to a class of counting queries C, we defined an α-net:

Definition 12 (α-net) An α-net of databases with respect to a class of queries C is a set N ⊂ N|X |

such that for all D ∈ N|X |, there exists an element of the α-net D′ ∈ N such that D ∈ Bα(D′). We
write Nα(C) to denote an α-net of minimum cardinality among the set of all α-nets for C.

We proved:

Theorem 13 (Net Mechanism Theorem) For any class of counting queries C the Net Mechanism
is (2α, β)-useful for any α such that:

α ≥ 2

εn
log

Nα(C)

β

Rephrased:

Theorem 14 (Net Mechanism Theorem Rephrased) For any class of counting queries C, if α is
such that:

|Nα(C)| ≤ β exp(
εαn

2
)

then there exists an ε-differentially private release mechanism that is (2α, β)-useful with respect to C.

That is, the existence of small nets certifies the existence of accurate private algorithms. Today we
will prove a partial converse of this theorem: the existence of accurate, private algorithms for a class of
queries C certifies that there exist small nets for C.

Theorem 15 If there exists an ε-differentially private mechanism that is (α, β)-useful with respect to a
class of queries C, then:

|N2α| ≤
exp(εn)

1− β

In other words, the accuracy with which answers to queries C can be released while preserving privacy
is closely related to the compressibility of those answers.

To prove the converse theorem, we will consider the following thought experiment. Suppose we have
some subset of databases S ⊂ N|X | of n elements, and we draw a database D ∈ S uniformly at random.
Now, suppose we compute M(D) = y, where M : N|X | → R is some ε-differentially private mechanism.
What is the posterior probability of having selected D ∈ S conditioned on seeing the output y of the
mechanism?

Lemma 16 Let S ⊂ N|X | be some subset of databases such that for all D ∈ S, |D| ≤ n. If D ∈ S is
drawn uniformly at random, then for all D′ ∈ S and for all y ∈ R:

Pr[D = D′|M(D) = y]

Pr[D = D′]
≤ exp(εn)
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Proof

Pr[D = D′|M(D) = y]

Pr[D = D′]
=

Pr[M(D) = y|D = D′]

Pr[M(D) = y]

≤ Pr[M(D) = y|D = D′]

Pr[M(D) = y|D = D∗]
For some D∗ ∈ S

≤ exp(ε‖D −D∗‖1)

≤ exp(εn)

The equality follows from Bayes rule. The first inequality follows from averaging, the second follows
from the definition of differential privacy, and the last inequality follows from the fact that all databases
in S are at distance at most n.

Corollary 17 If D ∈ S is drawn uniformly at random, then for any subset of databases T ⊆ S, and for
all y ∈ R:

Pr[D ∈ T |M(D) = y] ≤ exp(εn) · |T |
|S|

Proof

Pr[D ∈ T |M(D) = y] =
∑
D′∈T

Pr[D = D′|M(D) = y]

≤ exp(εn)
∑
D′∈T

Pr[D = D′]

= exp(εn) Pr[D ∈ T ]

= exp(εn) · |T |
|S|

where the inequality follows from Lemma 16.

We will now argue that due to the accuracy of the mechanism, the set Bα(y) ∩ S is in expectation
large with respect to the choice of y.

Lemma 18 Let S ⊂ N|X | be some subset of databases such that for all D ∈ S, |D| ≤ n. If D ∈ S is
drawn uniformly at random and y is drawn according to M(D), then:

Ey[Pr
D

[D ∈ Bα(y) ∩ S|M(D) = y]] ≥ 1− β

Proof The accuracy guarantee of the mechanism promises that for all D ∈ S, Pry[D ∈ Bα(y)] ≥ 1−β.
Of course we always have D ∈ S. In particular:

1− β ≤ Pr
D,y

[D ∈ Bα(y) ∩ S]

=
∑
y′∈T

Pr
D

[D ∈ Bα(y′) ∩ S|M(D) = y′] Pr
y

[y = y′]

= Ey[Pr
D

[D ∈ Bα(y) ∩ S|M(D) = y]]

On the other hand, we know:

Ey[Pr
D

[D ∈ Bα(y) ∩ S|M(D) = y]] ≤ exp(εn)Ey

[
|Bα(y) ∩ S|
|S|

]
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So putting these two facts together, we know:

Ey[|Bα(y) ∩ S|] ≥ (1− β)
|S|

exp(εn)

Of course, whenever D ∈ Bα(y), for any D′ ∈ Bα(y) we also have: D′ ∈ B2α(D) (by the triangle
inequality). Therefore we have proven:

Theorem 19 If there exists an ε-differentially private mechanism that is (α, β)-useful with respect to a
class of counting queries C, then the following holds. For any subset of databases S ⊂ N|X |, when D is
selected uniformly at random from S:

ED[|B2α(D) ∩ S|] ≥ (1− β)
|S|

exp(εn)

We can now finish up our theorem. We need one more definition.

Definition 20 (α-packing) A set P ⊂ N|X | is an α-packing if for all D,D′ ∈ P : D 6∈ Bα(D′). We
write Pα(C) to denote the α-packing of maximum cardinality.

To complete the proof, we can relate the size of packings and nets:

Lemma 21
Nα/2(C) ≥ Pα(C) ≥ Nα(C)

Proof For the first inequality: by definition, for each D ∈ Pα(C), there is some x ∈ Nα/2(C)
such that dC(D,x) ≤ α/2. For each D,D′ ∈ Pα(C), these x, x′ must be distinct, because d(x,D′) ≥
d(D,D′)− d(x,D) > α− α/2 > α/2.

For the second inequality: Let N = Pα(C). Suppose N is not an α-net: i.e. there is some D ∈ N|X |

such that for all D′ ∈ N : D 6∈ Bα(D′). Then Pα(C) ∪ D is still an α-packing, contradicting the fact
that Pα(C) is a maximum cardinality packing. Therefore |Nα(C)| ≤ |N | = |Pα(C)|

Finally, to complete the proof:
Proof [of Theorem 15] Let S = P2α(C). By definition, for all D ∈ S: |B2α(D)∪S| = 1. We also know:

1 = ED[|B2α(D) ∩ S|] ≥ (1− β)
|P2α(C)|
exp(εn)

≥ (1− β)
|N2α(C)|
exp(εn)

So:

N2α(C) ≤ exp(εn)

1− β
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