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Differential Privacy and Mechanism Design

In this lecture, we’ll give a brief introduction to mechanism design, and see how differentially private
mechanisms can be used as a building block in building truthful mechanisms.

We’ll start with the very simple example of a single item auction. Suppose an auctioneer has a single
item for sale. Bidders i ∈ [n] each have a private valuation for the item vi. If a bidder i wins the item,
but must pay pi dollars, then his total utility is ui = vi − pi. Bidders are rational, and will act to
maximize their utility. As mechanism designers, we get to design the auction rule to achieve some goal.
Suppose we want to maximize social welfare: to allocate the item to the person who wants it the most.
Consider the following simple auction rule:
FirstPrice:

1. Each bidder i submits a bid bi.

2. i∗ = arg maxi∈[n] bi

3. Allocate the item to bidder i∗ in exchange for payment pi∗ = bi∗

How should rational bidders behave? Its not clear...

Example 1 Suppose n = 2 and v1 = 10, v2 = 4. Truthful bidding is not optimal: it results in 1 winning
the item and getting utility u1 = 10 − 10 = 0. If 2 bids 4, then 1 should bid 4 + ε... But 2 might also
shade his bid.. What if they don’t know each others value?

As we see, it is not at all clear how agents will bid. Without knowing how the agents bid, we can’t say
anything about the performance of the mechanism! It allocates the item to the person who reported the
highest value, but this might not be the person with the highest value...
SecondPrice:

1. Each bidder i submits a bid bi.

2. i∗ = arg maxi∈[n] bi

3. i∗2 = arg maxi∈[n]\{i∗} bi

4. Allocate the item to bidder i∗ in exchange for payment pi∗ = bi∗2

Unlike FirstPrice, it is always in each persons best interest to truthfully report bi = vi in secondprice.
Write b−i to denote the set of all bids bj for j 6= i.

Claim 1 For all i, b−i ∈ Rn−1, b′i ∈ R:

ui(SecondPrice(bi, b−i)) ≥ ui(SecondPrice(b′i, b−i))

Proof By case analysis

We have just shown that SecondPrice is truthful or incentive compatible. It is always in each person’s
best interest to bid their true value. Therefore, because it allocates the item to the individual with the
highest reported valuation, if agents are rational, it also succeeds in allocating the item with the highest
true valuation, which was our objective.

Of course, we needed to introduce payments to make the above mechanism truthful. What do we do
if, as in many situations (elections, public works, organ transplants, ...) payments are not allowed?

Lets now make some general definitions.
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Definition 2 (The Environment) An environment is determined by:

1. A set N of n players.

2. A set of types Ti for each player i ∈ N . (e.g. values vi in the auction setting)

3. A finite set S of social alternatives (e.g. allocations in the auction setting)

4. A set of reactions Ri for each player i ∈ N .

5. A utility function ui : Ti × S ×Ri → [0, 1] for each agent i.

We write T−i for
∏
j 6=i Ti and t−i ∈ T−i. Write ri(t, s, R̂i) ∈ arg maxr∈R̂i ui(t, s, r) to denote i’s optimal

reaction to type t and alternative s among choices R̂i ⊆ Ri.

A direct revelation mechanism M defines a game which is played as follows:

1. Each player i reports a type t′i ∈ Ti.

2. The mechanism chooses an alternative s ∈ S and a subset of reactions for each player R̂i ⊆ Ri.

3. Each player chooses a reaction ri ∈ R̂i and experiences utility ui(ti, s, ri).

Agents play so as to maximize their own utility. Note that since there is no further interaction after the
3rd step, rational agents will pick ri = ri(ti, s, R̂i), and so we can ignore this as a strategic step. Let
Ri = 2Ri and let R =

∏n
i=1Ri. Then a mechanism is a randomized mapping M : T → S × R. We

denote agents expected utilities for reporting a type t′i when all other agents report type t′−i as:

ui(ti,M(t′i, t
′
−i)) = Es,R̂i∼M(t′i,t

′
−i)

[ui(ti, s, ri(ti, s, R̂i))]

We want to design mechanisms that incentivize truthful reporting.

Definition 3 A mechanism M is dominant strategy truthful if for all i ∈ N , ti ∈ Ti and t′−i ∈ T−i:

ui(ti,M(ti, t
′
−i)) ≥ ui(ti,M(t′i, t

′
−i))

It is strictly dominant strategy truthful if for each ti, there exists a t′−i that makes the inequality strict.

i.e. given a truthful mechanism, no rational agent ever has any incentive to lie about his type. We can
also define an approximate version of truthfulness:

Definition 4 A mechanism M is ε-approximately dominant strategy truthful if for all i ∈ N , ti ∈ Ti
and t′−i ∈ T−i:

ui(ti,M(ti, t
′
−i)) ≥ ui(ti,M(t′i, t

′
−i))− ε

For an approximately truthful mechanism, agents may have incentive to lie, but the incentive is only
very small.

Note that it is very easy to design a mechanism that is truthful: we can merely ignore the reported
types, and pick a random alternative s ∈ S. But as mechanism designers, we will also have some
objective that we wish to optimize – e.g. in the auction example, we wished to allocate the item to the
person who desired it the most. A common objective is to maximize the social welfare F : T×S×R→ R
defined to be:

F (t, s, r) =
1

n

n∑
i=1

ui(ti, s, ri)
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Definition 5 A mechanism M α-approximates an objective F if for all t:

Es,R̂∼M[F (t, s, r(t, s, R̂))] ≥ max
t,s,r

F (t, s, r)− α

Ok! Now we can set about designing mechanisms. We will focus on the social welfare objective, but
nothing here will be specific to that. First lets consider unrestricted mechanisms that always output
R̂i = Ri for each player. As differential privacy aficionados, our first attempt at constructing a useful
mechanism might be to select an alternative s ∈ S from the exponential mechanism. Note that the
social welfare objective is 1/n-sensitive, and so the exponential mechanism Mε(t) selects each s ∈ S
with probability proportional to: exp(εnF (t, s, r(t, s)/2)). This mechanism is ε-differentially private, but
what can we say about its incentive properties?

Call a mechanism non-imposing if it always outputs R̂i = Ri. Such a mechanism is a mapping
M : T → S.

Theorem 6 For any ε ≤ 1, a non-imposing mechanism that is ε-differentially private is 2ε approximately
truthful.

Proof Fix any ε-differentially private mechanism M : T → S. For any i, ti, t
′
−i we have:

ui(ti,M(ti, t
′
−i)) = Es∼M(ti,t′−i)

[ui(ti, s)]

=
∑
s∈S

Pr[M(ti, t
′
−i) = s]ui(ti, s)

≥
∑
s∈S

exp(−ε)Pr[M(t′i, t
′
−i) = s]ui(ti, s)

= exp(−ε)ui(t′i,M(ti, t
′
−i))

≥ ui(t
′
i,M(ti, t

′
−i))− 2ε

Of course we also know that the exponential mechanism is pretty accurate as well. Translating our
utility theorem for the exponential mechanism:

Theorem 7 Mε α-approximates the social welfare F for:

α = O

(
1

εn
(log |S|)

)
So this is pretty good already! We have a generic method of designing approximately truthful

mechanisms with good utility guarantees (if n is large enough) for arbitrary type spaces and objective
functions! This is something that does not exist in the mechanism design literature for exact truthfulness.
On the other hand, we might want to do better..

Recall, why did we want truthfulness in the first place? It was because we wanted to guarantee that
optimizing over reported types was as good as optimizing over true types. But if the mechanism is only
approximately truthful, how do we know that the reported types are the true types? Why shouldn’t
agents take their incentive to lie, however small? If we are to be satisfied with approximate truthfulness,
we need further to assume that agents will not lie if given only a small incentive. Perhaps mis-reporting
has some small external cost (guilt?), or perhaps the beneficial lie is difficult to find. In such cases,
perhaps we can stop here. But in other cases, we would like an exactly truthful mechanism.

The idea will be to randomize between a differentially private mechanism with good social welfare
properties (i.e. the exponential mechanism), and a strictly truthful mechanism which punishes false
reporting but which has poor social welfare properties. If we mix correctly, then we will get an exactly
truthful mechanism with reasonable social welfare guarantees.

Here is one such punishing mechanism which is simple, but not necessarily the best for a given
problem:
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Definition 8 The commitment mechanism MP (t′) selects s ∈ S uniformly at random and sets R̂i =
{ri(t′i, s, Ri)}. i.e. it picks a random outcome, and then forces everyone to react as if their reported type
is their true type.

Define the gap of an environment as:

γ = min
i,ti 6=t′i,t−i

max
s∈S

(ui(ti, s, ri(ti, s, Ri))− ui(ti, s, ri(t′i, s, Ri)))

i.e. γ is a lower bound over players and types of the worst-case cost (over s) of mis-reporting. Note
that for each player, this worst-case is realized with probability at least 1/|S|. Therefore we have the
following simple observation:

Lemma 9 For all i, ti, t
′
i, t−i:

ui(ti,MP (ti, t−i)) ≥ ui(ti,MP (t′i, t−i)) +
γ

|S|

Note that the commitment mechanism is strictly truthful: every individual has at least a γ
|S| incentive

not to lie.
This suggests a way to achieve an exactly truthful mechanism that also gets social welfare guarantees:

Definition 10 The punishing exponential mechanism MP
ε (t) defined with parameter 0 ≤ q ≤ 1 is:

1. With probability (1− q) return Mε(t)

2. With probability q return MP (t).

Observe that by linearity of expectation, we have for all ti, t
′
i, t−i:

ui(ti,MP
ε (ti, t−i)) = (1− q) · ui(ti,Mε(ti, t−i)) + q · ui(ti,MP (ti, t−i))

≥ (1− q) (ui(ti,Mε(t
′
i, t−i))− 2ε) + q

(
ui(ti,MP (t′i, t−i)) +

γ

|S|

)
= ui(ti,MP

ε (t′i, t−i))− (1− q)2ε+ q
γ

|S|

= ui(ti,MP
ε (t′i, t−i))− 2ε+ q

(
2ε+

γ

|S|

)
Therefore we have:

Theorem 11 If 2ε ≤ qγ
|S| then MP

ε is strictly truthful.

Note that we also have utility guarantees for this mechanism. Setting the parameter q so that we
have a truthful mechanism:

Es,R̂∼MP
ε

[F (t, s, r(t, s, R̂))] ≥ (1− q) · Es,R̂∼Mε
[F (t, s, r(t, s, R̂))]

=

(
1− 2ε|S|

γ

)
· Es,R̂∼Mε

[F (t, s, r(t, s, R̂))]

=

(
1− 2ε|S|

γ

)
·
(

max
t,s,r

F (t, s, r)−O
(

1

εn
log |S|

))
≥ max

t,s,r
F (t, s, r)− 2ε|S|

γ
−O

(
1

εn
log |S|

)
Setting

ε = O

(√
log |S|γ
|S|n

)
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we find:

Es,R̂∼MP
ε

[F (t, s, r(t, s, R̂))] ≥ max
t,s,r

F (t, s, r)−O

(√
|S| log |S|

γn

)
Note that in this calculation, we assume that ε ≤ γ/(2|S|) so that the q ≤ 1 and the mechanism is well
defined. This is true for sufficiently large n. That is, we have shown:

Theorem 12 For sufficiently large n, MP
ε is α-approximates the social welfare F for:

α = O

(√
|S| log |S|

γn

)

Note that this mechanism is truthful without the need for payments!
Lets now consider an application of this framework: the facility location game. Suppose that a

city wants to build k hospitals to minimize the average distance between each citizen and their closest
hospital. To simplify matters, we make the mild assumption that the city is built on a discretization of
the unit line1. Formally, for all i let:

L(m) = {0, 1

m
,

2

m
, . . . , 1}

denote the discrete unit line with step-size 1/m. |L(m)| = m+ 1. Let Ti = Ri = L(m) for all i and let
|S| = L(m)k. Define the utility of agent i to be:

ui(ti, s, ri) =

{
−|ti − ri|, If ri ∈ s;
−1, otherwise.

Note that ri(ti, s) is here the closest facility ri ∈ s.
We can instantiate Theorem 12. Note that in our case, we have: |S| = (m + 1)k and γ = 1/m

(Because any two positions ti 6= t′i differ by at least 1/m). Hence, we have:

Theorem 13 MP
ε instantiated for the facility location game is strictly truthful and α-accurate for:

α = O

(√
km(m+ 1)k logm

n

)

The exponential dependence on k can be removed by a more careful analysis of the punishment mecha-
nism MP .

Bibliographic Information This lecture is based on a paper of Nissim, Smorodinsky, and Tennenholtz,
“Approximately Optimal Mechanism Design via Differential Privacy,” 2010, which continues a line of
research initiated by the work of McSherry and Talwar, “Mechanism Design via Differential Privacy”,
2007.

1Note that if this is not the case, we can easily raze and then re-build the city.
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