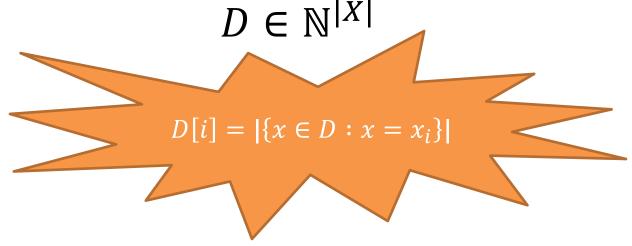
Privacy of Numeric Queries Via Simple Value Perturbation

The Laplace Mechanism

- Let X represent an abstract data universe and D be a multi-set of elements from X.
 - i.e. *D* can contain multiple copies of an element $x \in X$.
- Convenient to represent *D* as a *histogram*:



• i.e for a database of heights

 $-D = \{5'2, 6'1, 5'8, 5'8, 6'0\} \subset [4-8]$ $-D = (\dots, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 1, 0, \dots) \in \mathbb{R}^{48}$

• The *size* of a database *n*:

- As a set: n = |D|.

- As a histogram: $n = ||D||_1 = \sum_{i=1}^{|X|} |D[i]|$

Definition: ℓ_1 (Manhattan) Distance. For $\hat{v} \in \mathbb{R}^d$, $||\hat{v}||_1 = \sum_{i=1}^d |\hat{v}_i|$.

• The *distance* between two databases:

- As a set: $|D\Delta D'|$.

- As a histogram: $||D - D'||_1$

• i.e for a database of heights

 $-D = \{5'2, 6'1, 5'8, 5'8, 6'0\} \subset [4-8]$ $-D = (\dots, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 1, 0, \dots) \in \mathbb{R}^{48}$

 $-D' = (\dots, 2, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, \dots) \in \mathbb{R}^{48}$

$$\begin{aligned} \left| |D| \right|_{1} &= |1| + |2| + |1| + |1| = 5 \\ \left| |D'| \right|_{1} &= |2| + |1| + |1| + |1| + |1| = 6 \\ \left| |D - D'| \right|_{1} &= |-1| + |-1| + |1| = 3 \end{aligned}$$

- How much noise is necessary to guarantee privacy?
- A simple model.

- For simplicity, $D \in \{0,1\}^{|X|}$ (i.e. no repeated elts)

– A query is a bit vector $Q \in \{0,1\}^{|X|}$

$$-Q(D) = \langle Q, D \rangle = \sum_{i:Q[i]=1} D[i]$$

- A "subset sum query"
- For $S \subseteq [n]$ write Q_S for the vector: $Q_S[i] = \begin{cases} 1, & i \in S \\ 0, & i \notin S \end{cases}$

Definition: A mechanism $M: \{0,1\}^n \rightarrow R$ is blatantly non-private if on any database D, an adversary can use y = M(D) to reconstruct D' = A(y) that agrees with D on all but o(n)entries:

$$\left| |D - D'| \right|_1 \in o(n)$$

Answering all subset-sum queries requires linear noise.

Definition: A mechanism $M: \{0,1\}^{|X|} \to R$ adds noise bounded by α if for every $D \in \{0,1\}^{|X|}$ and for every query $S \subseteq [n]: M(D) = y$ such that

$$|Q_S(D) - Q_S(y)| \le \alpha$$

Theorem: Let M be a mechanism that adds noise bounded by α . Then there exists an adversary that given M(D) can construct a database D' such that $||D - D'||_0 \le 4\alpha$

- So adding noise o(n) leads to blatant non-privacy \bigotimes

Proof: Consider the following adversary.

Claim 1: The algorithm always outputs Let r = M(D)some D'. • For each $D' \in \{0,1\}^{|X|}$ Yes: D' = D passes all tests. • If $|Q_S(D') - Q_S(r)| \le \alpha$ for Claim 2: $||D' - D||_0 \le 4\alpha$ all $S \subseteq X$ then: Let $S0 = \{x \in X : x \in D', x \notin D\}$ Output D'Let $S1 = \{x \in X : x \in D, x \notin D'\}$ Observe $||D' - D||_1 = |S0| + |S1|$ So: If $||D' - D||_1^2 > 4\alpha$ then max(|S0|, |S1|) > 2α . WLOG assume $|S0| > 2\alpha$. We know $Q_{S0}(D) = 0$, so by accuracy: $Q_{S0}(r) \le \alpha$. But $Q_{S0}(D') > 2\alpha$, so it must be: $|Q_{S0}(D') - Q_{S0}(r)| > |2\alpha - \alpha| = \alpha$ So it would have failed one of the tests...

- Bad news!
 - Accuracy n/2 is trivial.
 - Accuracy n/40 already lets an adversary reconstruct 9/10ths of the database entries!
- But that attack required answering all possible queries...
 - Guiding lower bound: Going forward, we will only try to be accurate for restricted classes of queries.

Definition: A randomized algorithm with domain $\mathbb{N}^{|X|}$ and range R

 $M\colon \mathbb{N}^{|X|}\to R$

is (ϵ, δ) -differentially private if:

1) For all pairs of databases $D, D' \in \mathbb{N}^{|X|}$ such that $||D - D'||_1 \leq 1$ and, 2) For all events $S \subseteq R$: $\Pr[M(D) \in S] \leq e^{\epsilon} \Pr[M(D') \in S] + \delta$.

Private algorithms *must* be randomized

Resilience to Post Processing

Proposition: Let $M: \mathbb{N}^{|X|} \to R$ be (ϵ, δ) differentially private and let $f: R \to R'$ be an arbitrary function. Then:

$$f \circ M \colon \mathbb{N}^{|X|} \to R'$$

is (ϵ, δ) -differentially private.

Resilience to Post Processing

Proof:

1) Consider any pair of databases $D, D' \in \mathbb{N}^{|X|}$ with $||D - D'||_1 \leq 1$.

2) Consider any event $S \subseteq R'$.

3) Let
$$T \subseteq R$$
 be defined as $T = \{r \in R : f(r) \in S\}$.

Now:

$$\Pr[f(M(D)) \in S] = \Pr[M(D) \in T]$$

$$\leq e^{\epsilon} \Pr[M(D') \in T] + \delta$$

$$= e^{\epsilon} \Pr[f(M(D)) \in S] + \delta$$

Resilience to Post Processing

Take away message:

- f as the adversaries analysis: can incorporate arbitrary auxiliary information the adversary may have. Privacy guarantee holds no matter what he does.
- 2) f as our algorithm: If we access the database in a differentially private way, we don't have to worry about how our algorithm post-processes the result. We only have to worry about the data access steps.

Answering Numeric Queries

 Suppose we have some numeric *question* about the private database that we want to know the answer to:

$$Q: \mathbb{N}^{|X|} \to \mathbb{R}^k. \qquad Q(D) = ?$$

- How do we do it privately?
 - How much noise do we have to add?
 - What are the relevant properties of Q?

Answering Numeric Queries

Definition: The ℓ_1 -sensitivity of a query $Q: \mathbb{N}^{|X|} \to \mathbb{R}^k$ is: $GS(Q) = \max_{D,D': ||D-D'||_1 \le 1} ||Q(D) - Q(D')||_1$

i.e. how much can 1 person affect the value of the query? *"How many people in this room have brown eyes"*: Sensitivity 1 *"How many have brown eyes, how many have blue eyes, how many have green eyes, and how many have red eyes"*: Sensitivity 1 *"How many have brown eyes and how many are taller than 6"*: Sensitivity 2

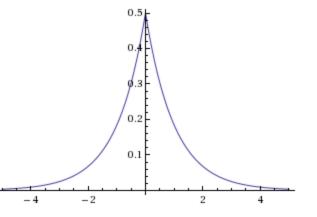
Answering Numeric Queries

The Laplace Distribution:

Lap(b) is the probability distribution with p.d.f.:

$$p(x \mid b) = \frac{1}{2b} \exp\left(-\frac{|x|}{b}\right)$$

i.e. a symmetric exponential distribution $Y \sim \text{Lap}(b), \quad E[|Y|] = b$ $\Pr[|Y| \ge t \cdot b] = e^{-t}$



Answering Numeric Queries: The Laplace Mechanism

Laplace $(D, Q: \mathbb{N}^{|X|} \to \mathbb{R}^k, \epsilon)$: 1. Let $\Delta = GS(Q)$.

2. For
$$i = 1$$
 to k : Let $Y_i \sim \text{Lap}(\frac{\Delta}{c})$.

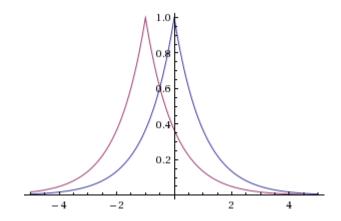
3. Output
$$Q(D) + (Y_1, ..., Y_k)$$

Independently perturb each coordinate of the output with Laplace noise scaled to the sensitivity of the function.

Idea: This should be enough noise to hide the contribution of any single individual, no matter what the database was.

Answering Numeric Queries: The Laplace Mechanism

- Laplace $(D, Q: \mathbb{N}^{|X|} \to \mathbb{R}^k, \epsilon)$: 1. Let $\Delta = GS(Q)$.
- 2. For i = 1 to k: Let $Y_i \sim \text{Lap}(\frac{\Delta}{\epsilon})$.
- 3. Output $Q(D) + (Y_1, ..., Y_k)$



To Ponder

- Where is there room for improvement?
 - The Laplace mechanism adds *independent* noise to every coordinate...
 - What happens if the user asks (essentially) the same question in every coordinate?
 - Read [Dinur,Nissim03]: a computationally efficient attack that gives blatant non-privacy for a mechanism that adds noise bounded by $o(\sqrt{n})$.