
CIS 800/002 The Algorithmic Foundations of Data Privacy November 17, 2011

Lecture 19
Lecturer: Aaron Roth Scribe: Aaron Roth

Streaming Algorithms: Continual Release

In this lecture we consider a different problem in the context of private streaming algorithms. Consider
a stream σ ∈ XT where X ∈ {0, 1}: i.e. each element σi of the stream is a bit. A natural problem is
to privately count the number of 1s in the stream, and to maintain a running count: i.e. to be able to
output a count at every time step of the prefix of the stream seen so far.

Definition 1 A continual observation mechanism on a stream σ ∈ XT is a randomized mapping M(σ) :
N → R such that M(σ)(t) is independent of σi for all i > t.

We are interested in estimating the running count of a stream σ ∈ {0, 1}T . We write:

cσ(t) =

t∑
i=1

σi

and define accuracy with respect to a query cσ:

Definition 2 A continual observation mechanism M(σ) is (α(t), β) accurate for a query cσ : N → R
if except with probability at most β we have for all t ∈ [T]:

|cσ(t)−M(σ)(t)| ≤ α(t)

Note that we will be interested here in event-level privacy: privacy with respect to changing just
a single element of the stream. Since in this case X = {0, 1}, it would not make sense to try and
report a count privately if we considered two streams which differed in an arbitrary number of 1s to be
neighboring...

Let us warm up by considering a couple of simple mechanisms that we might try to solve this problem.
To analyze these, we’ll use a simple analogue of the Chernoff bound for sums of Laplace random variables:

Theorem 3 Suppose Y1, . . . , Yk ∼ Lap(1/ε). Let Y =
∑k
i=1 Yi. Then:

Pr[|Y | ≥ t] ≤ exp

(
−t2ε2

6k

)
In particular:

Pr

|Y | ≥
√

6k log 1
β

ε

 ≤ β
Algorithm1(ε)

Let ε′ ← ε/T
Let c0 ← 0
for t = 1 to T do

Let ct ← ct−1 + σt, νt ← Lap(1/ε′)
Output ct + νt

end for

Ok, this algorithm sucks. We are adding just enough noise to guarantee ε-differential privacy: each
entry σi appears in ≤ T counts c1, . . . , cT , and so we add noise Lap(T/ε) to each count (σ1 actually

19-1

Algorithm2(ε)

Let c0 ← 0
for t = 1 to T do

Let νt ← Lap(1/ε), σ̂t ← σt + νt, ct ← ct−1 + σ̂t,
Output ct

end for

appears in all T counts, so we can’t add less noise). The count ct is never larger than T , but we are
adding noise Lap(T/ε) at every step! We don’t get non-trivial error.

Here is another algorithm that sucks less:
This algorithm is a little better. Note that it still preserves ε-differential privacy: each entry σi

appears only once, in σ̂i, and we add noise Lap(1/ε) to this. Moreover, we have for all t:

ct =

t∑
i=1

σi +

t∑
i=1

νi

So the error of this mechanism at each step t is simply Et = |
∑t
i=1 νi|. By our theorem above, except

with probability β, we have for all t:

|Et| ≤ O

(√
t log t

β

ε

)
This is already non-trivial error! Can we do better? Lets examine the sources of error in the previous

two algorithms. Both of these algorithms work by computing partial sums:

Definition 4 A P -sum is a partial sum of consecutive items. Write:

Σ[i, j] =

j∑
t=i

σt

We can think of both of the algorithms that we have seen as simply releasing a collection of p-sums. Al-
gorithm 1 releases T noisy p-sums Σ̂[1, t] for each t ∈ [T], simply computes M(σ)(t) = Σ̂[i, t]. Algorithm
2 releases T noisy p-sums Σ̂[i, i] for i ∈ [T] and computes M(σ)(t) =

∑t
i=1 Σ̂[i, i].

Suppose an algorithm releases a collection of p-sums such that a single element in the stream can
appear in at most k of the p-sums. Then the sensitivity of the output is k, and to preserve privacy, each
p-sum must be perturbed with noise Lap(k/ε). Suppose further that each answer M(σ)(t) is the sum of
` of these noisy p-sums. Then the error term is at most:

|Et| = |M(σ)(t)− cσ(t)| = |
∑̀
i=1

Lap(k/ε)| ≤ O

(
k

√
` log t

β

ε

)
except with probability β.

Indeed, Algorithm 1 had k = T and ` = 1, and Algorithm 2 had k = 1 and ` = t. So, to develop
an algorithm with lower error, we can simply try and develop a way of releasing a count by combining
partial sums that has a better tradeoff between k and `. This is what the binary mechanism does:

To analyze this algorithm in the p-sum framework, first note that by design, every output is the sum
of at most ` = {i : bi(t) = 1} ≤ log T p-sums. Moreover, each σt is a member of at most a single p-sum
of length 2i for each i, and so is a member of at most k = log T p-sums. Hence, the algorithm preserves
differential privacy, and moveover, except with probability β, we have at each time step the error is at
most:

|Et| = O

(
k

√
` log t

β

ε

)
= O

(
log T

√
log t log t

β

ε

)

19-2

BinaryCount(ε, T)

Let ε′ ← ε/ log T .
for t = 1 to T do

Express t in binary: t =
∑log T
j=1 bj(t) · 2j

Let i← minj : bj(t) 6= 0 be the least non-zero bit of t.
Let ai ←

∑
j<i aj + σt (ai = Σ[t− 2i + 1, t])

For j < i Let aj ← 0, âj ← 0.
Let âi ← ai + Lap(1/ε′).
Output M(σ)(t) =

∑
i:bi(t)=1 âi

end for

Note also that there are never more than log T sums “active” at any one time, and so the algorithm
can be implemented using only log2 T space. Modifications are also possible to remove the need to know
T ahead of time...

Bibliographic Information The content and presentation of this lecture is from Chan, Shi, and Song,
“Private and Continual Release of Statistics”, 2010. Dwork, Naor, Pitassi, and Rothblum also obtain
these results in the same model, together with matching lower bounds in “Differential Privacy under
Continual Observation”, 2010.

19-3

