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The Sparse Vector Technique

We’re going to take a short break from the problem of private query release to develop another funda-
mental technique in differential privacy. Don’t worry – we’ll soon use this to improve our query release
algorithms.

Suppose that a data analyst wants to know the answers to k adaptively chosen, low-sensitivity queries
on a private database. At the moment, the only way we know how to handle adaptively chosen queries
is by using the Laplace mechanism, and paying a cost in our privacy parameter proportional to k (or

√
k

for (ε, δ)-privacy). But what if the data analyst has reason to believe that only a very small number of
his queries (say c of them) will take value above a certain threshold T? Moreover, what if he only cares
about the values of those queries that actually evaluate above the threshold? If he knew which queries
those were, he could ask only the c relevant queries, and pay a privacy cost proportional only to c. The
problem is he doesn’t...

In this lecture, we’ll show an algorithm for answering any sequence of k adaptively chosen low
sensitivity queries, while paying a privacy cost proportional only to those queries that are above a given
threshold T .

Algorithm 1 Input is a private database D, an adaptively chosen stream of sensitivity 1/n queries
Q1, . . ., a threshold T , and a cutoff point c. Output is a stream if answers a1, . . .

Sparse(D, {Qi}, T, c)
Let T̂ = T + Lap

(
2
εn

)
Let σ = 2c

ε·n
Let count = 0
for Each query i do

Let νi = Lap(σ)
if Qi(D) + νi ≥ T̂ then

Output ai = Qi(D) + νi.
Let count = count +1.

else
Output ai = ⊥.

end if
if count ≥ c then

Abort.
end if

end for

Definition 1 (Accuracy) We will say that Sparse is (α, β)-accurate for a sequence of k queries Q1, . . . , Qk,
if except with probability at most β, the algorithm does not abort before Qk, and for all ai ∈ R:

|ai −Qi(D)| ≤ α

and if for all ai = ⊥:
Qi(D) ≤ T + α

.
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Theorem 2 For any sequence of k queries Q1, . . . , Qk such that L(T ) ≡ |{i : Qi(D) ≥ T − α}| ≤ c,
Sparse(T,C) is (α, β) accurate for:

α = 2σ

(
log k + log

2

β

)
=

4c(log k + log(2/β))

εn
.

Proof Observe that the theorem will be proved if we can show that except with probability at most
β:

max
i∈[k]
|νi|+ |T − T̂ | ≤ α

If this is the case, then for any ai ∈ R, we have: |ai −Qi(D)| = |νi| ≤ α, for any ai = ⊥ we have:

Qi(D) + νi ≤ T̂ ≤ T + |T − T̂ |

i.e. Qi(D) ≤ T + |T − T̂ | + |νi| ≤ T + α. We will also have that for any i 6∈ L: Qi(D) < T − α <
T − |νi| − |T − T̂ |, and so: Qi(D) + νi ≤ T̂ , meaning ai = ⊥. Therefore the algorithm does not halt
before k queries are answered.

We now complete the proof.
Recall that if Y ∼ Lap(b), then: Pr[|Y | ≥ t · b] = exp(−t). Therefore we have:

Pr[|T − T̂ | ≥ α

2
] = exp

(
−εnα

4

)
Setting this quantity to be at most β/2, we find that we require α ≥ 4 log(2/β)

εn
Similarly, by a union bound, we have:

Pr[max
i∈[k]
|νi| ≥ α/2] ≤ k · exp

(
−εnα

4c

)
Setting this quantity to be at most β/2, we find that we require α ≥ 4c(log(2/β)+log k)

εn These two claims
combine to prove the theorem.

Theorem 3 The sparse vector algorithm is ε-differentially private.

Proof The output of the algorithm is a ∈ (R ∪ {⊥})t. Write a<i to denote the prefix a1, . . . , ai−1.
We want to show for all neighboring pairs of databases D,D′ and for all output vectors â:

log

(
PrD[a = â]

PrD′ [a = â]

)
=

t∑
i=1

log

(
PrD[ai = âi|â<i]
PrD′ [ai = âi|â<i]

)
≤ ε

Recall that our outputs are either numeric or ⊥. Let N = {i : âi ∈ R} denote the set of indices of the
numeric answers, and let NC = {i : âi = ⊥} denote the indices of the non-numeric answers. Of course:

log

(
PrD[a = â]

PrD′ [a = â]

)
=
∑
i∈N

log

(
PrD[ai = âi|â<i]
PrD′ [ai = âi|â<i]

)
+
∑
i∈NC

log

(
PrD[ai = ⊥|â<i]
PrD′ [ai = ⊥|â<i]

)

We bound the two sums separately. Consider the first sum. By design, |N | ≤ c, since the algorithm
Aborts after c numeric queries. Therefore, by the properties of the Laplace mechanism:∑

i∈N
log

(
PrD[ai = âi|â<i]
PrD′ [ai = âi|â<i]

)
=
∑
i∈N

log

(
Pr[νi = âi −Qi(D)]

Pr[νi = âi −Qi(D′)]

)
≤
∑
i∈N

ε

2c
≤ ε

2
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Now consider the second sum, and simultaneously bound all terms using the independent randomness
we used to select T̂ . Define AZ(D) to be the set of all of the values of the noise variables ν1, . . . , νt which
lead to ai = ⊥ for all i ∈ NC when the mechanism is run on D, conditioning on T̂ = Z and ai = âi for
all i ∈ N . Because the sensitivity of each query is 1/n, we have:

AZ−1/n(D′) ⊆ AZ(D) ⊆ AZ+1/n(D′)

This is because switching from D to D′ can raise the value of each query by at most 1/n, which will
cause each below-threshold query to remain below-threshold if we also raise the threshold by 1/n. Also,
because we selected T̂ by perturbing T from the Laplace distribution, we have:

Pr[T̂ = Z] ≤ exp(ε/2) · Pr[T̂ = Z +
1

n
]

Therefore, we can calculate:∏
i∈NC

Pr
D

[ai = ⊥|â<i] =

∫ ∞
−∞

Pr[T̂ = Z] · Pr[(ν1, . . . , νt) ∈ AZ(D)]dZ

≤ exp
( ε

2

)∫ ∞
−∞

Pr[T̂ = Z +
1

n
] · Pr[(ν1, . . . , νt) ∈ AZ(D)]dZ

≤ exp
( ε

2

)∫ ∞
−∞

Pr[T̂ = Z +
1

n
] · Pr[(ν1, . . . , νt) ∈ AZ+1/n(D′)]dZ

= exp
( ε

2

)∫ ∞
−∞

Pr[T̂ = Z] · Pr[(ν1, . . . , νt) ∈ AZ(D′)]dZ

= exp
( ε

2

) ∏
i∈NC

Pr
D′

[ai = ⊥|â<i]

Therefore we have:∑
i∈NC

log

(
PrD[ai = ⊥|â<i]
PrD′ [ai = ⊥|â<i]

)
= log

( ∏
i∈NC PrD[ai = ⊥|â<i]∏
i∈NC PrD′ [ai = ⊥|â<i]

)
≤ ε

2

which completes the proof.

What did we show in the end? That if we are given a sequence of queries together with a guarantee
that only at most c of them have answers above T −α, we can estimate the answers to every query that
takes value at least T +α to error α, while reporting that all of the others are below this threshold. This
accuracy is equal, up to a factor of log k, to the accuracy we would get, given the same privacy guarantee,
if we knew the identities of these large above-threshold queries ahead of time, and answered them with
the Laplace mechanism. That is, the sparse vector technique allowed us to fish out the identities of these
large queries almost “for free”, paying only logarithmically for the irrelevant queries. This is the same
guarantee that we could have gotten by trying to find the large queries with the exponential mechanism
and then answering them with the Laplace mechanism. This algorithm, however, is trivial to run, and
crucially, allows us to choose our queries adaptively.

If we wanted a guarantee of (ε, δ)-differential privacy, we could make a similar claim by using the

composition theorems1. Specifically, we could have modified the algorithm by selected σ =

√
32c ln 1/δ

εn .
By making a similar argument, but employing our composition theorems, we could have shown:

Theorem 4 The modified sparse vector algorithm is (ε, δ)-differentially private.

1Actually the composition theorems cannot be applied in a black box manner. This is because in our analysis considers
c invocations of the Laplace mechanism under non-trivial conditioning. Nevertheless, a careful analysis shows that similar
bounds do indeed still hold under this conditioning.
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and:

Theorem 5 For any sequence of k queries Q1, . . . , Qk such that L(T ) ≡ |{i : Qi(D) ≥ T −α}| ≤ c, the
modified Sparse(T,C) is (α, β) accurate for:

α = 2σ

(
log k + log

2

β

)
=

√
128c ln 1/δ(log k + log 2/β)

εn
.

Bibliographic Information The sparse vector algorithm and analysis given here is from Hardt and
Rothblum, “A Multiplicative Weights Mechanism for Privacy Preserving Data Analysis”, 2010. Previous
variants on this technique with inferior bounds and privacy guarantees had been used by Dwork, Naor,
Reingold, Rothblum, and Vadhan in “On the Complexity of Differentially Private Data Release”, 2009,
and by Roth and Roughgarden in “Interactive Privacy via the Median Mechanism”, 2010.
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