
Fast Private Data Release Algorithms for Sparse Queries

Avrim Blum∗ Aaron Roth†

November 29, 2011

Abstract

We revisit the problem of accurately answering large classes of statistical queries while preserving
differential privacy. Previous approaches to this problem have either been very general but have not had
run-time polynomial in the size of the database, have applied only to very limited classes of queries,
or have relaxed the notion of worst-case error guarantees. In this paper we consider the large class of
sparse queries, which take non-zero values on only polynomially many universe elements. We give
efficient query release algorithms for this class, in both the interactive and the non-interactive setting.
Our algorithms also achieve better accuracy bounds than previous general techniques do when applied
to sparse queries: our bounds are independent of the universe size. In fact, even the runtime of our
interactive mechanism is independent of the universe size, and so can be implemented in the “infinite
universe” model in which no finite universe need be specified by the data curator.

1 Introduction

A database D represents a finite collection of individual records from some data universe X , which repre-
sents the set of all possible records. We typically think of X as being extremely large: exponentially large
in the size of the database, or in some cases, possibly even infinite. A fundamental task in private data
analysis is to accurately answer statistical queries about a databaseD, while provably preserving the privacy
of the individuals whose records are contained in D. The privacy solution concept we use in this paper is
differential privacy, which has become standard, and which we define in section 2.

Accurately answering statistical queries is the most well studied problem in differential privacy, and the
results to date come in two types. There are a large number of extremely general and powerful techniques
(see for example [BLR08, DNR+09, DRV10, RR10, HT10, HR10]) that can accurately answer arbitrary
families of statistical queries which can be exponentially large in the size of the database. Unfortunately,
these techniques all have running time that is at least linear in the size of the data universe |X | (i.e. pos-
sibly exponential in the size of the database), and so are in many cases impractical. There are also several
techniques that do run in polynomial time, but that are limited: either they can answer queries from a very
general and structurally rich class (i.e. all low-sensitivity queries), but can only answer a linear number
of such queries (i.e. [DMNS06]), or they can answer a very large number of queries, but only from a
structurally very simple class (i.e. intervals on the unit line1 [BLR08]), or as in several recent results (for
conjunction and parity queries respectively) [GHRU11, HRS11] they run in polynomial time, but offer only
average case guarantees for randomly chosen queries. One of the main open questions in data privacy is
∗Department of Computer Science, Carnegie Mellon University, Pittsburgh PA 15213. Email: avrim@cs.cmu.edu
†Department of Computer and Information Science, University of Pennsylvania, Philadelphia PA 19104. Email:

aaroth@cis.upenn.edu
1The algorithm of [BLR08] can be generalized to answer axis-aligned rectangle queries in constant dimension, but this is still a

class that has only constant VC-dimension.

1

to develop general data release techniques comparable in power to the known exponential time techniques
that run in polynomial time. There is evidence, however, that this is not possible for arbitrary linear queries
[DNR+09, UV11, GHRU11].

In this paper, we consider a restricted but structurally rich class of linear queries which we call sparse
queries. We say that a query is m-sparse if it takes non-zero values on only m universe elements, and that
a class of queries is m-sparse if each query it contains is m′ sparse for some m′ ≤ m. We will typically
think of m as being some polynomial in the database size n. Note that although each individual query
is restricted to have support on only a polynomially sized subset of the data universe, different queries in
the same class can have different supports, and so a class of sparse queries can still have support over the
entire data universe. Note that the class of m-sparse queries is both very large (of size roughly |X |m), and
very structurally complex (the class of m-sparse queries have VC-dimension m). Sparse queries represent
questions about individuals whose answer is rarely “yes” when asked about an individual who is drawn
uniformly at random from the data population. Nevertheless, such questions can be useful to a data analyst
who has some knowledge about which segment of the population a database might be drawn from. For
example, a database resulting from a medical study might contain individuals who have some rare disease,
but the data analyst does not know which disease – although there may be many such queries, each one is
sparse. Alternately, a data analyst might have knowledge about the participants of several previous studies,
and might want to know how much overlap there is between the participants of each previous study and of
the current study. In general, sparse queries will only be useful to a data analyst who has some knowledge
about the database, beyond that it is merely a subset of an exponentially sized data universe. Our results can
therefore be viewed as a way of privately releasing information about a database that is useful to specialists
– but is privacy preserving no matter who makes use of it. In general, this work can be thought of as part of
an agenda to find ways to make use of the domain knowledge of the data analyst, to make private analysis
of large-scale data-sets feasible.

1.1 Results

We give two algorithms for releasing accurate answers to m-sparse queries while preserving differential
privacy: one in the interactive setting, in which the data curator acts as an intermediary and must answer
an adaptively chosen stream of queries as they arrive, and one in the non-interactive setting, in which the
data curator must in one shot output a data-structure which encodes the answers to every query of interest.
In the interactive setting, we require that the running time needed to answer each query is bounded by a
polynomial in n, the database size (so to answer any sequence of k queries takes time k · poly(n)). In the
non-interactive setting, the entire computation must be performed in time polynomial in n, and the time
required to evaluate any query on the output data structure must also be polynomial. Therefore, from the
point of view of running time, the non-interactive setting is strictly more difficult than the interactive setting.

In the interactive setting, we give the following utility bound:

Theorem 1.1 (Informal, some parameters hidden). There exists an (ε, δ)-differentially private query release
mechanism in the interactive setting, with running time per query Õ(m/α2) that is α-accurate with respect
to any set of k adaptively chosen m-sparse queries with:

α = O

(
(logm)1/4

(
log 1

δ log k
)1/2

(εn)1/2

)
In the non-interactive setting, we give the bound:

Theorem 1.2 (Informal, some parameters hidden). There exists an (ε, δ)-differentially private query release
mechanism in the non-interactive setting, with running time polynomial in the database size n, m, and

2

log |X |, that is α-accurate with respect to any class of k m-sparse linear queries, with:

α = Õ

log k

√
m log

(
1
δ

)
εn


Several aspects of these theorems are notable. First, the accuracy bounds do not have any dependence

on the size of the data universe |X |, and instead depend only on the sparsity parameter m. Therefore, in
addition to efficiency improvements, these results give accuracy improvements for sparse queries, when
compared to the general purpose (inefficient) mechanisms for linear queries, which typically have accuracy
which depends on log |X |. Since we typically view |X | as exponentially large in the database size, whereas
m is only polynomially large in the database size for these algorithms to be efficient, this can be a large
improvement in accuracy.

Second, the interactive mechanism does not even have a dependence on |X | in its running time! In fact,
it works even in an infinite universe (e.g. data entries with string valued attributes without pre-specified
upper bound on length)2. In this setting, queries may still be concisely specified as a list of polynomially
many individuals from the possibly infinite universe that satisfy the query. Moreover, because the accuracy
of this mechanism depends only very mildly on m, and the running time is linear in m, it can be used to
answer m-sparse queries for arbitrarily large polynomial values of m, where the mechanism is constrained
only by the available computational resources.

The non-interactive mechanism in contrast has a worse dependence on m. This bound essentially
matches the error that would result from releasing the perturbed histogram of the database, but does so
in a way that requires computation and output representation only polynomial in n (rather than linear in
|X|, as releasing a histogram would require). Because accuracy bounds > 1 are trivial, this mechanism
only guarantees non-trivial accuracy for m-sparse queries with m << n2/ log k (This is still of course a
very large class of queries: there are roughly |X |n2/ log k such queries, i.e., super-exponentially many in n).
Nevertheless, there are distinct advantages to having a non-interactive mechanism that only needs to be run
once. This is among the first polynomial time non-interactive mechanisms for answering an exponentially
large, unstructured class of queries while preserving differential privacy.

We note that our results give as a corollary, more efficient algorithms for answering conjunctions with
many literals. This complements the beautiful recent work of Hardt, Rothblum, and Servedio [HRS11], who
give more efficient algorithms for answering conjunctions with few literals, based on reductions to threshold
learning problems.

1.2 Techniques

Our interactive mechanism is a modification of the very general multiplicative weights mechanism of Hardt
and Rothblum [HR10]. We give the interactive mechanism via the framework of [GRU11] which efficiently
maps objects called iterative database constructions (defined in section 3) into private query release mecha-
nisms in the interactive setting. IDC algorithms are very similar to online learning algorithms in the mistake
bound model, and we use this analogy to implement a version of the multiplicative weights IDC of Hardt
and Rothblum [HR10] analogously to how the Winnow algorithm is implemented in the infinite attribute
model of learning, defined by Blum [Blu90]. The algorithm roughly works as follows: the multiplicative
weights algorithm normally maintains a distribution over |X | elements, one for each element in the data

2The algorithm must be able to read a name for each universe element it deals with, and so it can of course not deal with
elements that have no finite description length. But for a (countably) infinite universe, the running time would depend on the length
of the largest string used to denote a universe element encountered during the running of the algorithm, and not in any a-priori way
on the (unboundedly large) size of the universe.

3

universe. It can be easily implemented in such a way so that when it is updated after a query Q arrives, only
those weights corresponding to elements in the support of the query Q are updated: for an m-sparse query,
this means it only need update m positions. It also comes with a guarantee that it never needs to perform
more than log |X |/α2 updates before achieving error α, and so at most m log |X |/α2 elements ever need to
be updated. The key insight is to pick a smaller universe, X̂ , such that X̂ ≥ m log X̂/α2, but not to commit
to the identity of the elements in this universe before running the algorithm, letting all elements be initially
unassigned. The algorithm then maintains a hash table mapping elements of X to elements of X̂ . Elements
inX are assigned temporary mappings to elements in X̂ as queries come in, but are only assigned permanent
mappings when an update is performed. Because only log X̂/α2 updates are ever performed, and X̂ was
chosen such that X̂ ≥ m log X̂/α2, the algorithm never runs out of elements of X̂ to permanently assign.
Because |X̂ | depends only on the desired accuracy α and the sparsity parameter m, and not on X in any
way, the algorithm can be implemented and run without any knowledge of X (even for infinite universes),
and neither the running time nor the resulting accuracy depend on |X |.

The non-interactive mechanism releases a random projection of the database into polynomially many
dimensions, together with the corresponding projection matrix. Queries are evaluated by computing their
projection using the public projection matrix, and then taking the inner product of the projected query
and the projected database. The difficulty comes because the projection matrix projects vectors from |X |-
dimensional space to poly(n) dimensional space, and so normally would take |X |poly(n)-many bits to
represent. Our algorithms are constrained to run in time poly(n), however, and so we need a concise
representation of the projection matrix. We achieve this by using a matrix implicitly generated by a family
of limited-independence hash functions which have concise representations. This requires using a limited
independence version of the Johnson-Lindenstrauss lemma, and of concentration bounds. This algorithm
also gives accuracy bounds which are independent of |X |.

1.3 Related Work

Differential privacy was introduced by Dwork, McSherry, Nissim, and Smith [DMNS06], and has since
become the standard solution concept for privacy in the theoretical computer science literature. There is now
a vast literature concerning differential privacy, so we mention here only the most relevant work, without
attempting to be exhaustive. Dwork et al. [DMNS06] also introduced the Laplace mechanism, which is
able to efficiently answer arbitrary low-sensitivity queries in the interactive setting. The Laplace mechanism
does not make efficient use of the privacy budget however, and can answer only linearly many queries in the
database size.

Blum, Ligett, and Roth [BLR08] showed that in the non-interactive setting, it is possible to answer
exponentially sized families of counting queries. This result was extended and improved by Dwork et al.
[DNR+09] and Dwork, Rothblum, and Vadhan [DRV10], who gave improved running time and accuracy
bounds, and for (ε, δ)-differential privacy gave similar results for arbitrary low sensitivity queries. Roth
and Roughgarden [RR10] showed that accuracy bounds comparable to [BLR08] could be achieved even
in the interactive setting, and this result was improved in both accuracy and running time by Hardt and
Rothblum, who give the multiplicative weights mechanism, which achieves nearly optimal accuracy and
running time [HR10]. Gupta, Roth, and Ullman [GRU11] generalize the algorithms of [RR10, HR10] into
a generic framework in which objects called iterative database constructions efficiently reduce to private
data release mechanisms in the interactive setting. Unfortunately, the running time of all of the algorithms
discussed here is at least linear in |X |, and so typically exponential in the size of the private database.
Moreover, there are both computational and information theoretic lower bounds suggesting that it may be
very difficult to give private release algorithms for generic linear queries with substantially better run time
[DNR+09, UV11, GHRU11]. As in this work, these algorithms give a guarantee on the worst-case error of

4

any answered query.
There is also a small body of work giving more efficient query release mechanisms for specific classes of

queries. [BLR08] gave an efficient (running time polynomial in the database size n) algorithm for releasing
the answers for 1-dimensional intervals on the discretized unit-line in the non-interactive setting. As far as
we know, prior to this work, this was the only efficient mechanism in either the interactive or non-interactive
settings for releasing the answers to an exponentially sized family of queries with worst-case error. This
class is however structurally very simple: it has VC-dimension only 2. Other efficient algorithms relax the
notion of utility, no longer guaranteeing worst-case error for all queries. [BLR08] also give an efficient
algorithm for releasing halfspace queries in the unit sphere, but this algorithm only guaranteed accurate
answers for halfspaces that happened to have large margin with respect to the points in the database. Gupta
et al [GHRU11] gave an algorithm for releasing conjunctions over d attributes to average error α over any
product distribution (over conjunctions), which runs in time dO(1/α). This was improved to have running
time O(dlog 1/α) by Cheraghchi et al. [CKKL11]. Note that these algorithms only run in polynomial time
for constant values of α, and only give accuracy bounds in expectation over random queries. Recently,
Hardt, Rothblum, and Servedio [HRS11] gave an algorithm for releasing conjunctions defined on k out
of d literals with an average-error guarantee for any pre-specified distribution in time dÕ(

√
k). Using the

private boosting algorithm of [DRV10], they leverage this result to give an algorithm for releasing k-literal
conjunctions with worst-case error guarantees, which increases the running time to dÕ(k), although still only
requiring databases of size dÕ(

√
k). They also gave an efficient (i.e. running time polynomial in n) algorithm

for releasing parity queries to low average error over product distributions. We remark that our results give
a complementary bound for large conjunctions (with a better sample complexity requirement). Our online
algorithm can release all conjunctions on d − k out of d literals with worst-case error guarantees in time
dÕ(k), requiring databases of size only Õ(k1.5 log d).

The efficient interactive mechanism we give in section 3 is based on an analogy between iterative
database construction (IDC) algorithms and online learning algorithms in the mistake bound model. We
implement the multiplicative weights IDC of Hardt and Rothblum [HR10] analogously to how Winnow
is implemented in the infinite attribute model of Blum [Blu90]. In our setting, it can be thought of as an
infinite universe model that has no dependence on the universe size in either the running time or accuracy
bounds. This involves running the multiplicative weights algorithm on a much smaller universe. Hardt and
Rothblum [HR10] also gave a version of their algorithm which ran on a small subset of the universe to give
efficient run-time guarantees. The main difference is that we select the subset of the universe that we run
the multiplicative weights algorithm on adaptively, based on the queries that arrive, whereas [HR10] select
the subset nonadaptively, independently of the queries. [HR10] give average case utility bounds for linear
queries on randomly selected databases; in contrast, we give worst-case utility bounds that hold for all input
databases, but only for sparse linear queries.

The efficient non-interactive mechanism we give in section 4 is based on random projections using
families of limited independence hash functions, which have previously been used for space-bounded com-
putations in the streaming model [CW09, KN10]. Limited independence hash functions have also previously
been used for streaming algorithms in the context of differential privacy [DNP+10].

2 Preliminaries

A database D is a multiset of elements from some (possibly infinite) abstract universe X . We write |D| = n
to denote the cardinality of D. For any x ∈ X we can also write D[x] to denote: D[x] = {x′ ∈ D : x′ = x}
the number of elements of type x in the database. Viewed this way, a database D ∈ N|X | is a vector with
integer entries in the range [0, n].

5

A linear query Q : X → [0, 1] is a function mapping elements in the universe to values on the real unit
interval. For notational convenience, we will define Q(∅) = 0. We can also evaluate a linear query on a
database. The value of a linear query Q on a database is simply the average value of Q on elements of the
database:

Q(D) =
1

n

∑
x∈D

Q(x) =
1

n

∑
x∈X

Q(x)D[x]

Similarly to how we can think of a database as a vector, we can think of a query as a vector Q ∈ [0, 1]|X |

with Q[x] = Q(x). Viewed this way, Q(D) = 1
n〈Q,D〉.

It will sometimes be convenient to think of normalized databases (with entries that sum to 1). For
a database D of size n, we define the corresponding normalized database D̂ to be the database such
that D̂[x] = D[x]/n. We evaluate a linear query on a normalized database by computing Q(D̂) =∑

x∈X Q(x)D̂[x] = 〈Q, D̂〉. Note that Q(D) = Q(D̂).

Definition 2.1 (Sparsity). The sparsity of a linear queryQ is |{x ∈ X : Q(x) > 0}|, the number of elements
in the universe on which it takes a non-zero value. We say that a query is m-sparse if its sparsity is at most
m. We will also refer to the class of all m-sparse linear queries, denoted Qm.

In this paper, we will assume that given an m-sparse query, we can quickly (in time polynomial in m)
enumerate the elements x ∈ X on which Q(x) > 0.

Remark 2.2. While the assumption that we can quickly enumerate the non-zero values of a query may
not always hold, it is indeed the case that for many natural classes of queries, we can enumerate the non-
zero elements in time linear in m. For example, this holds for queries that are specified as lists of the
universe elements on which the query is non-zero, as well as for many implicitly defined query classes such
as conjunctions, disjunctions, parities, etc.3 Of course, classes like conjunctions are typically not sparse,
but conjunctions with d − O(log n) literals are, and their support can be quickly enumerated (even though
there are superpolynomially many such conjunctions).

2.1 Utility

We will design algorithms which can accurately answer large numbers of sparse linear queries. We will be
interested in both interactive mechanisms and non-interactive mechanisms. A non-interactive mechanism
takes as input a database, runs one time, and outputs some data structure capable of answering many queries
without further interaction with the data release mechanism. An interactive mechanism takes as input a
stream of queries, and must provide a numeric answer to each query before the next one arrives.

Definition 2.3 (Accuracy for non-Interactive Mechanisms). Let Q be a set of queries. A non-interactive
mechanism M : X ∗ → R for some abstract range R is (α, β)-accurate for Q if there exists a function
Eval : Q × R → R s.t. for every database D ∈ X ∗, with probability at least 1 − β over the coins of
M , M(D) outputs r ∈ R such that maxQ∈Q |Q(D) − Eval(Q, r)| ≤ α. We will abuse notation and write
Q(r) = Eval(Q, r).

M is efficient if both M and Eval run in time polynomial in the size of the database n.

Definition 2.4 (Accuracy for Interactive Mechanisms). LetQ be a set of queries. An interactive mechanism
M takes as input an adaptively chosen stream of queries Q1, . . . , Qk ∈ Q and for each query Qi, outputs an

3The set of conjunctions over the d-dimensional boolean hypercube with d− log(n) literals are n-sparse. Even though there are
superpolynomially many such conjunctions, it is simple to enumerate the entries on which these conjunctions take non-zero value
in time linear in n. We can simply enumerate all of the 2logn = n values that the unassigned variables can take.

6

answer ai ∈ R before receiving Qi+1. It is (α, β)-accurate if for every database D ∈ X ∗, with probability
at least 1− β over the coins of M : maxi |Qi − ai| ≤ α.

M is efficient if the update time for each query (i.e. the time to produce answer ai after receiving query
Qi) is polynomial in the size of the database n.

2.2 Differential Privacy

We will require that our algorithms satisfy differential privacy, defined as follows. We must first define the
notion of neighboring databases.

Definition 2.5 (Neighboring Databases). Two databases D,D′ are neighbors if they differ only in the data
of a single individual: i.e. if their symmetric difference is |D4D′| ≤ 1.

Definition 2.6 (Differential Privacy [DMNS06]). A randomized algorithm M acting on databases and out-
putting elements from some abstract range R is (ε, δ)-differentially private if for all pairs of neighboring
databases D,D′ and for all subsets of the range S ⊆ R the following holds:

Pr[M(D) ∈ S] ≤ exp(ε) Pr[M(D′) ∈ S] + δ

Remark 2.7. For a non-interactive mechanism, R is simply the set of data-structures that the mechanism
outputs. For an interactive mechanism, because the queries may be adaptively chosen by an adversary, R is
the set of query/answer transcripts produced by the algorithm when interacting with an arbitrary adversary.
For a detailed treatment of differential privacy and adaptive adversaries, see [DRV10].

A useful distribution is the Laplace distribution.

Definition 2.8 (The Laplace Distribution). The Laplace Distribution (centered at 0) with scale b is the
distribution with probability density function: Lap(x|b) = 1

2b exp(− |x|b). We will sometimes write Lap(b)
to denote the Laplace distribution with scale b, and will sometimes abuse notation and write Lap(b) simply
to denote a random variable X ∼ Lap(b).

A fundamental result in data privacy is that perturbing low sensitivity queries with Laplace noise pre-
serves (ε, 0)-differential privacy.

Theorem 2.9 ([DMNS06]). Suppose Q : X ∗ → R is a function such that for all neighboring databases D
andD′, |Q(D)−Q(D′)| ≤ c. Then the procedure which on inputD releasesQ(D)+X , whereX is a draw
from a Lap(c/ε) distribution, preserves (ε, 0)-differential privacy.

It will be useful to understand how privacy parameters for individual steps of an algorithm compose into
privacy guarantees for the entire algorithm. The following useful theorem is a special case of a theorem
proven by Dwork, Rothblum, and Vadhan:

Theorem 2.10 (Privacy Composition [DRV10]). Let 0 < ε, δ < 1, and let M1, . . . ,MT be (ε′, 0)-
differentially private algorithms for some ε′ at most:

ε′ ≤ ε√
8T log

(
1
δ

) .
Then the algorithm M which outputs M(D) = (M1(D), . . . ,MT (D)) is (ε, δ)-differentially private.

7

3 A Fast IDC Algorithm For Sparse Queries

In this section we use the abstraction of an iterative database construction that was introduced by Gupta,
Roth, and Ullman [GRU11]. It was shown in [GRU11] that efficient IDC algorithms automatically reduce
to efficient differentially private query release mechanisms in the interactive setting. Roughly, an IDC
mechanism works by maintaining a sequence of data structures D1,D2, . . . that give increasingly good
approximations to the input database D (in a sense that depends on the IDC). Moreover, these mechanisms
produce the next data structure in the sequence by considering only one query Q that distinguishes the real
database in the sense that Q(Dt) differs significantly from Q(D).

Syntactically, we will consider functions of the form U : RU × Q × R → RU. The inputs to U
are a data structure in RU, which represents the current data structure Dt; a query Q, which represents the
distinguishing query, and may be restricted to a certain setQ; and also a real number which estimatesQ(D).
Formally, we define a database update sequence, to capture the sequence of inputs to U used to generate
the database sequence D1,D2,

Definition 3.1 (Database Update Sequence). Let D ∈ N|X | be any database and let{
(Dt, Qt, Ât)

}
t=1,...,T

∈ (RU × Q × R)T be a sequence of tuples. We say the sequence is an

(U,D,Q, α, T)-database update sequence if it satisfies the following properties:

1. D1 = U(∅, ·, ·),
2. for every t = 1, 2, . . . , T , |Qt(D)−Qt(Dt)| ≥ α,
3. for every t = 1, 2, . . . , T ,

∣∣∣Qt(D)− Ât
∣∣∣ < α,

4. and for every t = 1, 2, . . . , T − 1, Dt+1 = U(Dt, Qt, Ât).

Definition 3.2 (Iterative Database Construction). Let U : RU × Q × R → RU be an update rule and let
B : R → R be a function. We say U is a B(α)-iterative database construction for query class Q if for
every database D ∈ N|X |, every (U,D,Q, α, T)-database update sequence satisfies T ≤ B(α).

Note that the definition of an B(α)-iterative database construction implies that if U is a B(α)-iterative
database construction, then given any maximal (U,D,Q, α, T)-database update sequence, the final database
DT must satisfy maxQ∈Q |Q(D)−Q(DT)| ≤ α or else there would exist another query satisfying property
2 of Definition 3.1, and thus there would exist a (U,D,Q, α, T+1)-database update sequence, contradicting
maximality.

B(α)-IDC algorithms generically reduce to (ε, δ)-differentially private (α, β)-accurate query release
mechanisms in an efficiency preserving way. This framework was implicitly used by [RR10] and [HR10].

Theorem 3.3 ([GRU11]). If there exists a B(α)-IDC algorithm for a class of queries Q using a class
of datastructures RU that take time at most p(n, α, |X |) to update their hypotheses, and time at most
q(n, α, |X |) to evaluate a query on any D ∈ RU, then for any 0 < ε, δ, β < 1 there exists an (ε, δ)-
differentially private query release mechanism in the interactive setting that has update time at most
O(p(n, α,X) + q(n, α,X)) and is (α, β)-accurate with respect to any adaptively chosen sequence of k
queries from Q where α is the solution to the following equality:

α =
3000

√
B(α) log(4/δ) log(k/β)

εn

In this section we will give an efficient IDC algorithm for the class of m-sparse queries, and then call on
Theorem 3.3 to reduce it to a differentially private query release mechanism in the interactive setting.

First we introduce the Sparse Multiplicative Weights data structure, which will be the class of datastruc-
turesRU that the Sparse Multiplicative Weights IDC algorithm uses.:

8

Definition 3.4 (Sparse Multiplicative Weights Data Structure). The sparse multiplicative weights data struc-
ture DSMW of size s is composed of three parts. We write DSMW = (D, h, ind).

1. D is a collection of s real valued variables x1, . . . , xs, with xi ∈ [0, 1] for all i ∈ [s]. Variable xi for
i ∈ [s] is referenced by D[i]. Initially xi = 1/s for all i ∈ [s]. We define D[i] = 0 for all i > s.

2. h is a hash table h : X → [s] ∪ ∅ mapping elements in the universe X to indices i ∈ [s]. Elements
x ∈ X can also be unassigned in which case we write h(x) = ∅. Initially, h(x) = ∅ for all x ∈ X We
write h−1(i) = x if h(x) = i, and h−1(i) = ∅ if there does not exist any x ∈ X such that h(x) = i.

3. ind ∈ [s + 1] is a counter denoting the index of the first unassigned variable. For all i < ind, there
exists some x ∈ X such that h(x) = i. For all i ≥ ind, there does not exist any x ∈ X such that
h(x) = i. Initially ind = 1.

If ind ≤ s, we can add an unassigned element x ∈ X to DSMW. Adding an element x ∈ X to DSMW

sets h(x) ← ind and increments ind ← ind + 1. If ind = s + 1, attempting to add an element causes the
data structure to report FAILURE.

A linear query Q is evaluated on a sparse MW data structure DSMW = (D, h) as follows.

Q(DSMW) =
∑

x∈X :Q(x)>0∧h(x)6=∅

Q(x) · D[h(x)] +
∑

x∈X :Q(x)>0∧h(x)=∅

Q(x) · D[ind]

We now present Algorithm 1, the Sparse Multiplicative Weights (SMW) IDC algorithm for m-sparse
queries. The algorithm is a version of the Hardt/Rothblum Multiplicative Weights IDC [HR10], modified to
work without any dependence on the universe size. It will run multiplicative weights update steps over the
variables of the SMW data structure, using the SMW data structure to delay assigning variables to particular
universe elements x ∈ X until necessary. Note that it is not simply running the multiplicative weights
algorithm from [HR10] implicitly: doing so would yield guarantees that depend on the cardinality of the
universe |X |. Instead, the guarantees we will get will depend only on m, and so will carry over even to the
infinite-universe setting.

Theorem 3.5. The Sparse Multiplicative Weights algorithm is aB(α)-IDC for the class ofm-sparse queries
Qm, where:

B(α) = 4
log s+ 1

α2

and s is the smallest integer such that s/(log(s) + 1) ≥ 4m/α2.

The analysis largely follows the Multiplicative Weights analysis given by Hardt and Rothblum [HR10].
The main difference is that rather than using one global potential function, we must use a different potential
function for each database update sequence, defined as a function of the state of the hash table in the last
SMW datastructure in the sequence. We must also argue that we never run out of variables to assign in the
SMW data structure, which would cause it to return FAILURE. To argue this, we apply the technique of
Blum [Blu90], used to adapt Winnow to the infinite attribute model.

Proof. We will consider any maximal (SMW,DSMW,Q, α, T)-database update sequence{
(DSMW

t , Qt, Ât)
}
t=1,...,T

. We will argue that T ≤ 4 log s
α2 and that no data structure DSMW

t in the

sequence ever returns FAILURE when the SMW algorithm attempts to add some element x ∈ X to it.
Consider the real private database D and the final data structure in the sequence DSMW

T = (DT , hT , indT).

9

Algorithm 1 The Sparse Multiplicative Weights (SMW) IDC Algorithm for m-sparse queries. It is instanti-
ated with an accuracy parameter η = α/2. It takes as input a sparse MW datastructure DSMW, an m-sparse
query Q ∈ Qm, and an estimate of the query value Â.

SMW(DSMW
t = (Dt, ht, indt), Qt, Ât):

if DSMW
t = ∅ then

Let s be the smallest integer such that s/(log(s) + 1) ≥ 4m/α2.
Return a new Sparse MW data structure DSMW

1 = (D1, h1, ind1) of size s with h1(x) = ∅ for all
x ∈ X , xi = 1/s for all i ∈ [s], and ind1 = 1.

end if
Let DSMW

t+1 = (Dt+1, ht+1, indt+1)← DSMW
t

Update: For all x ∈ X such that Qt(x) > 0: If ht+1(x) = ∅ then add x to DSMW
t+1 .

if Ât < Qt(DSMW
t) then

Update: For all x ∈ X such that Qt(x) > 0: Let

Dt+1[ht+1(x)]← Dt+1[ht+1(x)] · exp(−ηQt(x))

else
Update: For all x ∈ X such that Qt(x) > 0: Let

Dt+1[ht+1(x)]← Dt+1[ht+1(x)] · exp(ηQt(x))

end if
Normalize: For all i ∈ [s]:

Dt+1[i] =
Dt+1[i]∑s
j=1Dt+1[j]

Output DSMW
t+1 .

10

We will define a non-negative potential function Ψ based on hT and D̂ and show that it decreases
significantly at each step. We define:

Ψt
def
=

∑
x:hT (x) 6=∅

D̂[x] log

(
D̂[x]

Dt[hT (x)]

)

Claim 3.6. For all t ∈ [T], Ψt ≥ −1
e and Ψ0 ≤ log s

Proof. The log-sum inequality states that for any collection of non-negative numbers a1, . . . , an and
b1, . . . , bn:

n∑
i=1

ai log

(
ai
bi

)
≥ a log

(a
b

)
where a =

∑n
i=1 ai and b =

∑n
i=1 bi. We therefore have:

Ψt =
∑

x:hT (x)6=∅

D̂[x] log

(
D̂[x]

Dt[hT (x)]

)

≥

 ∑
x:hT (x)6=∅

D̂[x]

 log

(∑
x:hT (x) 6=∅ D̂[x]∑

x:hT (x)6=∅Dt[hT (x)]

)

≥

 ∑
x:hT (x)6=∅

D̂[x]

 log

 ∑
x:hT (x)6=∅

D̂[x]


≥ −1

e

where the first inequality follows from the log-sum inequality, the second follows from the fact that∑
x:hT (x)6=∅Dt[hT (x)] ≤ 1, and the third follows from the fact that mina∈[0,1] a log a = −1

e . To see
that Ψ0 ≤ log s, recall that D0[i] = 1/s for all i. Therefore:

Ψ0 =
∑

x:hT (x)6=∅

D̂[x] log
(
sD̂[x]

)

Since D̂ is a probability distribution, this expression takes maximum value log s.

We will argue that in every step the potential drops by at least α2/4. Because the potential begins at
log s, and must always be non-negative, we therefore know that there can be at most T ≤ 4 log s/α2 steps.
To begin, let us see exactly how much the potential drops at each step:

Lemma 3.7.
Ψt −Ψt+1 ≥ α2/4

11

Proof. We follow the analysis of [HR10]. We consider the case in which Ât < Qt(DSMW
t). In this case:

Ψt −Ψt+1 =
∑

x:hT (x)6=∅

D̂[x] log

(
D̂[x]

Dt[hT (x)]

)
−

∑
x:hT (x) 6=∅

D̂[x] log

(
D̂[x]

Dt+1[hT (x)]

)

=
∑

x:hT (x)6=∅

D̂[x] log

(
Dt+1[hT (x)]

Dt[hT (x)]

)

≥
∑

x:hT (x)6=∅

D̂[x] log

(
exp(−ηQt(x)) · Dt[hT (x)]

Dt[hT (x)]

)
− log

 s∑
j=1

exp(−ηQt(h−1t (j)))Dt[j]


=

∑
x:Qt(x)>0

−D̂[x]ηQt(x)− log

 s∑
j=1

exp(−ηQt(h−1t (j)))Dt[j]


= −ηQt(D)− log

 s∑
j=1

exp(−ηQt(h−1t (j)))Dt[j]


≥ −ηQt(D)− log

 s∑
j=1

(1− ηQt(h−1t (j)) + η2)Dt[j]


= −ηQt(D)− log

1 + η2 − η
∑

x:Qt(x)>0

Qt(x)Dt[ht(x)]


≥ η(Qt(DSMW

t)−Qt(D))− η2

≥ α2/2− α2/4

= α2/4

In this calculation, we used the facts that:

exp(−ηQt(xi)) ≤ 1− ηQt(xi) + η2Qt(xi)
2 ≤ 1− ηQt(xi) + η2

that
∑s

j=1Dt[j] = 1, that log(1 + y) ≤ y for y > −1, that by the definition of a database update sequence,
when Ât < Qt(DSMW

t) we also have that Qt(D) < Qt(DSMW
t), and that by the definition of database

update sequence we always have |Qt(DSMW
t)−Qt(D)| ≥ α. Finally we recall that η = α/2 The case when

Ât > Qt(DSMW
t) is exactly similar.

Theorem 3.5 then immediately follows by combining Claim 3.6 with Lemma 3.7:

−1

e
≤ ΨT ≤ log s− T · α

2

4

Solving for T we find:

T ≤ 4
log s+ 1/e

α2
< 4

log s+ 1

α2

Finally to see that the SMW data structure never reports FAILURE, it suffices to observe that indT ≤ s.
Because each query Qt is assumed to be m-sparse, at most m variables can be added to the SMW data
structure at each update. Therefore, we have

indT ≤ m · T ≤
4m(log s+ 1)

α2
≤ s

12

The last inequality follows from recalling that we chose s such that s/(log s+1) ≥ 4m/α2. This completes
the proof.

Finally, we may observe that both the update time for the SMW IDC and the time to evaluate a query
on the SMW datatructure is O(s) = Õ(m/α2). Therefore, we may instantiate Theorem 3.3 with the SMW
IDC algorithm to obtain the main result of this section:

Theorem 3.8. For any 0 < ε, δ, β < 1 There exists an (ε, δ)-differentially private query release mechanism
in the interactive setting, with running time per query Õ(m/α2) that is (α, β)-accurate with respect to the
set of all m-sparse linear queries Qm, with:

α = O

(logm)1/4
(

log 4
δ log k

β

)1/2
(ε · n)1/2


Proof. The proof follows by instantiating Theorem 3.3 with the SMW IDC algorithm, together with the
bound B(α) = 4(log s+1)

α2 proven in Theorem 3.5, and recalling that s is the smallest integer such that
s/(log s+ 1) ≥ 4m/α2.

3.1 Applications to Conjunctions

In this section, we briefly mention a simple application of this algorithm to the problem of releasing conjunc-
tions with many literals. The algorithm given in this section leads to new results for releasing conjunctions
on d − k out of d literals. This complements the recent results of Hardt, Rothblum, and Servedio [HRS11]
for releasing conjunctions on k out of d literals. The class of conjunctions are defined over the universe
X = {0, 1}d equal to the d-dimensional boolean hypercube.

Definition 3.9. A conjunction is a linear query specified by a subset of variables S ⊆ [d], and defined by
the predicate QS : {0, 1}d → {0, 1} where QS(x) =

∏
i∈S xi. We say that a conjunction QS has t literals

if |S| = t.

Remark 3.10. The set of all conjunctions of d−k literals, denoted Cd−k is 2k sparse, and of size |C| ≤ dk.

We can release the answers to all queries in Cd−k by running the sparse multiplicative weights algorithm
on each query. We therefore get the following corollary:

Corollary 3.11. There exists an (ε, δ)-differentially private algorithm in the non-interactive release setting
with running time at most

Õ

(
|Cd−k| ·

2k

α2

)
= Õ

(
(2d)k

α2

)
that is (α, β)-accurate for the set of all conjunctions on d − k literals, which requires a database of size
only:

n ≥
k1.5 log 1

δ log d
β

εα2

We note that the running time of this algorithm is comparable to the running time of the algorithm of
[HRS11] for releasing all conjunctions of k out of d literals to worst case error (time roughly Õ(|Ck|) =

Õ(dk)), but requires a database of size only roughly k1.5 log d, rather than dÕ(
√
k) as required by [HRS11].

Of course, conjunctions on k literals are a more natural class than conjunctions on d − k literals, but the
results are complimentary.

13

Moreover, applying the sparse multiplicative weights algorithm in the interactive setting gives polyno-
mially bounded running time per query for conjunctions on d − k literals for any k = O(log n). Note
that this is still a super-polynomially sized class of conjunctions, with |CO(logn)| = dO(logn). This is
the first interactive query release algorithm that we are aware of that is simultaneously privacy-efficient
and computationally-efficient for a super-polynomially sized class of conjunctions (or any other family of
queries with super-constant VC-dimension).

4 A Non-Interactive Mechanism via Random Projection

In this section, we give a non-interactive query release mechanism for sparse queries based on releasing a
perturbed random projection of the private database, together with the projection matrix. Note that when
viewing the database D as a vector, it is an |X |-dimensional object: D ∈ R|X |. A linear projection of D
into T dimensions is obtained by multiplying it by a |X | × T matrix, which cannot even be represented
explicitly if we require algorithms that run in time polynomial in n = |D| for n << |X |. It is therefore
essential that we use projection matrices which can be represented concisely using hash functions drawn
from limited-independence families.

We will use a limited-independence version of the Johnson-Lindenstrauss lemma presented in [KN10],
first proven by [Ach01, CW09].

Theorem 4.1 (The Johnson-Lindenstrauss Lemma with Limited Independence [Ach01, CW09, KN10]).
For d > 0 an integer and any 0 < ς, τ < 1/2, let A be a T × d random matrix with±1/

√
T entries that are

r-wise independent for T ≥ 4 · 642ς−2 log(1/τ) and r ≥ 2 log(1/τ). Then for any x ∈ Rd:

Pr
A

[|||Ax||22 − ||x||22| ≥ ς||x||22] ≤ τ

We will use the fact that random projections also preserve pairwise inner products. The following
corollary is well known:

Corollary 4.2. For d > 0 an integer and any 0 < ς, τ < 1/2, let A be a T × d random matrix with
±1/
√
T entries that are r-wise independent for T ≥ 4 · 642ς−2 log(1/τ) and r ≥ 2 log(1/τ). Then for any

x, y ∈ Rd:
Pr
A

[|〈(Ax), (Ay)〉 − 〈x, y〉| ≥ ς

2
(||x||22 + ||y||22)] ≤ 2τ

Proof. Consider the two vectors u = x+ y and v = x− y. We apply Theorem 4.1 to u and v. By a union
bound, except with probability 2τ we have: |||A(x+ y)||22 − ||x+ y||22| ≤ ς||x+ y||22 and |||A(x− y)||22 −
||x− y||22| ≤ ς||x− y||22. Therefore:

〈(Ax), (Ay)〉 =
1

4
(〈A(x+ y), A(x+ y)〉 − 〈A(x− y), A(x− y)〉)

=
1

4

(
||A(x+ y)||22 + ||A(x− y)||22

)
≤ 1

4

(
(1 + ς)||x+ y||22 − (1− ς)||x− y||22

)
= 〈x, y〉+

ς

2

(
||x||22 + ||y||22

)
An identical calculation shows that 〈(Ax), (Ay)〉 ≥ 〈x, y〉 − ς

2

(
||x||22 + ||y||22

)
, which completes the proof.

14

Definition 4.3 (Random Projection Data Structure). The random projection datastructure Dr of size T is
composed of two parts: we write Dr = (u, f).

1. u ∈ RT is a vector of length T .

2. f : [|X | · T] → {−1/
√
T , 1/

√
T} is a hash function implicitly representing a T × |X | projection

matrixA ∈ {−1/
√
T , 1/

√
T}T×|X |. For any (i, j) ∈ T ×|X |, we writeA[i, j] for f(|X |·(i−1)+j).

To evaluate a linear query Q on a random projection datastructure Dr = (u, f) we first project the query
and then evaluate the projected query. To project the query we compute a vector Q̂ ∈ RT has follows. For
each i ∈ [T]

Q̂[i] =
∑

x∈X :Q(x)>0

Q[x] ·A[i, x]

Then we output: Q(Dr) = 1
n〈Q̂, u〉.

Algorithm 2 SparseProject takes as input a private database D of size n, privacy parameters ε and δ, a
confidence parameter β, a sparsity parameter m, and the size of the target query class k.
SparseProject(D, ε, δ, β,m, k)

Let τ ← β
4k , T ← 4 · 642 · log

(
1
τ

) (
m3/2

2 + n4

2
√
m

+
√
mn2

)
, σ ← ε√

8 ln(1/δ)

Let f be a randomly chosen hash function from a family of 2 log(kT/2β)-wise independent hash func-
tions mapping [T × |X |]→ {−1/

√
T , 1/

√
T}. Write A[i, j] to denote f(|X | · (i− 1) + j).

Let u, ν ∈ RT be a vectors of length T .
for i = 1 to T do

Let ui ←
∑

x:D[x]>0D[x] ·A[i, x]
Let νi ← Lap(1/σ)

end for
Output Dr = (u+ ν, f).

Remark 4.4. There are various ways to select a hash function from a family of r-wise independent hash
functions mapping [T × |X |]→ {0, 1}. The simplest, and one that suffices for our purposes, is to select the
smallest integer s such that 2s ≥ T×|X |, and then to let f be a random degree r polynomial in the finite field
GF[2s]. Selecting and representing such a function takes time and space O(r · s) = O(r(log |X |+ log T)).
f is then an unbiased r-wise independent hash function mapping GF[2s] → GF[2s]. Taking only the last
output bit gives an unbiased r-wise independent hash function mapping [T × |X |] to {0, 1}, as desired.

Theorem 4.5. SparseProject is (ε, δ)-differentially private.

Proof. For each i, write ui(D) =
∑

x:D[x]>0D[x] ·A[i, x]. Note that because each entry ofA has magnitude
1/
√
T , for any database D′ that is neighboring with D, |ui(D)− ui(D′)| ≤ 1/

√
T . Therefore by Theorem

2.9, releasing ui+ νi preserves (ε/(
√

8T ln(1/δ)), 0)-differential privacy. We may now apply the composi-
tion Theorem 2.10 to find that releasing all T coordinates of u+ν preserves (ε, δ)-differential privacy. Note
that f was chosen independently of D, and releasing it has no privacy cost.

We first give a high probability bound on the maximum magnitude of any coefficient Q̂i of a projected
query for any query Q ∈ Q. If we were using a random sign matrix for our projection, the following lemma
would be a consequence of a simple Chernoff bound, but because we are using only a limited independence
family of random variables, we must be more careful.

15

Lemma 4.6. LetQ be a collection of m-sparse linear queries of size |Q| = k, and A ∈ RT×|X | be a matrix
with r-wise independent entries taking values in {−1/

√
T , 1/

√
T}, for some even integer r. Denote the

projection of Q ∈ Q by A by Q̂ ∈ RT . Then except with probability at most β

max
Q∈Q

max
i∈[T]
|Q̂[i]| ≤

(
k · T
2β

)1/r

· 2
√
mr√
T

Proof. We follow the approach of Bellare and Rompel [BR94, DP09]. Recall that for any query Q, Q̂ ∈ RT
is defined to be the vector such that Q̂[i] =

∑
x∈X :Q(x)>0Q[x] · A[i, x]. Note that each coordinate is

dominated by the sum of at most m r-wise independent Rademacher random variables (i.e. Bernoulli
random variables taking values in {−1, 1}): Q[i] ≤ 1√

T

∑m
i=1Ri, and so it is sufficient to bound this sum.

Equivalently, we can write Q[i] ≤ 1√
T

(2
∑m

i=1Bi −m), where the Bis are r-wise independent Bernoulli
random variables. Let B =

∑m
i=1Bi. By Markov’s inequality, we have:

Pr
[
|B − m

2
| > t

]
= Pr

[
(B − m

2
)r > tr

]
<

E
[
(B − m

2)r
]

tr
(1)

Note that because the Bis are r-wise independent, we have E
[
(B − m

2)r
]

= E
[
(B̂ − m

2)r
]

where B̂ is the
sum of m truly independent Bernoulli random variables. We can therefore apply a standard Chernoff bound
to control B̂:

E
[
(B̂ −m/2)r

]
=

∫ ∞
0

Pr
[
|B̂ −m/2| > t1/r

]
dt

≤
∫ ∞
0

exp

(
−2t2/r

m

)
dt

=
(m

2

)r/2 (r
2

)
!

≤ e1/6r
√
πr
(mr

4e

)r/2
where the first inequality follows by a Chernoff bound and the second inequality follows by Stirlings ap-
proximation4. Plugging this in to Equation 1, we find:

Pr
[
|B − m

2
| > t

]
< 2

(mr
t2

)r/2
(2)

Recall that |Q̂[i]| > c if and only if |B − m
2 | >

√
T
2 · c. Applying Equation 2 and taking a union bound over

all k queries and T indices per query proves the lemma.

Corollary 4.7. Let Q be a collection of m-sparse linear queries of size |Q| = k, and A ∈ RT×|X | be a
matrix with r-wise independent entries taking values in {−1/

√
T , 1/

√
T}, for some integer r > log

(
kT
2β

)
.

Denote the projection of Q ∈ Q by A by Q̂ ∈ RT . Then except with probability at most β

max
Q∈Q

max
i∈[T]
|Q̂[i]| ≤ 4 ·

√
m log(kT/2β)√

T

4The form of Stirlings approximation that we use is:

k! < e1/(12k)
√
2πk

(
k

e

)k

16

We will also make use of a tail bound for sums of Laplace random variables. This bound is likely well
known. We use a version proven in [GRU11].

Lemma 4.8 ([GRU11]). Suppose that {Yi}Ti=1 are i.i.d. Lap(b) random variables, and scalars qi ∈
[−B,B]. Define Y =

∑T
i=1 qiYi. Then:

Pr[|Y | ≥ Bα] ≤

{
exp

(
− α2

6Tb2

)
, If α ≤ Tb;

exp
(
− α

6b

)
, If α > Tb.

We can now prove a utility theorem for SparseProject:

Theorem 4.9. For any 0 < ε, δ < 1, and any β < 1, and with respect to any class of m-sparse linear
queries Q ⊂ Qm of cardinality |Q| ≤ k, SparseProject is (α, β)-accurate for:

α = Õ

log

(
k

β

) √m log
(
1
δ

)
εn


where the Õ hides a term logarithmic in (m+ n).

Proof. LetDr = (û, f) be the random-projection data-structure output by SparseQueries, where û = u+ν.
Consider any fixed query Q ∈ Q. Let Q̂ ∈ RT denote the projection of Q by the matrix implicitly defined
by f . We have:

Q(Dr) =
1

n
〈Q̂, û〉 =

1

n

(
〈Q̂, u〉+ 〈Q̂, ν〉

)
We will have two sources of error: distortion from the random projection, which we will analyze using the
Johnson-Lindenstrauss lemma, and error introduced because of the Laplace noise added for privacy. We
will analyze each source separately, starting with the error from the random projection.

Recall that we selected τ = β
4k and T = 4 · 642ς−2 log(1/τ) for ς = 2

√
m

m+n2 . Therefore, applying
Corollary 4.2 together with a union bound over all k queries Q ∈ Q, except with probability at most β/2:

max
Q∈Q
|〈Q,D〉 − 〈Q̂, u〉| ≤ ς

2
(||D||22 + ||Q||22)

≤ ς

2
(n2 +m)

=
√
m

We now consider the error introduced by the Laplace noise ν. We first apply Corollary 4.7 to see that
except with probability at most β/4, we have:

max
Q∈Q

max
i∈[T]
|Q̂[i]| ≤ 4 ·

√
m log(2kT/β)√

T

Conditioning on this event occurring, we may apply Lemma 4.8 with B = 4 ·
√
m log(2kT/β)√

T
together with

a union bound over all k queries Q ∈ Q, to find that except with probability at most β/4:

max
Q∈Q
|〈Q̂, ν〉| ≤ 4

√
6m

(
1

σ

)2

log

(
4k

β

)(
log

(
2k

β

)
+ log T

)

=
16
√

3

ε

√
m log

(
4k

β

)
log

(
1

δ

)(
log

(
2k

β

)
+ log T

)

= Õ

log

(
k

β

) √m log
(
1
δ

)
ε


17

where the Õ is hiding a log(T) term which is logarithmic in m and n.
Finally we can complete the proof. We have shown that except with probability at most β:

max
Q∈Q
|Q(D)−Q(Dr)| =

1

n
max
Q∈Q
|〈Q,D〉 − 〈Q̂, û〉| (3)

≤ 1

n
max
Q∈Q

(
|〈Q,D〉 − 〈Q̂, u〉|+ |〈Q̂, ν〉|

)
(4)

≤ 1

n

√m+ Õ

log

(
k

β

) √m log
(
1
δ

)
ε

 (5)

= Õ

log

(
k

β

) √m log
(
1
δ

)
εn

 (6)

which completes the proof.

4.1 Applications to Conjunctions

In this section, we again briefly briefly mention a simple application of our non-interactive mechanism to
the problem of releasing conjunctions with many literals. This gives the first polynomial time algorithm for
non-interactively releasing a super-polynomially sized set of conjunctions.

Definition 4.10. Recall that a conjunction is a linear query specified by a subset of variables S ⊆ [d], and
defined by the predicate QS : {0, 1}d → {0, 1} where QS(x) =

∏
i∈S xi. We say that a conjunction QS

has t literals if |S| = t.

Remark 4.11. The set of all conjunctions of d− k literals, denoted Cd−k is 2k sparse, and of size |Cd−k| ≤
dk.

Sparseproject therefore gives the following corollary:

Corollary 4.12. There exists an (ε, δ)-differentially private algorithm in the non-interactive release setting
with polynomially bounded running time, that is (α, β)-accurate for the class of conjunctions Cd−logn on
d− log n literals for:

α = Õ

(log n log d+ log
1

β

) √log
(
1
δ

)
ε
√
n


Note that Cd−logn is a super-polynomially sized set of conjunctions. As far as we know, this rep-

resents the first algorithm in the non-interactive setting with non-trivial accuracy guarantees for a super-
polynomially sized set of conjunctions that also achieves polynomial running time.

5 Conclusions and Open Problems

In this paper, we have given fast interactive and non-interactive algorithms for privately releasing the class
of sparse queries. Query release algorithms with run-time polynomial in the database size are unfortunately
rare, and so a natural question is whether the fast algorithms given here can be leveraged as subroutines in
the development of efficient algorithms for other applications. Of course the main question which remains
open is to find other classes of queries for which fast data release algorithms exist. Random projections of

18

the database, together with concise representations of the projection matrix seem like a powerful tool. Can
they be leveraged in a setting beyond the case of sparse queries, when the norm of the queries are comparable
to the norm of the database itself?

References

[Ach01] D. Achlioptas. Database-friendly random projections. In Proceedings of the twentieth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems, page 281. ACM,
2001.

[BLR08] A. Blum, K. Ligett, and A. Roth. A learning theory approach to non-interactive database privacy.
In Proceedings of the 40th annual ACM symposium on Theory of computing, pages 609–618.
ACM, 2008.

[Blu90] A. Blum. Learning boolean functions in an infinite attribute space. In Proceedings of the
twenty-second annual ACM symposium on Theory of computing, pages 64–72. ACM, 1990.

[BR94] M. Bellare and J. Rompel. Randomness-efficient oblivious sampling. In Proceedings of the
35th Annual Symposium on Foundations of Computer Science, pages 276–287. IEEE Computer
Society, 1994.

[CKKL11] M. Cheraghchi, A. Klivans, P. Kothari, and H.K. Lee. Submodular functions are noise stable.
Arxiv preprint arXiv:1106.0518, 2011.

[CW09] K.L. Clarkson and D.P. Woodruff. Numerical linear algebra in the streaming model. In Pro-
ceedings of the 41st annual ACM symposium on Theory of computing, pages 205–214. ACM,
2009.

[DMNS06] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private
data analysis. In Proceedings of the Third Theory of Cryptography Conference TCC, volume
3876 of Lecture Notes in Computer Science, page 265. Springer, 2006.

[DNP+10] C. Dwork, M. Naor, T. Pitassi, G.N. Rothblum, and S. Yekhanin. Pan-private streaming algo-
rithms. In In Proceedings of ICS, 2010.

[DNR+09] C. Dwork, M. Naor, O. Reingold, G.N. Rothblum, and S. Vadhan. On the complexity of dif-
ferentially private data release: efficient algorithms and hardness results. In Proceedings of the
41st annual ACM Symposium on the Theory of Computing, pages 381–390. ACM New York,
NY, USA, 2009.

[DP09] D. Dubhashi and A. Panconesi. Concentration of measure for the analysis of randomized algo-
rithms. Cambridge University Press, 2009.

[DRV10] C. Dwork, G.N. Rothblum, and S. Vadhan. Boosting and differential privacy. In Proceedings
of the 51st Annua IEEEl Symposium on Foundations of Computer Science, pages 51–60. IEEE,
2010.

[GHRU11] A. Gupta, M. Hardt, A. Roth, and J. Ullman. Privately Releasing Conjunctions and the Sta-
tistical Query Barrier. In Proceedings of the 43rd annual ACM Symposium on the Theory of
Computing. ACM New York, NY, USA, 2011.

19

[GRU11] A. Gupta, A. Roth, and J. Ullman. Iterative constructions and private data release. Arxiv preprint
arXiv:1107.3731, 2011.

[HR10] M. Hardt and G.N. Rothblum. A multiplicative weights mechanism for privacy-preserving data
analysis. In 51st Annual IEEE Symposium on Foundations of Computer Science, pages 61–70.
IEEE, 2010.

[HRS11] M. Hardt, G.N. Rothblum, and R.A. Servedio. Private data release via learning thresholds.
Arxiv preprint arXiv:1107.2444, 2011.

[HT10] M. Hardt and K. Talwar. On the Geometry of Differential Privacy. In The 42nd ACM Symposium
on the Theory of Computing, 2010. STOC’10, 2010.

[KN10] D.M. Kane and J. Nelson. A derandomized sparse johnson-lindenstrauss transform. Arxiv
preprint arXiv:1006.3585, 2010.

[RR10] A. Roth and T. Roughgarden. Interactive Privacy via the Median Mechanism. In The 42nd ACM
Symposium on the Theory of Computing, 2010. STOC’10, 2010.

[UV11] Jonathan Ullman and Salil P. Vadhan. PCPs and the hardness of generating private synthetic
data. In Yuval Ishai, editor, TCC, volume 6597 of Lecture Notes in Computer Science, pages
400–416. Springer, 2011.

20

